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STUDY AND DEVELOPMENT OF MORPHOLOGICAL ANALYSIS 
GUIDELINES FOR POINT CLOUD MANAGEMENT: THE “DECISIONAL 

CUBE”  
 

Enrico Vezzetti 
 

Dipartimento di Sistemi di Produzione ed Economia dell’Azienda 
Politecnico di Torino 

  
Abstract 

 
When talking about reverse engineering, it is necessary to focus on the management of point clouds. 

Generally speaking, every 3D scanner device codifies simple and complex geometries providing different 
point cloud densities as an output. Point cloud density  is usually more correlated with the technical 
specifications of the device employed rather than with the morphology of the object acquired. This situation 
is due to the frequent use of structured grids by a large quantity of devices. In order to solve this problem, we 
therefore need to integrate the classical structured grid acquisition with a smart selective one, which is able 
to identify different point cloud densities in accordance with the morphological complexity of the object 
regions acquired.  

Currently, we can reach the destination in many different ways. Each of them is able to provide 
different performances depending on the object morphology and the performances of 3D scanner devices. 
Unfortunately, there does not yet exist one universal approach able to be employed in all cases. For this 
reason, the present paper aims to propose a first analysis of the available methodologies and parameters, in 
order to provide final users with some guidelines for supporting their decisions according to the specific 
application they are facing. Moreover, the developed guidelines have been illustrated and validated by a 
series of case studies of the proposed method.  
   

Keywords: Reverse Engineering, 3D Scanner, Point Cloud Management, Morphological Analysis 

 

1.0 Introduction 

Reverse engineering process starts from the usage of a scanning device that usually provides a “point 
cloud”,  representing a particular set of points describing a discrete sample of a physical model surface. The 
Delaunay’s approach is only a triangulation technique which can be used to generate a polyhedral model of 
a physical one, starting from a point cloud. These are only two of the many steps of the reverse engineering 
process that moves from the point cloud acquisition to the virtual model reconstruction. This process is 
characterized by many possible settings and choices which are sometimes difficult to define and may 
sometimes be the cause of significant movements of the captured sample regions from the real surface. The 
efficiency of the entire reverse engineering cycle strongly depends on the initial point cloud characteristics, 
and in particular on the number of points and on their placement in the Cartesian space. For this reason, it is 
necessary to provide a point data set, that is a “selective sample”, strictly correlated with the original scanned 
surface and accurately representing its morphological characteristics. In order to achieve this selective 
sampling solution, it is important to remember that many 3D Scanners usually acquire the object surface by 
using a constant grid, whose dimensions depend on the particular technology (contact, non-contact) 
employed [1]. Working with a wide number of possible surface morphologies, the use of the constant grid 
tends to cause two different scenarios: the creation of too scattered point clouds which are not suitable for 
working on complex zones, while scanning planes, cylinders or cone-like areas with high resolutions 
performances would be redundant. Considering that the common assumption “the database quality 
improving goes always together with the sampled point density” is not true, a sample crowded with too many 
points and obtained from a relatively simple surface means wider uncertainty propagation, due to the 
measuring tool. It is then  necessary to introduce a new sentence saying that “the database quality improving 
is directly proportional to the propriety of the points of the cloud”. Hence, considering that the acquired point 
density depends on the scanning resolution, whose value is locally chosen based on the surface 
morphological complexity, the selective sampling approach can be obtained by using an “expert” operator to 
locally establish which pitch is to  be employed. However, in this case, the whole process would be expected 
to be extremely time-consuming because of possible iterations, and the final result would probably be 
significantly subjective.  
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On the other hand, the whole process can be automated by employing a morphological descriptor 
parameter, that can be associated with the optimal points density (or scanning pitch).  
 At present, the selection of the most appropriate morphological descriptor is a complex activity 
because different possible solutions have been provided by the technical literature. Starting from the 
approach that aggregates the point clouds in cluster [2] and evaluates as a morphological parameter the 
normal vector of its representative, it is possible to move to a new different  methodology which again works 
with the normal vector but which evaluates it based on the local Voronoi neighbourhoods [3]. As far as the 
Gaussian Curvature is concerned, this parameter can be obtained by working on a point cloud and dividing it 
into several elementary regions characterised by a central node: the Gaussian curvature is then represented 
by the angular excess of the triangles converging in the central node [4]. Working with the tensor, one 
solution is the evaluation of this morphological parameter by using the directional curvatures and the normal 
vectors [5] while another makes use of the principal curvatures employing a region growing approach.  
 All of these methods show different strengths and weaknesses in relation to the specific geometry 
and application involved in. Hence, for a new user who needs to understand which  approach is the one to 
employ, it is not always easy to understand which direction to take. Unfortunately, most of existing studies 
focus only on one parameter, and evaluate different operative strategies instead of giving any comparison 
with the other possible morphological descriptors. Moreover, a large part of the technical literature only deals 
with Gaussian Curvature [6].  
 In view of the above discussion, the present work proposes a structured comparison of the available 
morphological parameters, analysing different operative extraction methodologies, in order to design some 
preliminary point cloud management guidelines.  

 

2.0 Morphological descriptor selection: The evaluation Method 

 
In order to support the selection of the best morphological parameter in accordance with the specific 
acquisition scenario, it is necessary to define some variables able to describe in a consistent way the 
scenario itself.  
 

2.1 The evaluation method: Variables 

Geometrical variables and metrological performances have been analysed and evaluated by working with a 
survey implemented on a sample of reverse engineering users and employing a compatibility diagram 
approach [7]. Looking at the results of the study, three variables have been identified as key factors for the 
reverse engineering users for describing in a consistent way the possible working scenarios. While the first 
two variables depend on the object geometry, the third one is mainly correlated with the 3D scanner device. 
Focusing the attention on  geometry, the two main variables are: 
 

 Shape change amount 
 Sharp edge number 
 

On the other hand, as far as the parameter correlated with the 3D scanner is concerned, it is possible to 
synthesize the device performances by using the: 
 

 Point cloud density  
 
According to the value that these three variables may have, it is possible to define different morphological 
scenarios; each of them could be ideal or inadequate for the use of a morphological parameter and of a 
specific operative approach for its extraction.  

In order to support this selection, before starting, it is necessary to make some considerations. First 
of all, considering the different dimensions of the acquirable object, it is necessary to define which is the 
dimension of the area over which the morphological analysis will be developed (morphological detail). This 
step is fundamental because morphological features have different importance depending on the extension 
of the object itself. The same feature can be significant over an object covering an area of 1 x 1 mm, and 
negligible over an object covering an area of 1000 x 1000 mm. For this reason, the value of a morphological 
detail cannot be absolute and universal, but only relative and, definable as 10% of the entire object area. 
(Fig.1).  

Moreover, considering that the cited variables are described as an amount, it is necessary to define 
their scale. From the user point of view, the scale of all these variables can be considered as binary one, 
because the most frequent scenarios are characterised by: many or few sharp edges and many or few 
shape changes.  



 4

From this point of view, it is necessary to split the variables scales into two intervals by using a 
threshold. Its value can be defined as the percentage of the morphological detail areas composing the object 
surface characterised by shape evidences. If this value is bigger than 50%, the variable describes a scenario 
with significant morphological features (high complex geometry). On the contrary, if the percentage is equal 
or lower than 50%, the scenario will be characterized by a quite smooth shape.  

 

100%
10%

10
0%

10
%

 
 

Figure 1: Point cloud elementary region 
 
Starting from this hypothesis, it is possible to formalise the different variables necessary to synthesize the 
different possible working scenarios. 
 

2.1.1 Shape change Amount  

Starting from the previous hypothesis at this stage it is possible to rationally formalise the meaning of 
“surface with many (few) shape changes”. In fact, it will mean a surface where it is possible to find at least (at 
most)  51% (50%) of the morphological detail squares, with at least a shape change inside. This is important 
for objectively codifying what an expert eye could subjectively detect as a shape change and in general as a 
complex (smooth) surface.  

The amount of shape changes in an object geometry is identified with the help of the second 
derivative. The second derivative of a function gives information on the concavity of a curve. A curve 
variation always corresponds to a change of concavity.  

First of all, the first derivative is analysed in order to study the function trend and to establish the 
existence of any stationary point.  In order to obtain a higher precision in the function study, the second 
derivative analysis is also carried out assessing the presence of inflection points (points where the second 
derivative is equal to 0) and localising the convexity intervals.  

If 0)('' xf , then f is convex in x, if 0)('' xf , then f is concave in x, if 0)('' xf , then x is a point of 
inflection. The inflection points correspond to a change in the curve curvature. 
 

2.1.2 Sharp edge number  

It is also possible to formalise the meaning of “surface with many (few) sharp edges”. Similarly to previous 
variable (Shape change amount) the threshold is located over the 50%. It in fact will mean a surface where it 
is possible to find at least (at most) the 51% (50%) of the morphological detail squares, with at least a sharp 
edge inside.  

From a mathematical point of view, it is possible to say that a point A = (x0, y0) of a C curve 
parameterised by the continuous function y = f (x) is a cusp (or that the function f has a cusp at x0) if f is 

derivable in a deleted neighbourhood and at this point, we have 
)('lim)('lim

0

xfxf
xxxx o
 


. 

Geometrically speaking, this means that at this point there are two different tangent lines, a right one 
and a left one.  

 Considering the surfaces, it is not possible to consider just one tangent because the study must be 
done in three dimensions. The partial derivative [8] is a first generalization of the concept of a derivative of 
real functions of several variables. If for real functions the derivative is the slope of the graph of a function (a 
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curve contained in the plan), the partial derivative at a point in relation to (for example) the first variable of a 
function of x and y, is the slope of the curve obtained by intersecting the graph of f (an area contained in the 
space 3R ) with a plane passing through the point and parallel to the plane y = 0. The directional derivative [8] 
is a tool that generalizes the concept of partial derivative; it no longer occurs only along directions parallel to 
the Cartesian axis, but in any direction determined by a vector. Let Rf : (with 2R open set ) be and 

a point ),( 00 yx ; take a unit vector ),( 21 vvv  . Then the direction derivative with respect to unit vector v of 

f  in ),( 00 yx is 
t

yxftvytvxf
yxfD

t
v

),(),(
lim),( 002010

0
00






, if this limit exists finite[8]. 

2.1.3 Point cloud density  

As far as the point cloud density is concerned, it is not necessary to talk about the threshold 
discussed before (50%), because of the structured grid employed (uniform point cloud). As a consequence, 
talking about “very crowded (sparse) point cloud”,  means that when working with two points P1  and P2 their 
distance is less (bigger or equal) than 10% of the  length of side of the whole object area : d(P1,P2)<10% 
(d(P1,P2)>= 10%). 

 

2.2 The evaluation method: Euclidean Space Scenarios Formalisation 

Starting from the considerations we made before, each variable could then be described on a binary 
scale. When working with an Euclidean space, each of them could be graphically represented by employing 
a three axis framework (Fig. 2). Its origin describes a scenario where the point cloud has been obtained 
through the acquisition of an object characterised by few shape changes, few sharp edges and low density.  
 
 

 
 

Figure 2: Euclidean framework variables layout 
 
The three variables belong to the interval  0,1  and, for handiness, they will be indicated as:  

 
 x  sharp edge, 
 y density, 

 z shape change. 
 

and so  1,0,, zyx . 

These variables have been located on three orthogonal axes and could be combined each others 
independently. Considering that every variable moves on a binary scale, every domain shall be divided into 
two intervals [0,1/2] and [1/2,1] (Tab.1) (Fig.3). 
 

      Intervals 
 
Variables 





2

1
,0  



 1,
2

1
 

x  few sharp edges  many sharp edges 
y  sparse point cloud crowded point cloud 

z  few shape change many shape change 
 

Table 1: Framework variables intervals 
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Each combination will synthesize a possible scenario (for greater convenience, “scenario” will also 
be called case and combination in the next lines), where an optimal morphological parameter could be 
identified.  In the Euclidean space the possible combinations will be located in a specific place inside a cube. 
The entire scenarios set is represented by a cube or side dimension 1, called “decisional cube”. On the 
Euclidean space each of these combinations is represented by a cube of side length ½ and which is located 
inside of the decisional cube. 

  
 

Figure 3: Framework variables intervals 
 

In order to provide a reliable analysis about the best morphological parameter, all the possible 
variables values have been combined to analyse as many scenarios as possible (Tab.2). 
 

 
Cases 

Few 
shape 

change 

Many 
shape 

change 

No 
sharp 
edges 

With 
sharp 
edges 

Spare Crowed 
 

Case 1 X  X  X  

 

Case 2 X   X X  

 

Case 3 X  X   X 

 

Case 4 X   X  X 

 

Case 5  X X  X  

 

Case 6  X  X X  

 

Case 7  X X   X 
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Case 8  X  X  X 

 
 

Table 2: Euclidean space scenarios representations  
 
3.0 Morphological descriptor selection: operative extraction methodologies 
 

Once defined the starting hypothesis and defined the comparison methodology, and before starting 
the structured comparison of the available morphological parameters, the key points of the morphological 
parameters extraction methodologies have been analysed by underlining strengths and weaknesses with 
respect to the possible scenarios cited before.   
 
3.1 Morphological descriptor: Normal  
 

The normal vector, often just called the "normal," to a surface is a vector perpendicular to it. Often 
the normal unit vector is preferred, sometimes known as the "unit normal". When normals are considered on 
closed surfaces, the inward-pointing normal (pointing towards the interior of the surface) and outward-
pointing normal are usually different. An Euclidean vector at a point of a surface is normal to the surface if it 
is orthogonal to the tangent plane and, consequently, to every tangent vector to the surface at the point.  
 
3.1.1 Normal: Local Voronoi Neighbourhood (Method 1)   
 

The procedure that involves the evaluation of the normal vector usually includes the following three 
fundamental steps: 
 

1. Neighbouring points identification where applying the normal vector estimation  
2. Normal vector evaluation based on local neighbouring points  
3. Defining the input/output direction for the normal vector 

 
Following this method [3], it is possible to identify the local Voronoi mesh neighbourhoods of a specific 

point starting from the global Voronoi neighbours. At the beginning, the Voronoi diagram is created by 
employing the quickhull [9] algorithm, which stands out for its simplicity and its computational efficiency. After 
that, the Voronoi mesh neighbours have been made starting from the local triangular mesh growing 
algorithm as the ball-pivoting approach [3]. Once the neighbouring points have been identified, it is possible 
to evaluate the normal vector. This evaluation is based on the quadratic curve fitting and allows users to find 
the normal vector of the point P0 starting from its K local Voronoi mesh neighbours. The key points of this 
procedure can be summarised through the following lines (Fig.4): 
 

 Identifying the correspondent Pj points over the local Voronoi mesh with the biggest angle in P0 
 Fitting a quadratic curve P(u) through Pi,P0 and Pj [2] 
 Extracting the directional tangent vector from the fitted quadratic curve 
 Evaluating the normal vector n in the P0 point [2]: 

- The s2 variance of the n and K directional tangent vector dot product is evaluated.  
- Employing a manipulation method [9] it is possible to obtain a 3x3 matrix where the column 

vectors are eigenvectors with 321 ,,  as eigenvalues. The eigenvector correspondent to the 

minimal eigenvalue is the normal vector that minimizes the variance.  
 

 
Figure 4: Normal vector n at P0 

 



 8

The method for evaluating the normal vector n at P0 is graphically shown in figure 4.  
During the following steps, the normal vectors of both internal and external directions are defined in 

order to obtain a consistent global orientation for the normal vectors in the sampled points. For this purpose 
the local mesh is employed for identifying the two poles of the Voronoi cells (Tab.3) (Fig.5). 
 
Strengths Weaknesses  
This approach is accurate and consistent; in fact, 
while increasing the sample dimension, its 
probability distribution converges on the estimated 
parameter. The normal vector evaluation method 
features a wide number of geometric analysis 
algorithms for point cloud. Moreover, the Voronoi 
diagram is indipendent from point cloud density 
and, more important, the Voronoi neibouring points 
form a set that reliably represents local surface 
geometry. The Delaunay triangular mesh is a 
global structure that allows users to identify the 
shape minimum volume 3D representation  in any 
case. This feature allows a better shape 
approximation proportional to the point cloud 
density. Generally speaking, experimental results 
coming from the technical literature describe this 
method as robust and able to evaluate the normal 
vector with consistency. 
 

The normal vector is a local geometric property. As 
a consequence of this, it is necessary to make a 
careful evaluation of the neighbouring points. In fact, 
by introducing too many points the local 
characteristic of the estimated normal vector could 
degrade, adding misleading information into the 
point cloud. However, if the point cloud is too 
scattered the choice of the optimal neighbouring 
point is strongly limited, because it is not able to 
provide a consistent representation of the surface 
geometry.  
 

 
Table 3: Local Voronoi neighbourhood method strengths and weaknesses    

 
 
 

 
 

Figure 5: Local Voronoi neighbourhood flowchart   
 

 
3.1.2 Normal: global clustering approach (Method 2)  
 

This method starts from a dense point cloud formed by M points belonging to a continuous surface 
S . The goal of this methodology is to find a subset PPN   with a specified number of points MN   which 

minimizes the geometric deviation between the surfaces represented from NP  and P  [2].  

This approach is divided into three fundamental steps: the objective function definition, the objective 
function evaluation and the objective function minimization. The definition is based on clustering and point-
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to-surface distance approximation concepts. N points belonging to P  are considered and named ir . They 

are defined as representatives. The set of ir  is NP (Fig.6). 

                                     
 

Fig. 6 Configuration change: representative r1 replaced by r’1 

 

After that, a cluster is created with a representative ir , belonging to NP  , and every point NPPp / , 

so that the distance between p  and  ir  is minimum.  

An objective function is defined and used to evaluate an optimal configuration for NP  , but it is not 

sufficient to obtain a continuous surface representation starting from the point cloud.  The geometric shape 

of the surface NS , represented by a simplified data set NP , is approximated by the normal vector, which is 

evaluated for each point belonging to NP . The normal vector 
ir

n in Ni Pr  is evaluated by using the ir  

neighbouring points in NP [3]. 

Another problem that occurs frequently is that, when the NP  configuration changes (Fig.6), the 

cluster representation and the correspondent normal vector also change. In this approach, these changes 
are controlled in a predictable way and they can therefore modify the objective function. The objective 
function minimization process consists of two correlated steps in which the layout cluster is improved and 
hence the representatives choice is refined (Tab.4)(Fig.6).  
 
Strengths Weaknesses  
In this approach the geometric deviation accuracy 
is made in a cluster-by-cluster way. Few clusters at 
each iteration are taken into consideration and the 
evaluation can be carried out in a rigorous way.  It 
is possible to obtain a data series by varying the 
point number in NP . This extracted data set will 

represent the input data’s original geometry at 
different detail levels. However, the estimate 
requires much fewer neighbouring points (minimum 
three) compared to the quadratic surface fitting 
method that requires at least nine neighbouring 

points. Since the Voronoi diagram of NP  usually 

supplies at least three neighbouring points for 
every representative Ni Pr  , this method can profit 

from the 3D Voronoi diagram structure, which well 
constructed for the desired neighbouring points’ 
choice. 

The whole method is based on the assumption of a 
dense point cloud. It is better not to take a very small 
N, because the object function’s stability is based on 
the point-to-surface distance approximation which, in 
such a case, might not be efficient enough. The 
problem of the relationship between point density 
and the approximation resulting error remains. 

 
Table 4: Global clustering approach method strengths and weaknesses    
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Figure 7: Global clustering approach neighbourhood flowchart    

 
 
3.2 Morphological descriptor: Gaussian Curvature 
 

When working with a generic geometry it is possible to evaluate its morphological complexity by 
employing two perpendicular planes cutting the surface in one point p0. Looking at these planes, it is possible 
to work on two curves to analyse their geometrical behaviour. This operation provides the principal 
curvatures k1 and k2 of the two curves and on the same point. The product of these values provides the 
Gaussian Curvature morphological descriptor.  
 
3.2.1 Gaussian Curvature: percentiles (Method 3) 
 

In the methodology [10], there is a process used for parametric surfaces and another similar one for 
discrete surfaces. When dealing with point clouds, it is necessary to use the discrete one and therefore to 
work on a triangular mesh M composed by a vertex set V={vi}R3, a edges set E={ej=vj1vj2}  which connect 
the vertexes and a triangles set T={tk= vk1vk2vk3}. The incident angles in vi are defined as { i

1,  i
2,…,  i

di} 
where di is the vertex degree vi  (Fig.8). 
 

 
Figure 8 : Vertex and related variables 

 
 

As a consequence of this, the Gaussian curvature KT  [10], used in the differentiable surfaces, can be 

approximated in the discrete ones as the sum of the 
T

iK in each vertex in a specific region. Hence, in a 

specific vertex vi the curvature integral can be approximated from [12,4]: 





idj

j

i
j

Kds

S

T
iK

1

2  . 

Considering that for discrete surfaces the Gaussian curvature 
T

iK is only an approximated value, the 

presence of noise during the data acquisition process and of geometric and topologic features embedded in 
the mesh can lead up to misleading information.  

The cover surface boundary [10] and the associated topological features often result in edges not 
shared with the other two triangles (Fig.9). 
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Figure 9 : Degenerate vertex due to a specific feature (hole) 

 

In this case, the smooth surfaces curvature is not well defined. For the vertices in this case, the 
T

iK values, 

computed by the integral, are directly linked to the boundary curve’s curvature instead than only to the 

surface curvature. These vertices, whose computed 
T

iK value cannot represent the surface shape, are 

defined as degenerate vertices. In fact, once defined the threshold value, 3/2π=Ke , if the vertices satisfy 

Ki
T <Ke  they are erased. 

 

On the basis of the computed values, a 2D spherical map is designed. With 
T

iK it is possible to 

evaluate the curvature associated with  ii yx ,  and with ir  and the distance from the center. The vertices 

are then grouped together on the basis of the percentile and divided into n concentric regions. For each 

region j, the integral of the Gaussian curvature 
T

jK  is calculated as the summation of all the 
T

iK , 

namely 



jIi

T
i

T
j KK .  For each input it is possible to obtain a vector K=[

T
n

TT KKK ,..,, 21 ] that represents 

the curvature integral of every concentric region. 
 
The similar meshes are then compared by means of some correlation coefficients. The values of these 
coefficients will correspond to a high or low similarity level (Tab.5)(Fig.10). 
 
Strengths Weaknesses  
One of the main advantages provided by the 
method is the efficient computational behaviour. 
Because of the use of a two meshes comparison, 
when analysing the different morphological 
behaviour of the two geometries, the calculation of 
the curvature integral is reduced to the comparison 
of the K values in pair; from a computational point 
of view, this process is equivalent to comparing two 
vectors. 
This methodology includes both continuous and 
discrete models approaches. 

The proposed methodology is suggested for 
freeform surfaces. In fact, it is not applicable to the 
study of prismatic geometries or complicated 
topologies with flat geometries because there are 
many degenerate vertices.  
When working with discrete surfaces, the Gaussian 
curvature value provided is just an approximation 
which highly depends on the mesh quality. In fact, 
big mesh size and layout variations could lead to 
incorrect conclusions.  
According to this methodology, another limitation in 
the use of this parameter is the density of the point 
cloud. The approximation of the Gaussian curvature 
integral through the formula mentioned above, leads 
to satisfying results if the sample is sufficiently large.

 
Table 5: Percentiles method strengths and weaknesses    
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Figure 10: Percentiles method flowchart    
 

3.2.2 Gaussian Curvature: angle deficit in spherical image (Method 4) 
 

The curvature of a surface can be approximated with another method that has been developed 
starting from the Rodriguez Theorem [13]. The surface is approximated by a polyhedron with triangular faces 
whose vertices are the points of the surface. For example, point 0 is surrounded by the triangular faces 

1iiOPP  (Fig.11). The spherical image of the polyhedron is a set of points of the unit sphere (the head of the 

unit vectors parallel to 1, iin ). These points are linked by arches and a spherical polygon is created on the 

unit sphere. 
 

                   
Figure 11: Angle deficit method    

 

The area of the spherical polygon is the angle deficit of the polyhedron [11],   1,2 ii . The area 

of each triangular face of the polyhedron can be subdivided into three equal parts, one for each vertex, so 

that the area relative to point O on the polyhedron is  
1
3
∑ Si . i+1 . This value is considered as an 

approximation of the area of the curve on the surface around O, although the curve has not been specified. 
Hence an approximation of the curve in  O is   









1,

1,

3

1

2

ii

ii

S
K

 . 

 
This formula for calculating K is for example used by [6,14,15,11]  (Tab.6)(Fig.12). 
 
Strengths Weaknesses  
In order to obtain the best curvature approximation 
with this method, it is necessary to have a very 
high point cloud density sample. Furthermore, from 

The curvature approximation with the angle deficit 
method has proved to be not too accurate at times. 
For uniform and not uniform data, the angle deficit 
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a computational point of view , this methodology is 
highly indicated for free-form surfaces.  

method is able to approximate the curvature with 
precision O(1). It has been shown that for high point 
cloud sample density other known methods lead to a 
higher approximation error, because the method is 
independent by the points distance. 

 
Table 6: Angle deficit method strengths and weaknesses    

 
 

 
 

Figure 12: Angle deficit method flowchart 
 

 
3.2.3 Gaussian Curvature: quadratic surface fitting (Method 5) 
 

This method provides a curvature approximation starting from a quadratic interpolation surface. The 
normal and the curvature of a quadratic surface can, in fact, approximate the normal and the curvature of a 
surface. 

A quadratic surface that passes through the origin is given by   

z=A10 x+A01 y+
A20

2
x2+A11 xy+

A02

2
y2

.    (1) 

It is required to pass through other five points as well. Considering the points  ),,( iii ZYX , 

5,,1i it is possible to express this condition through the following system: 
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If system (2) has a unique solution, it is possible to find the curvature through this method. The 

curvature of the quadratic equation (1) will be given by: 
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The form of the quadratic formula can be extended including the terms in 22 , xyyx  and 22 yx [4]. In 

this case eight points will be necessary and a system of 8x8 linear equations will be the result 
(Tab.7)(Fig.13). 
 
 
Strengths Weaknesses  
This method works for both uniform and not 
uniform data giving an approximation O(h) of the 
curvature. This means that the method has a linear 
dependence on the point distance inside of the 
point clouds. Besides, experimental results coming 
from the technical literature show that the distance 
between points, and also the density of the point 
cloud, do not excessively affect the surface 
approximation. Whenever the surface can be 
classified as a free-form surface, the approximation 
provided by this method supplies very good results 
thanks to the absence of significant irregularities. 

Working with a fitting quadratic equation (1), the 
method involves matrices representation (2). For this 
reason, if these are badly conditioned the method 
could provide poor accuracy results.  
If this method is used for not free-form surface, the 
process of fitting the quadratic equation could supply 
misleading results and, as a consequence, the 
curvature approximation is likely to  have a level of 
inaccuracy proportional to the irregularities 
presence. In fact, the use of this methodology is not 
recommended when the geometry is characterised 
by a lot of sharp edges. 

 
Table 7: Angle deficit method strengths and weaknesses    

 
 

 
 

Figure 13: Angle deficit method flowchart 
 
 
 
3.3 Morphological descriptor : curvature tensor  
 

The curvature tensor of a surface S is the map pkp   that assigns to each point p of S a function 

measuring the directional curvature )(Tkp  of S in p in the direction of the unit vector T, tangent to S in p. 

The curvature tensor is representable through a 3x3 symmetrical matrix M. Its eigenvalues are k 1 , k 2 , 0 
and the correspondent eigenvectors are k1, k2, N. k1 and k2 represent the principle curvature; k1 and k2 the 
correspondent principle directions; and N the normal to the area. M is interpretable as the normal vector 
variation in small neighbourhoods. Hence, the necessary information is available for building M as M=PDP-1                    
with 
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3.3.1 Curvature tensor: based on Normal Cycle (Method 6) 

 
This is an efficient algorithm [16] to decompose a triangulated mesh. It is based on the curvature 

tensor field and it consists of two complementary steps: 1) a region based segmentation, which is an 
improvement of what was already computed by Lavoue and others [17] and that decomposes the object into 
several patches with a constant curvature; 2)a boundary rectification based on curvature tensor directions, 
that corrects the boundaries and eliminates their artefacts or discontinuities. An original method of 
segmentation is presented to decompose an original 3D mesh into patches characterized by a uniform 
curvature and  clear boundaries. The simple and efficient classification identifies any curvature transition; 
hence, it allows to segment the object into confining regions with constant curvature without cutting the right 
object in its sharp edges.   

In the first step, curvature based region segmentation, a pre-processing step identifies sharp edges 
and vertices; the curvature tensor is then calculated for each vertex according to the work of Coree- Steiner 
et al. [18], based on the Normal Cycle. Vertices are classified into clusters, according to the principal 
curvature values Kmin and Kmax. With the help of a region-growing algorithm, the triangles are assembled 
into connected labelled regions according to the vertex clusters. Finally, a region adjacency graph (RAG) is 
processed and reduced in order to merge similar regions according to several criteria (curvature similarity, 
size and common perimeter). 

During the second step, boundary rectification, boundary edges are extracted from the previous 
region segmentation step. Then, for each of them, a boundary score is calculated which notifies a degree of 
correctness. According to this score, estimated correct boundary edges are marked and used in a contour 
tracking algorithm to complete the final boundaries of the object (Tab.8)(Fig.14) 
 
Strengths Weaknesses  
The procedure used to estimate the tensor 
provides satisfactory results even for not well 
tasselled objects. It is independent from acquired 
point cloud density and offers the possibility to filter 
noised objects. The fact of working with the 
orientation of the curvature tensor allows to 
eliminate "artefacts".  
The density of the cloud does not influence the 
algorithm efficiency because, in the presence of a 
too crowded point cloud, the method itself carries 
out a selection of the optimal neighbouring points, 
excluding those that are considered superfluous for 
the surface segmentation. If the cloud is sparse, 
the problem is solved through the region growing 
process.   

This methodology involves a significant 
computational cost due to its several passages, but 
it does not provide significant weaknesses. The 
presence of many steps could cause loss of 
information or error dispersion and for this reason, 
when working with free-from surfaces, there are 
other more efficient solutions.  
 

 
Table 8: Tensor method strengths and weaknesses   
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Figure 14: Normal cycle method flowchart .  
(a) constant curvature region segmentation, (b) Boundary rectification 

 
 

3.3.2 Curvature tensor: approximation matrix for  tensor evaluation (Method 7) 
 
To analyse the curvature tensor, the matrix pM  is defined with an integral. This matrix has the same 

eigenvectors as 
pK  [5], and its eigenvalues are connected to a few linear homogeneous transformations. 

The computation of the curvatures and of the principle directions of S  in p  derives from the diagonalization 

of the matrix 
pM , which can be obtained in closed form. A scheme of finite differences is then used to 

approximate the directional curvatures [5]. If q  is another point belonging to the surface S , close to p , and 

t is the normalized projection on the tangent plane T
N  of the vector pq  , the directional curvature can be 

approximated as follows    
2

2

pq

pqN
Tk

t

p



        (3). 

In this method a polyhedron is considered as an approximation of the unknown surface. Only 
triangulated areas are considered, both closed and limited, but supposedly orientated and consistent [20]. 

The first goal is to evaluate the normal vectors. As explained in [19], the faces of the surface are 

planar, every face kf  has a normal unit vector 
kf

N . The normal in the vertex iv  is defined as the normalized 

weighted sum of the normals incident into the faces, with a weight proportional to the surface face areas [19]. 

The second aim is to calculate the matrix 
ivM , approximating it with a summation of weighed sums on the 

neighborhoods of 
iV  : 




i

j

i

Vv

t
ijijijijv TTkwM

~
. 

For each neighbouring point jv  of iv , it is possible to define ijT  as the normalized projection of the 

vector 
ij vv   on the tangent plane 



ivN  [19]. It is now possible to approximate the directional curvature 

)( ijv Tk
i

 using the formula of the equation (3). 

The weights are chosen proportionally to the sum of the areas of all the rectangles of the surface that are 

incident both in the vertex jv  and in the vertex iv . Therefore 1
jv


 iV

ijw . 
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The normal vector 
ivN  is an eigenvector of the matrix 

ivM
~

 associated to the eigenvalue 0. The 

principal curvatures are directly obtained from the two correspondent eigenvalues of 
ivM

~
, by using the 

appropriate formula [4]. 
To compute the two remaining eigenvectors and eigenvalues it's necessary to restrict the matrix 

ivM
~

 to the tangent plane 


ivN  using Householder transformation [20]; after that, the resulting 2x2 matrix 

must be diagonalized in closed form with a Givens rotation [20]. In this way, the computed principal 

directions have to be orthogonal to the normal vector 
ivN , even if one of the values of 

ivM
~

 is zero, or close 

to zero. 

It is possible to obtain an angle   so that the vectors 211

~
)sin(

~
)cos( TTT    and 

212

~
)cos(

~
)sin( TTT    are the remaining eigenvectors of 

ivM
~

, or the principal directions of the surface in 

iv . The principal curvatures are obtained from the two corresponding values of 
ivM

~
, using the defined 

equations [19].  
Finally, a pre-processing smoothing step is required for surfaces with noises, due to measuring 

errors or systematic problems. (Tab. 9) (Fig.15) 
 
 
Strengths Weaknesses  
The algorithm complexity is linear, both in time and 
space, as a function of the number of vertices and 
faces of the polyhedral surface. All calculations are 
simple and straightforward. Expensive numerical 
iterative algorithms are not necessary, even for the 
calculation of eigenvectors and eigenvalues of the 
matrices involved. The experiments performed [11] 
show that the accuracy of this algorithm is not 
worse than that of other algorithms available, in 
some cases it is instead even better. 

As any other  method working with the estimation of 
principal directions, even this approach could 
provide a not reliable behaviour. In fact, if the two 
remaining eigenvalues of 

ivM
~ are equal, the principal 

directions cannot not uniquely determined.   

 

 
Table 9: Matrix tensor method strengths and weaknesses    

 

 

Figure 15: Matrix tensor method flowchart    
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4.0 The evaluation Method: Implementation 

This paragraph analyses the different combinations presented above (Tab.2). In each of these cases, one or 
more of the methods previously described can be used. Some methods are usable in many situations, while 
other methodologies are not highly recommended in any of these combinations of variables. To get a more 
complete picture of the method applicability it is not sufficient to point out which is the best method in a given 
case, but rather to highlight what are the cases where a particular method cannot be used.  
 
4.1 Implementation: Occupied positions 
 
Different coloured little cubes have been used to highlight the cases in which a parameter can be the best 
morphology descriptor (Gaussian Curvature: Yellow – Tensor: Light Blue – Normal: Violet)(Tab.10). 
 
CASE SCENARIO DESCRIPTION POSITION ON EUCLIDEAN SPACE 
1 This combination simulates an ideal free-form surface. In 

fact it has only few shape changes and few sharp edges. 
Moreover, here the acquisition device has provided a 
quite sparse point cloud. The methods employing the 
Gaussian curvature are able to provide the most efficient 
and reliable results, because they do not require dense 
point cloud in order to provide good performances. 
Besides, a surface without sharp edges represents the 
ideal applicability scenario because the method is not 
able to manage this kind of surface features. 
 

 

2  
This scenario shows a geometry characterised by sharp 
edges, few shape changes and low points density. Since 
we are here working with geometries characterised by 
sharp edges, the best morphological parameter to use is 
the tensor. Besides, a special attention must be paid to 
the triangular growing method because it is able to 
remove reliably spikes coming from anomalous point 
cloud management, and to provide good performances 
both with few or many points and both for few or many 
shape changes. 
 
 

 

3 This scenario represents the ideal situation where there 
are few sharp edges, many points and few shape 
changes. The surface representation will be the most 
accurate one and for this reason all of the cited 
morphological descriptor are able to provide reliable 
information.  
 

4 Here the point cloud is crowded, there are many sharp 
edges and few shape changes. The presence of many 
sharp edges imposes the use of almost all the 
morphological descriptors rather than the tensor. It 
provides the most reliable performances and it is 
independent by the points density and shape change 
amount.  
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5 The presence of few sharp edges and the many shape 
changes suggest the use of the Gaussian curvature with 
specific attention to the percentiles method. This method 
can in fact provide the best performances when working 
with smooth surfaces by collecting points according to 
their curvature, and without limiting its applicability with 
respect to the shape change amount.  
 

 
6 The presence of many sharp edges impose  the use of 

almost all of the morphological descriptors rather than 
the use of just the tensor. It provides the most reliable 
performances and it is independent by the points density 
and shape change amount.  
 

 
7 This case is characterized by many shape changes, 

crowded point cloud and few sharp edges; hence, the 
best solution is here provided by the use of the normal 
vector. In this specific scenario, and generally speaking 
when working with many points, the method that is able 
to guarantee the best performances is the cluster 
approach. This method is  employable independently 
from the sharp edges amount. 
 
 

 

8 Here, we are dealing with a high points density, many 
sharp edges and many shape changes: it is therefore 
possible to employ the normal vector while implementing 
the cluster method. In this scenario this method provides 
optimal results.  
 

 
Tab.10  Euclidean space parameters positions. 

 
 
4.2 Implementation: Covered areas 
 

By locating all the cubes of the same colour in one single cube, we obtain the “decisional cube”. This 
cube describes all the scenarios where a single parameter can be optimal and where it doesn’t assure and 
optimal behaviour but it is anyway applicable because providing acceptable results. Only in case 3 (Tab.10), 
which can be considered as the ideal scenario,  with few shape changes, not many of sharp edges and a 
dense point cloud, all of the already described parameters and methods can provide optimal results. For this 
reason, in the next lines case 3 will be considered and attention will be focused only on the other more 
complex cases. 

 
4.2.1 Gaussian Curvature  

 
The surface described in case 1 (Tab.10) is characterized by few shape changes, absence of sharp 

edges and a low density point cloud. In such a case the percentile method that uses the Gaussian curvature 
seems to be the most appropriate one. In fact, part of the methodology used in this case requires the 
elimination of degenerate vertices from the study, which in other words means that those vertices having a 
Gaussian curvature higher than a certain predetermined level must not be taken into account. Hence, a 
surface presenting sharp edges cannot be analysed with this type of approach, because many points would 
be automatically excluded from the analysis losing a significant portion of the surface geometrical behavior. 
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Even in case 5 (Tab.10), where the considered surface is characterized by many shape changes, 
absence of sharp edges and a low density cloud, it is possible to use the percentile approach (Fig16a).      

 
By considering also  the cases where the Gaussian curvature is  applicable but doesn’t assure the 

best results, it is possible to conclude that this parameters is adoptable where the geometry doesn’t include 
sharp edges. However,  there are no problems for those geometries characterised by different level of shape 
changes. Point density does not narrow the use of this parameter (Fig.16b).    

   
a)     b) 

 
Figure 16 : Gaussian curvature. a) optimal area, b) total area 

 
4.2.2 Tensor Curvature 
 
When working with sharp edges, the most suitable parameter seems to be the tensor with specific attention 
to the “based on normal cycle method” [16]. In fact, this method allows to segment the point cloud according 
to the real boundaries of the surface and then to subdivide it into several patches on the basis of the 
curvature. The use of this approach allows not to underestimate or neglect the presence of sharp edges 
leading to a not optimal final approximation of the surface. This situation occurs because when simulating 
the manual segmentation the method is able to handle the singularity points due to the presence of sharp 
edges. 
In the he cases 2,4 and 6 (Tab.10) the represented geometries are characterized by many sharp edges. For 
this reason, in these cases the parameter that better locates the different morphological complexity areas is 
the tensor. Moreover the use of this parameter is indipendent by the points number in the cloud and by the 
presence of shape changes (Fig.17a).  

From the developed analysis it appears that the tensor is a parameter that can be used in every 
case. It hasn’t particular weaknesses or, anyhow, its use never leads to erroneous conclusions if used in the 
right way(Fig.17b).  

   
a)     b) 

 
Figure 17 : Tensor curvature: a) optimal area, b) total area 

 
4.2.3 Normal 
 
With high precision devices, it is possible to obtain a high density point cloud. In these cases the use of the 
normal provides optimal results adopting the cluster segmentation approach. This method relies on the 
minimization of a function dependent on a subset of points belonging to the acquired point cloud. It's 
necessary that the number of starting points is not too low, otherwise a subset adequate to our goal would 
result excessively small and there would be the risk of obtaining a non optimal result, or a result too far from 
reality. For this reason, it is necessary to use this approach for cases 7 and 8, characterised by the presence 
of a very high density point cloud. This methodology is able to well approximate significant shape changes. 
Furthermore, thanks to its stability, it works very well both in the presence of sharp edges and in the absence 
of these features (Fig.18a).     

The use of the normal vector is not recommended in situations in which the point cloud acquisition 
instrument cannot provide a high amount of points related to the surface analyzed (low density), but does not 
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present any problem regarding the surface geometry. Significant or negligible shape changes and the 
presence or absence of sharp edges do not influence the use of this method (Fig.18b). 

 

   
a)     b) 

 
Figure 18 : Normal: a) optimal area, b) total area 

 
 
4.3 Experimental validation:  case studies 

In order to verify the efficiency of the methodology previously introduced, four case studies have 
been analyzed. For each of the objects represented in Fig.20,21,22,23 the ideal geometries and their point 
clouds, coming from the same 3D scanner (Roland Picza)[21], have been adopted for the experimental 
validation.  

Through the Gaussian curvature function [22] it has been possible to subdivide every surface into 
areas with different morphological complexities. Once obtained the original parametric surfaces, it has been 
possible to compute the Gaussian curvature, whose value varies according to the  points p belonging to the 
surface. By analysing this function, the different morphological zones, characterising the curvature map of 
the selected geometries have been identified with a specific set of colours (Fig. 19). 

                                                          

Figure 19:  Fandisk and its curvature areas map 

 
The obtained surface curvature can be classified into one of the following three groups: positive, 

negative or null value. Geometrically speaking, since the Gaussian curvature can also be interpreted as the 
product of the two principal curvatures, it depends on the maximum and minimum value of the normal 
curvatures. The surface zones with different Gaussian curvatures are therefore identifiable collecting those 
points with the same curvature in confining areas, whose borders are given by the points in which the 
curvature is null. In fact, since the curvature varies with continuity on the surface, when passing from 
negative values to positive values, bordering points, in which the curvature is null, have to exist. These are 
the points that define the areas to identify. A clear example of this situation is the Torus (Fig.20) in which two 
curvature types are identifiable: the external one with a positive value, and therefore defined as elliptical, and 
the internal one with a negative value, defined as hyperbolical. The points  unifying these two zones are the 
points in which the curvature is null and are indicated in red in figure 20. 
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Figure 20: Torus: boundary points example 

 
Subsequently the methodologies described in the previous sections have been applied to the point clouds 
obtained from the objects in figures 22,23,24,25, in order to identify, through the parameter used in each one 
of them, the various morphological differences inside of the surface itself. The zones with a different 
morphological complexity have been evidenced to distinguish them by using different colors. It is possible to 
see an example of this application in figure 21, where the different approaches provide a different subdivision 
of the surface into these zones.  

Once obtained the curvature maps over the ideal parametric surfaces, these have to be compared 
with those coming from the available discrete methods, described in the previous paragraph , in order to 
identify the best matching and, as a consequence, the most efficient method for the specific point cloud and 
scenario (shape changes and sharp edges amount and density). 

 
a                                            b                                            c 

 
d                                                  e                                  f                                              g    

 
Figure 21 : Experimental results: a) method 1, b) method 2, c) method 3,  

d) method 4, e) method 5, f) method 6, g) method 7                 
 
 
The results coming from the experimental validations have been analyzed by employing the following 
parameters: 
 

 Correspondence: it identifies the correspondence percentage between the zones identified on the 
ideal geometry and those on the point clouds by the validated methods 

 Non-existent zones: it identifies the non-existent zones parentage, anomalies coming from the use 
of the validated methods, differing from the Gauss map. 

 
Sometimes the methods were able to clearly identify the areas characterized by different complexities. These 
zones not identifiable by the curvature function were due to an erroneous interpretation of the acquired data 
(Tab.11,12,13,14).  
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Figure 22: First benchmark  

 
Table 11: First benchmark experimental results 

Methods 
Correspondence 

 
Non-existent 

zones  

Method 1: Normal 95 % ----- 
Method 2 : Normal 98 % ----- 

Method 3 : Gaussian c. 71 % 4 % 
Method 4 : Gaussian c. 65 % 7 % 
Method 5 : Gaussian c. 71 % 5 % 
Method 6 : Tensor c. 72 % 5 % 
Method 7 : Tensor c. 68 % 7 % 

 
 

Figure 23: Second benchmark 

 
Table 12: Second benchmark experimental results 

Methods 
Correspondence 

 
Non-existent 

zones  

Method 1: Normal 56 % 11 % 
Method 2 : Normal 55 % 9 % 
Method 3 : Gaussian c. 98 % ----- 
Method 4 : Gaussian c. 97 % ----- 
Method 5 : Gaussian c. 99 % ----- 
Method 6 : Tensor c. 71 % 5 % 
Method 7 : Tensor c. 79 % 4 % 

 
 

Figure 24: Third  benchmark 

 
Table 13: Third benchmark experimental results 

Methods 
Correspondence 

 
Non-existent 

zones  

Method 1: Normal  % 11 % 
Method 2 : Normal 55 % 9 % 

Method 3 : Gaussian c. 99 % ----- 
Method 4 : Gaussian c. 97 % ----- 
Method 5 : Gaussian c. 98 % ----- 
Method 6 : Tensor c. 85 % 2 % 
Method 7 : Tensor c. 79 % 4 % 
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Figure 25 : Fourth benchmark 

 
Table 14: Fourth benchmark experimental results 

Methods 
Correspondence 

 
Non-existent 

zones  

Method 1: Normal 64 % 5 % 
Method 2 : Normal 59 % 9 % 

Method 3 : Gaussian c. 71 % 40 % 
Method 4 : Gaussian c. 65 % 37 % 
Method 5 : Gaussian c. 71 % 35 % 
Method 6 : Tensor c. 99 % ----- 
Method 7 : Tensor c. 98 % ----- 

 
The percentage of non existing zones does not depend on the correspondence percentage. In fact, in some 
scenarios, the methods employed have not been able to provide accurate borders of the areas in which the 
surface has been divided; however, they don't create new borders and therefore new areas. Some other 
times  the borders can instead result being quite accurate in specific zones, but, in these cases, they also 
create new areas, thus increasing the percentage of non existing areas. 
 
5.0 Conclusions 
The morphological analysis of a surface cannot be carried out without subdividing the point cloud into 
subsets characterized by the same morphological complexity. As yet we are not able to implement this with a 
universal parameter and methodology; however, there are many different solutions, strongly correlated with 
the specific context where they can be applied. It is quite complex for  new users to understand which could 
be the best parameter for their application. 

To address this issue, we proposed and verified a series of guidelines to support the identification of 
the best parameter and method according to each specific application. 

Firstly, a variable set, composed by acquired geometry and the acquisition device parameters, has 
been introduced in order to describe the possible working conditions that  users could find with respect to the 
application they are involved in.   

In the next step, all the possible working scenarios have been identified and described by combining 
all the identified device and geometry variables identified. 

By combining the different morphological parameters (curvature tensor, Gaussian curvature, …) and 
methods (normal cycle, percentiles, …) with the different working scenario identified, it has then been 
possible to extract the strengths and weaknesses of the parameters and methods in the specific scenario.   

Collecting all these data, a complete set of guidelines for supporting the selection of the best 
morphological parameter and method have been formalised with the support of a graphical visualisation 
(decisional cube). 

During the process, some benchmarks have been used  for validating the proposed guidelines, and 
for comparing the results obtained by applying the analyzed methodologies to benchmark point clouds, with 
the results obtained by using the corresponding ideal surfaces.  

From a general point of view, it is hence possible to say that the tensor appears to be the most 
universal parameter, because it is able to provide acceptable results in every scenario. Nevertheless, the 
normal vector and the Gaussian curvature are able to provide better performances than the tensor in some 
applications.  
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