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ABSTRACT 

The reliable detection of water and ice over road surfaces is an important issue in improving 

traffic safety and reducing costs for the maintenance of routs, especially during winter. A low 

cost capacitive sensor for the estimation of road conditions is studied. A simulation model 

was developed to investigate the capacitance of the sensor when air, water, or ice are 

covering its surface and to assess the effect of the variation of environmental temperature, or 

of the thickness of water or ice. An algorithm for the estimation of the state of the sensor 

(dry, wet, or icy) was developed based on the results of the simulations, which indicated that 

the time derivative of the estimated capacitance provided optimal information. Accuracy and 

reliability of the estimates provided by the sensor were assessed in laboratory experiments, 

placing more sensors in a climatic chamber and investigating the estimated state of the 

sensors and the timing of the identification of wet-icy or icy-wet transitions. Reliable 

estimates were obtained by all the sensors, with a dispersion of the transition times of the 

order of a few minutes. The sensor was also investigated in field. Two sensors (one of which 

was bituminized) were embedded in a road pavement to monitor continuously the road 

surface condition for a month. Both sensors provided indications in line with the 

environmental conditions, identifying properly the icy condition and indicating the wet state 

of the road both during rain and fog. Thus, the sensor is suggested as a feasible tool for 

monitoring road conditions to support information systems improving security and efficient 

maintenance of roads during winter. 

 

Keywords: sensor, ice detection, road information 
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1. INTRODUCTION 

The investigation of ice formation found important applications in different fields. An 

adequate assessment of the environmental conditions on road surfaces may significantly 

contribute to enhanced traffic safety, since corresponding decision made by administrators 

may be based on this information [1]. An important application is on the runway of airports, 

in order to improve safety during take off and landing of the aircrafts [1]. The accretion of ice 

is a common occurrence on the aircraft, due to the high flight speed associated to the 

humidity and low temperature in upper air. This is a critical issue since the aerodynamics of 

the aircraft change, and there is the risk that ice comes off during the flight, possibly striking 

and damaging the engine [2, 3, 4, 5, 6]. Investigation of ice formation on the seas is important 

to monitor iceberg formation and accretion [7, 8, 9, 10], and to prevent possible crashes with 

boats. Moreover, indication of the presence of ice on the walkways is useful to prevent 

people falls. 

Different ice detection technologies were developed, depending on the application. Some 

techniques work putting a sensor in contact with the surface over which ice may form [3], 

others allow for a remote sensing [6, 9]. Different techniques may be further distinguished 

between those providing local information obtained from single point detectors [4] and those 

performing wide-area measurements [5]. Different kinds of sensors were developed 

exploiting different physical principles, e.g. concerning vibration [11, 12], electro-optics [13], 

fiber-optics [4, 14], radio frequency [15], micro-mechanics [16], ultrasounds [2, 17]), 

inductive [18] and capacitive [19] effects. 

The reliable detection of water and ice is one of the main problems in the assessment of the 

environmental conditions on road surfaces. The investigation of road conditions is attracting 

increasing attention, as it may significantly contribute to improve traffic safety and to reduce 

costs of highway snow and ice control [20, 21]. Road Weather Information Systems (RWIS) 
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consist of specialized weather stations that provide information on road surface conditions 

and weather forecast. RWIS allows agencies to efficiently plan the maintenance of roads 

during winter, to reduce wear on the vehicle fleet, to decrease chemical, sand and salt usage, 

and to provide a better level of service by applying anti-icing practices. Three types of road 

weather information are important: atmospheric data (e.g. air temperature and humidity, 

visibility, wind speed and direction, precipitation type and rate, cloud cover, lightning, air 

quality), water level data (stream, river and lake levels near roads), and pavement data 

(temperature, freezing point, chemical concentration and pavement condition, e.g., dry, wet, 

or icy). Pavement data are typically used to forecast surface conditions and choose proper 

anti-icing procedures. Thus, one of the key objectives of modern RWIS is the detection of the 

presence of water, snow, ice and the beginning formation of ice [22].  

An innovative ice sensor was introduced in [19]. The sensor detects water and ice on exposed 

surfaces, based on a capacitance measurement. This work is devoted to the investigation of 

the accuracy and reliability of the indication provided by this new ice detection system, using 

both a mathematical model for the simulation of the system and experimental results. The 

application of the sensor within an Airport Winter Information System (AWIS), which is a 

system supporting management and safety of a large airport during winter events [23], is 

discussed. 

 

2. METHODS 

2.1 Ice detection system 

The ice detection system consists in a capacitance measurement [1, 19]. In general, the value 

of capacitance of the electrode assembly depends on the geometrical configuration and 

dimensions of the electrodes, and on the permittivity and thickness of the material placed 

between the electrodes. 
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The permittivity, in turn, depends on temperature and measurement frequency. The relation 

between the relative permittivity of water or ice, and the temperature and measurement 

frequency is shown in Figure 1. The relative permittivity of ice at approximately –1°C is 

substantially constant within a range from DC to about 1kHz, and decreases in the range of 

approximately 2kHz to several hundred kHz. On the other hand, the relative permittivity of 

water at approximately 1°C is substantially constant up to approximately 10
9
Hz and 

decreases within the range from 10
9
Hz to 10

10
Hz. The relative permittivity of air can be 

assumed as low and constant for each frequency.  

When measuring the capacitance, due to the confounding factors (e.g., thickness of water), it 

is not possible to distinguish reliably water and ice at low frequencies (lower than 1kHz), but 

only air can be identified; on the other hand, ice and air cannot be distinguished at high 

frequencies (between 100kHz and 1GHz), but it is possible to identify the presence of water 

using such a high frequency. Thus, it is possible to distinguish between water, ice and air by 

two capacitive measurements, at low and high frequencies [19].  

 

Figure 1 about here 

 

The currently available ice sensor is shown in Figure 2A. This device performs measurements 

at three different frequencies, at 200Hz, 500Hz, and 20MHz. The sensor system consists on a 

pair of concentric conductive electrodes (with geometry shown in Figure 2B and dimensions 

indicated in Figure 3B), which constitute the sensing device, a frequency generator and a 

charge detector. The sensor electrodes of the ice detector are directly connected to the 

capacitance measurement circuit, shown in Figure 2C. This circuitry is implemented on a 

printed circuit board (PCB) using commercial available low power components. The 

frequency generator is obtained by a reference voltage source RV  and a controllable switch 
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1S  to provide different frequencies. The electrode assembly and the material placed over the 

sensor constitute the capacitor XC . In the basic measurement circuit, the charge detector 

comprises only a reference capacitance SC  that is connected to the electrodes by closing the 

switch 2S .  

 

Figure 2 about here 

 

The charge XQ  stored in the electrode assembly is: 

RXX VCQ                                                            (1) 

When the switch 2S  is closed, the charge stored in the electrode assembly is partially 

transferred to the detection capacitance: 

SXSX VCCQ  )(                                                      (2) 

Since the value of the sensor electrode is several orders of magnitude lower than SC , nearly 

all charge stored in XC  is transferred to the detection capacitance: 

SSRXX VCVCQ                                                     (3) 

and therefore, measuring the voltage level SV  reached by the detection capacitance, the 

capacitor value of the electrode assembly can be calculated as: 

R

S
SX

V

V
CC                                                            (4) 

In order to increase accuracy in measuring the very small value of capacitance XC , the sensor 

was charged n  times and its charge was transferred n  times to the reference capacitor before 

taking a measurement of SV . Therefore the value of the capacitance of the sensor is given by 

R

SS
X

V

V

n

C
C                                                            (5) 
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At the end of the measurement process, SC  is discharged by closing the switch 3S . 

In the currently available ice sensor, the reference voltage SV  is equal to 3V (tolerance of 

0.2%), the value of the reference capacitance SC  is equal to 2.2nF (tolerance equal to 1%), 

and the number of times the reference capacitor is charged before taking a measurement is 

n =50. The voltage level SV  is first amplified by a factor 150 by an analog circuit and then 

sampled by the analog to digital converter (10 bit resolution) of a microcontroller (8051 core 

from Silicon Laboratories Inc), using a sampling frequency of 0.2Hz. The switches 1S , 2S , 

and 3S  are obtained using high-bandwidth FET transistors. 

An automatic calibration procedure is included in the ice sensor to prevent error in the data 

due to parasitic capacitances [19]. Also the capacitance of the dry electrode, which is about 

0.3pF (measured using a high-resolution RLC meter – Fluke PM 6306), is subtracted by the 

calibration procedure. The device also comprises an internal temperature sensor, to account 

for variations of the relative permittivity with temperature. 

A layer 3 mm thick of Arnite was mounted over the sensor electrode, for protection purposes. 

Arnite was chosen because its dielectric constant is nearly constant (equal to 3.4) within the 

range of temperatures and measurement frequencies in which the sensor is used. 

The ice detection system arrangement was inserted into a metallic box filled with resin, 

which protects the circuitry from infiltration of water or chemical agents. The only exposed 

parts are the Arnite covering the sensor (on the top) and the connector for the power supply 

of the circuitry and for the RS-485 communication protocol (on the bottom) used to connect 

the sensor to a data acquisition system. The acquisition system is used to collect data from 

more sensors and to send them to a computer for storing ( XC  values at the three 

measurement frequencies and internal temperature) and to perform signal processing on the 

values of capacitance. 
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2.2 Mathematical model 

The sensor was described using a multi-layer electrostatic model (at the maximum 

measurement frequency, the wave length of the electromagnetic field is more than two orders 

of magnitude greater than the dimensions of the sensor): 

0)(                                                           (6) 

where   is the potential (V ) and   is the dielectric tensor (F/m). Two layers were included 

(see Figure 3A): a dielectric (e.g. the Arnite protecting the sensor) covering the electrodes 

and water or ice. Both layers were assumed to be isotropic and of constant thickness. For the 

first layer, a constant value of dielectric constant 5.31   was assumed. The relative 

permittivity of water 2 was modelled as: 

21

2
/1/1

)(
fjffjf

f iis









 




                                      (7) 

where all parameters (static permittivity s , high frequency permittivity  , intermediate 

frequency dielectric constant i , relaxation frequencies 1f  and 2f ) are functions of 

temperature [24]. The relative permittivity of ice (again indicated with 2 ) was modelled as a 

Debye model [25]: 

fj
f s






21
)(2




 

                                                (8) 

in which the static permittivity s  was 75, the high frequency permittivity   was 3.2 and the 

relaxation time   was dependent on temperature, assuming a linear variation between the 

values 1.4·10
-4

 at -20°C and 2.5·10
-5

 at 0°C [26]. Figure 1 shows the real part of the relative 

permittivity of pure water and ice for different temperatures. 

Thus, the two layers were studied as different sub-domains in which Laplace equation 

0  was solved. Such sub-domains were coupled by the interface conditions between the 
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two layers requiring that the potential and the dielectric displacement D


 were 

continuous crossing the interface.  

As the electrodes are circular (see Figure 3A), the problem was considered symmetrical in 

cylindrical coordinates ),,( z . A mixed boundary value problem was studied, imposing 

opposite value of potential on the two electrodes and vanishing dielectric displacement on the 

other part of the boundary. Due to the cylindrical symmetry of the problem, the potential does 

not depend on the angle  , but only on the radius   and on the depth within the layers z . 

The problem can be stated as follows: 
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where 0  is the radius of the internal electrode, int  and ext  are the internal and external 

radiuses defining the ring shape electrode, Iz  is the depth of the interface between the two 

layers and 0z  is the total thickness of the domain (i.e., the sum of the thicknesses of the two 

layers; see Figure 3A). The last boundary condition in (9) was assumed in the case in which 

the second layer contains water, because the jump of dielectric constant between water and 
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the external air (with simulated relative permittivity 1) is very high, in the considered range 

of frequencies. When the second layer included ice and the considered frequency was high, 

the dielectric constants of ice and of the covering air are comparable. In such a case, a three 

layer model was simulated (with a straightforward generalization of the two layer model 

described above) including air over the second layer. The estimated capacitance is a 

monotonic increasing function of the thickness of such a third layer, but saturates within a 

few simulated mm of air; thus, the simulated thickness of air was chosen to be 25mm, 

assuring that the capacitance curve saturated.  

The mathematical problem (9) was solved using finite difference method. The domain was 

limited imposing a maximum radius of 30mm. Homogeneous Neumann condition 0







 

was imposed on such a new boundary.  

A non-uniform discretization of the domain was used, with increasing resolution close to the 

electrodes and to the interface (Figure 3B). Specifically, the sampling step of the radius   

was 1% of the maximum radius (30mm) close to the electrodes and 3% of the maximum 

radius otherwise; in the case of a two layer model, the discretization step of the depth variable 

z  was 1% of the sum of the thicknesses of the two layers 0z  close to the electrode surface 

0z  and to the interface Izz  , and 3% otherwise. When a third layer was included, the 

same sampling of the first two layers was used, but the sampling step in the third layer was 

about 3% of the total thickness of the simulated domain. 

Derivatives were discretized with a second order approximation both within the domain and 

on the boundary: 
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  (10) 
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where 1h  and 2h  have the same sign when the considered point 0x  is on a boundary or 

different signs when 0x  is within the domain. A linear system of algebraic equations was 

obtained after discretization. The potential was estimated inverting such a system using 

Gauss elimination method.  

Given the potential, the charge q  over the internal electrode (which is the same except for the 

sign as that over the external ring electrode) was estimated as: 

 
 





















0

0 0

1

0,

2ˆ






 dr

r
rdSnDq

z


                                             (11) 

Finally, the capacitance was obtained as: 

02V

q
C                                                                  (12) 

 

Figure 3 about here 

 

 

2.3 Experiments 

The reliability of the estimates provided by the ice sensor was investigated during laboratory 

and in field experiments.  

Laboratory tests were performed applying the same environmental conditions to more ice 

sensors and evaluating the dispersion of the time instants in which phase changes of water 

were detected. Nine ice sensors were placed at the same time in a climatic chamber 

(Angelantoni - Challenge 250; temperature range for climatic test from -40°C to +180°C). At 

the beginning of the experiment, sensors were placed in the climatic chamber at ambient 

conditions, with a temperature of 25°C and humidity of 50%, for approximately 10 minutes 

in order to wait that the indications of the sensor became stationary. Then, 1 mm of tap water 
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was placed over each sensor. Sensors were left in ambient conditions for 10 minutes. Then, 

the climatic chamber was arranged to reach -20°C with a temperature gradient of -1°C per 

minute. During this period, water placed over sensors froze. The climatic chamber kept the 

temperature of -20°C for approximately 10 minutes and then it was arranged to reach 25°C 

with a temperature gradient of 1°C per minute. During this period, the ice formed over the 

sensors melt. The climatic chamber kept the temperature of 25°C for approximately 10 

minutes. Then each sensor was dried. Data were acquired for additional 10 minutes, with a 

temperature of 25°C and humidity of 50%. The experiment was repeated in three different 

days, in order to investigate the repeatability of the values of capacitance and the reliability of 

the sensor. 

In field tests were performed on two sensors, one standard sensor and a sensor covered by 

bitumen (bituminized sensor). The sensors were embedded in a secondary street close to the 

runway at the Turin-Caselle airport. Moreover, a complete weather station (PCE Group – 

PCE FWS-20) was placed close to the sensors to monitor meteorological variables, such as 

ambient humidity, temperature, pressure, velocity and direction of the wind, and quantity of 

rain falls. The in field test was performed over a period of 36 days. 

 

2.4 Signal processing 

In order to discriminate between different states of the sensor surface (dry, wet, or icy), the 

values of capacitance obtained at the three measurement frequencies were digitally processed 

using an innovative algorithm. Data were digitally low-pass filtered (cut-off frequency of 

0.002Hz, 100
th

 order causal FIR filter) in order to reduce high frequency variations and 

instrumentation noise. Since jumps in the values of capacitance were associated to a state 

variation of the sensor (dry-wet, wet-icy, icy-wet, and wet-dry), a first-order derivative was 

computed on the filtered data in order to emphasize these jumps. A jump was considered 
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significant if the first-order derivative of the capacitance was higher than a threshold value 

estimated during the calibration. The algorithm identified the changes of the phase over the 

sensor based on the jumps on the first-order derivative of the values of capacitance estimated 

at the low and high measurement frequencies. Data from the intermediate frequency were not 

used in this work. The following 4 cases were considered.  

1. Concurrent positive jumps at high and low measurement frequency indicates the 

transition from the state condition dry to wet. 

2. Negative jump at high measurement frequency and no jump at low measurement 

frequency indicate the variation from wet to icy. 

3. Positive jump at high measurement frequency and no jump at low measurement 

frequency indicate the transition from icy to wet. 

4. Concurrent negative jumps at high and low measurement frequency indicates the 

change from wet to dry. 

When none of the above conditions was satisfied, the state of the sensor was considered 

steady.  

Capacitances and time instants of state transitions obtained for each sensor during the 

experiments were then compared in order to study the repeatability of the measures. 

 

3. RESULTS  

3.1 Validation of the mathematical model of the sensor 

The mathematical model was validated based on both analytical and experimental data. 

Changing the boundary conditions of the model, it was possible to simulate a capacitor with 

parallel planar plates with a layer of dielectric covering the plates (with relative permittivity 

1 ) and another internal layer (with relative permittivity 2 ). The analytical solution is: 
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S
z

z

C

2

2
211

21
0








                                                        (13) 

where 1z  is the thickness of the layers close to the plates, 2z  is the thickness of the internal 

layer, and S  is the area of the plates. The relative error between the analytical and simulated 

solutions at different thickness of the internal layer was lower than 1.5%. 

Simulated and experimental values of capacitance were compared. Representative results are 

shown in Figure 4A (simulations) and in Figure 5A (experiments). Results of simulations and 

experiments are similar, when considering that the capacitance of the dry electrode, 

subtracted by the calibration of the sensors, is about 0.3pF. 

 

3.2 Simulation results 

Simulated values of capacitance obtained using the mathematical model at different 

measurement frequencies, simulating the same environmental conditions of the experiment 

are shown in Figure 4A. Variations of the value of capacitance in different states of the 

sensor are clearly visible. During the dry and wet state of the sensor, the values of 

capacitance at high, medium, and low frequency were close to 0.3pF and 0.6pF, respectively. 

There was no distinction between different measurement frequencies, reflecting the constant 

value of relative permittivity of air and water in the considered range of frequency (Figure 

1A). During the icy state of the sensors, the value of capacitance at high frequency was close 

to 0.45pF, whereas at medium and low frequency it was close to 0.6pF. Thus, there was an 

evident difference of the capacitance between the different frequencies, reflecting the 

variation of the permittivity of ice shown in Figure 1B. The value of capacitance obtained 

using the mathematical model simulating different thicknesses of water, from 0 (dry sensor) 

to 10mm, are shown in Figure 4B (temperature of 25°C and measurement frequency of 

20MHz, but equivalent results are obtained for lower frequencies). The value of capacitance 
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rose slightly increasing the thickness of water over the sensor. Simulated values of 

capacitance for different thickness of ice are also shown in Figure 4B (temperature of -10°C 

and measurement frequency of 200Hz and 20MHz). Also increasing the thickness of ice 

formed over the sensor the values of capacitance rise. Simulated values of capacitance 

obtained for different measurement frequencies of water and ice are shown in Figure 4C 

(thickness of 1mm and a temperature of 25°C for water and -10°C for ice). Increasing the 

measurement frequency, the value of capacitance decreased, following the same trend of the 

relative permittivity. 

 

Figure 4 about here 

 

 

3.3 Experimental results 

Values of capacitance (raw data) obtained from a sensor during the first experiment at 

different measurement frequencies are shown in Figure 5A. Variations of the values of 

capacitance in different states of the sensors are clearly visible. During the dry state, the 

values of capacitance are close to zero, due to the calibration procedure. During the wet state, 

the values of capacitance at high, medium, and low frequencies are close to 0.3pF, so that 

there is no distinction between different measurement frequencies. During the icy state, the 

values of capacitance at high frequency are close to 0.15pF while at medium and low 

frequency are close to 0.3pF, so that the value of capacitance can be easily distinguished for 

different measurement frequencies. Low-pass filtered values of capacitance are shown in 

Figure 5B. First-order derivative of the values of capacitance are shown in Figure 5C 

(below). Peaks are clearly visible in correspondence to a variation of the state of the sensor. 
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States of the sensor revealed by the algorithm described in Section 2.4 are shown in Figure 

5C (above). The estimated states agreed with the observed state of the sensor (Figure 5A). 

 

Figure 5 about here 

 

Values of capacitance (raw data) obtained for each sensor during the first experiment (high 

and low measurement frequencies) are shown in Figure 6A. Differences among different 

sensors are visible, due to manufacturing tolerances and to low precision in controlling the 

thickness of the water layer. Internal temperature of the climatic chamber during the first 

experiment is shown in Figure 6B as measured by the internal temperature sensor of the ice 

detection system. The state condition detected by such a sensor is also shown. The wet-icy 

transition is identified at about -7°C, whereas the icy-wet transition is identified when the 

internal temperature is about 0°C. During the dry and wet states, the capacitance of the sensor 

at high and low measurement frequencies is quite similar, while during the icy state of the 

sensor there is a clear distinction between the values of capacitance obtained at the two 

measurement frequencies. Time instants of state transitions estimated for each sensor during 

the three experiments are shown in Figure 6C. The standard deviations of the time instants of 

the state transitions wet-icy and icy-wet estimated for each sensor are shown in Figure 6D 

(state transitions dry-wet and wet-dry were not considered since the sensors were wetting and 

drying by the user). In the three experiments, the standard deviation obtained for the state 

transition wet-icy is larger than that obtained for the state transition icy-wet. Moreover, there 

is no relevant difference between the standard deviation values obtained in the same state 

transitions for three experiments. 

 

Figure 6 about here 
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Values of capacitance (raw data) obtained for the standard and bituminized sensors (high and 

low measurement frequencies) during the in field test at the Turin-Caselle airport, over the 

period 12/01/2010 – 17/02/2010, are shown in Figure 7A and 7B, respectively. States of the 

standard and bituminized sensors revealed by the algorithm are shown in Figure 7C. 

Meteorological data obtained by the weather station are shown in Figure 7D (quantity of rain 

falls), 7E (air humidity) and 7F (ambient temperature). During the test period, both sensors 

revealed different road surface conditions (dry, wet, and icy). A wet road surface condition 

was obtained during both rainy and foggy days. 

 

Figure 7 about here 

 

 

4. DISCUSSION AND CONCLUSIONS 

This paper investigates the performance of a system which can be embedded in a road 

pavement to monitor continuously the road surface condition. The sensor is based on a multi-

frequency measurement of capacitance and houses a cheap and efficient technology [1] to 

identify the presence of water or ice on the road. The sensor was investigated both with a 

simulation model and with experiments (in laboratory and in field conditions). 

 

4.1 Simulations 

Simulations provided a quantitative indication of the capacitance of the system according to 

the substance covering the sensor surface (air, water, or ice) as a function of the thickness of 

the layer of such a material, the temperature, and the measuring frequency. The capacitance 

of the simulated model is largely affected by the presence of water on the surface of the 
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sensor, so that a thin layer formed over it due to rain or moisture condensation can be 

identified. A variation of the thickness of the layer of water or ice covering the sensor or a 

variation of temperature does not affect deeply the value of capacitance. Therefore 

simulations suggest that an increasing or decreasing quantity of water or ice covering the 

sensor or a variation of the environmental temperature determine only smooth variations of 

the value of capacitance. On the other hand, abrupt variations of the capacitance on specific 

frequencies may indicate only a change of state of the sensor (dry, wet, or icy). Thus, the 

state of the sensor was estimated based on the time derivative of the measured capacitance 

(appropriately smoothed in order to eliminate spurious noise present on experimental data) 

instead of using a set of thresholds to be compared to the measurements, as previously 

proposed [1]. This method improved the reliability and stability of the estimates (results not 

shown). 

 

4.2 Experiments 

More sensors were investigated on the same laboratory conditions in order to assess the 

dispersion of the times in which transitions between wet and icy states were. Differences of 

the estimated times of transition were of the order of a few minutes, which is related to the 

spatial heterogeneity of the icing and melting processes. A higher dispersion was found in the 

case of wet-icy transition with respect to the icy-wet one. Indeed, water started freezing from 

the surface proceeding downward, so that a small difference in the thickness of the layer of 

water could determine a spread of the delays of different sensors in the identification of the 

presence of ice. On the other hand, the melting process started at the sensor surface (probably 

due to low energy dispersions from the device). 

The wet-icy transition was detected at lower temperatures with respect to the icy-wet 

transition in the laboratory experiments. This is probably due to the freezing and melting 
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processes described above, but also to the higher value of specific heat for water (about 4000 

J kg
-1

 K
-1

) with respect to ice (about 2000 J kg
-1

 K
-1

), which determines a higher time to cool 

water than that needed to warm ice, keeping constant the magnitude of the temperature 

gradients imposed by the climatic chamber.  

In field experiments were performed over a 36 days period for two sensors, one of which was 

covered by bitumen. Equivalent precision on the identification of wet conditions were 

obtained. The wet condition after raining lasted a bit longer for the bituminized sensor, 

probably due to the porosity of bitumen which determines a delayed drying with respect to 

the not bituminized sensor. Wet condition was identified also in the case of foggy weather, 

confirming that even a slow condensation of water over the sensor surface is associated to a 

jump in the value of capacitance which may be easily identified. 

 

4.3 Limitations and future works 

The measured value of capacitance also depends on possible contaminations (e.g. dirt, fuel or 

salt) present in the water covering the sensor. For this reason, a salinity sensor was included 

in the system proposed in [1]. Future work will be focused on the assessment of the effect of 

salt concentration of water on the indication of the considered sensor. The effect of water 

concentration on its permittivity will be included in the simulation model and experiments 

will be performed with water with different concentration of salt. These results should 

improve the estimates of the state of the sensor (compensating for the effect of salt 

concentration) and could possibly provide an indication of the concentration of salt in the 

water covering the sensor surface. 

 

4.4 Applications 
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Data from the sensor can be transmitted (i.e., by GPRS or UMTS) to a central database which 

may integrate them with other meteorological variables (air humidity and temperature, rain) 

for forecast purposes. This system was developed within the project Airport Winter 

Information System (AWIS), with the goal to improve the security of a large airport, 

especially during winter emergencies. Important problems to be faced in these conditions are 

the security of the user, the accessibility of the runway (delays, closure), the corrosion of 

maintenance vehicles, aircrafts, and runway surfaces due to treatment with de-icing 

substances, the prevision of surface conditions in order to organize maintenance activities just 

in time, and the reliability of the control process of the surface of the runway. These problems 

are very similar to those faced by a Road Winter Information System (RWIS), where the 

same technology investigated in this paper may be applied.  

 

4.5 Conclusions 

A low cost capacitive sensor for the estimation of road condition is discussed. Performances 

of the sensor were investigated in simulations, laboratory and in field experiments. The 

sensor may find applications in monitoring road conditions to support information systems 

assuring security and efficient maintenance of roads or airports during winter. 
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FIGURE CAPTIONS 

Figure 1: Relative permittivity of water as a function of temperature and measurement 

frequency. (A) Water at temperature higher than 0°C. (B) Ice at temperature lower than -1°C. 

 

Figure 2: The ice sensor. (A) Picture of the ice sensor. (B) Picture of the concentric 

conductive electrodes. (C) Schematic layout of the capacitive measurement circuit. The 

charge detector includes the capacitor SC , while the voltage SV  is converted by the digital-to-

analog converter in order to calculate the relative permittivity. XC  indicates the sense 

electrode. The reference voltage source RV  together with the controllable switch 1S  achieves 

the frequency generator. The controllable switch 2S  connects the capacitances SC  and XC  

for the following measuring phase. At the end of the measurement process, SC  is discharged 

by closing the controllable switch 3S . 

 

Figure 3: Simulation model. (A) Geometry of the electrode assembly and representation of 

the two simulated layers. (B) Example of simulation of the potential in steady condition in the 

two layers, indicating the non uniform discretization of the domain.  

 

Figure 4: Simulation results. (A) Simulated values of capacitance obtained using the 

mathematical model for different states of the sensors at different temperatures and 

measurement frequencies. Simulated temperature used in the mathematical model is also 

shown. (B) Simulated values of capacitance for different thicknesses of water or ice 

(temperature of 25°C for water and -10°C for ice). (C) Simulated values of capacitance at 

different measurement frequencies (thickness of 1mm, and a temperature of 25°C for water 

and -10°C for ice). 
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Figure 5: Signal processing algorithm applied to the experimental data. (A) Values of 

capacitance (raw data) obtained for the sensor number 8 during the first experiment at 

different measurement frequencies. (B) Low pass filtered values of capacitance obtained from 

the raw data. (C) States of the sensor revealed by the algorithm (above). First-order derivative 

of the capacitance obtained from the low pass filtered data (below). 

 

Figure 6: Statistical analysis of the laboratory data. (A) Values of capacitance (raw data) 

obtained for each sensor during the first experiment. (B) Internal temperature of the climatic 

chamber during the first experiment with the indication of the state condition detected by a 

sensor. (C) Time instants of state transitions estimated for each sensor during three different 

experiments. (D) Standard deviations of time instants of state transitions wet-icy and icy-wet 

estimated for each sensor during three different experiments. 

 

Figure 7: In field results obtained from different sensors placed at the Turin-Caselle airport 

over the period 12/01/2010 – 17/02/2010. Values of capacitance (raw data) obtained for a 

standard sensor (A) and for a bituminized sensor (B). (C) States of the standard and 

bituminized sensors revealed by the algorithm. (D) Quantity of rain falls. (E) Ambient 

humidity. (F) Ambient temperature. 
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Figure 1 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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