
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Parallel Hamiltonian Eigensolver for Passivity Characterization and Enforcement of Large Interconnect Macromodels /
Gobbato, Luca; Chinea, Alessandro; GRIVET TALOCIA, Stefano. - STAMPA. - (2011), pp. 26-31. (Intervento presentato
al convegno Design Automation and Test in Europe tenutosi a Grenoble (F) nel 14-18 March 2011)
[10.1109/DATE.2011.5763011].

Original

A Parallel Hamiltonian Eigensolver for Passivity Characterization and Enforcement of Large Interconnect
Macromodels

Publisher:

Published
DOI:10.1109/DATE.2011.5763011

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2390067 since: 2018-02-16T16:36:28Z

IEEE

A Parallel Hamiltonian Eigensolver for Passivity
Characterization and Enforcement of Large

Interconnect Macromodels
L. Gobbato, A. Chinea, S. Grivet-Talocia

Dip. Elettronica, Politecnico di Torino
e-mail stefano.grivet@polito.it

Abstract—The passivity characterization and enforcement of
linear interconnect macromodels has received much attention
in the recent literature. It is now widely recognized that the
Hamiltonian eigensolution is a very reliable technique for such
characterization. However, most available algorithms for the de-
termination of the required Hamiltonian eigenvalues still require
excessive comoputational resources for large-size macromodels
with thousands of states. This work intends to break this
complexity by introducing the first parallel implementation of a
specialized Hamiltonian eigensolver, designed and optimized for
shared memory multicore architectures. Our starting point is a
multi-shift restarted and deflated Arnoldi process. Excellent par-
allel efficiency is obtained by running different Arnoldi iterations
concurrently on different threads. The numerical results show
that macromodels with several thousands states are characterized
in few seconds on a 16-core machine, with close to ideal speedup
factors.

I. INTRODUCTION

The analysys and design flow of electrical interconnected
systems is more and more relying on reduced-order macro-
models. Such macromodels are often identified from tabulated
frequency responses, typically available from a full-wave
solver or from direct measurement, using rational curve fitting.
Many algorithms have been proposed, most providing some
generalization or optimization of the core method known as
Vector Fitting [1]. See [2]–[5] and references therein for an
overview.

The main concern for a reliable use of rational macromod-
els within standard circuit solvers is passivity. Non-passive
macromodels do not guarantee the global stability of transient
simulations, due to their ability to amplify the energy they are
fed with [6]. Therefore, it is of paramount importance to check
and enforce passivity during macromodel generation. This is
the reason why this problem has been extensively studied over
the last few years [8]– [23].

One of the most attractive techniques for passivity charac-
terization is based on the so-called Hamiltonian matrix [7],
[8]. Extraction of the imaginary eigenvalues of this matrix
provides an algebraic method for full passivity characteriza-
tion. Unfortunately, a standard full eigensolution scales as the
third power of the problem size. This fact prevents an efficient
characterization for large-size macromodels, such as those
arising in signal and power integrity analyses for electronic

packaging applications. These macromodels may have up to
hundred interface ports, and several thousand states.

Although some efforts have been attempted towards more
efficient Hamiltonian eigensolutions [9], [17], [20], [21], [24],
there is still significant potential for improvement. The main
direction that we investigate in this work is parallelization.
High-performance computing systems with many CPU cores
are becoming widespread, even at the desktop level. It is thus
necessary to port existing algorithms to such platforms, so that
optimal use of the computational resources is achieved.

We introduce a parallel multi-shift restarted Arnoldi scheme
for the identification of all imaginary Hamiltonian eigenvalues.
A dedicated thread scheduling strategy has been devised and
implemented using the OpenMP paradigm. Several bench-
marks were run on a 16-core machine, leading to excellent
parallel efficiency and speedup factors with respect to a serial
implementation. After reviewing some background material in
Sec. II and Sec. III, we present the main algorithm in Sec. IV
and the numerical results in Sec. V.

II. BACKGROUND AND NOTATION

Throughout this paper x, x, and X denote a generic scalar,
vector (lowercase and boldface), and matrix (uppercase and
boldface), respectively. Superscripts ∗, T , and H will stand for
the complex conjugate, transpose, and conjugate (Hermitian)
transpose, respectively.

We consider linear macromodels in state-space form

H(s) = D + C (sI−A)
−1

B (1)

where s is the Laplace variable, H(s) is the p × p transfer
matrix of the macromodel, and {A,B,C,D} are the state-
space matrices of some realization associated to H(s). All
poles, or equivalently the eigenvalues of A, are assumed to be
strictly stable, so that the transfer matrix H(s) is nonsingular
for Re {s} ≥ 0.

Several techniques are available for obtaining a macro-
model in the form (1). Standard approaches involve some
fitting, approximation, or identification process from tabu-
lated responses. A common scenario is the availability of
raw data in form of frequency samples of the scattering
matrix {S(jωk), k = 1, . . . ,K} of a linear component over

978-3-9810801-7-9/DATE11/ c© 2011 EDAA

a given bandwidth, either via electromagnetic simulation or
direct measurement. The four state-space matrices are found
by fitting the model equations to this data. Among others,
the well-known Vector Fitting scheme in its various imple-
mentations [1]–[5] has gained much polularity thanks to its
simplicity and robustness.

In this work, we are interested in large-size macromodels,
both in terms of electrical interface ports p and overall
dynamic order n, i.e., the size of state-space matrix A. In order
to reduce both storage requirements and processing time, we
will assume a state-space realization with the same structure
as in [9], more precisely

A = blkdiag{Ak, k = 1, . . . , p}
B = blkdiag{uk, k = 1, . . . , p} (2)
C = [C1,C2, . . . ,Cp]

where Ak ∈ Rmk×mk stores in its diagonal the mk poles
of the k-th column of H(s), uk is a mk × 1 array with all
entries equal to one, and Ck ∈ Rp×mk stores the residues of
the k-th column of H(s). If complex pole pairs are present,
the transformation in [9] can be applied to the relevant blocks
of (2) in order to recover a real realization. Therefore, we will
assume a real-valued realization without loss of generality.
The above structure corresponds to a multiple SIMO (Single-
Input Multiple-Output) configuration. The maximum number
nonvanishing elements of A and B is 2n and n, respectively,
thus enabling sparse storage and optimized processing.

In the following, we will restrict our attention to scattering
input-output representations, although the same derivations
can be performed for the impedance, admittance, and hybrid
cases. Due to the asymptotic stability assumption, macromodel
passivity holds when all the singular values of the transfer
matrix are uniformly bounded by one at any frequency

σi ≤ 1 , ∀σi ∈ σ(H(jω)) , ∀ω . (3)

We will assume strict asymptotic passivity by assuming

σi < 1 , ∀σi ∈ σ(D), (4)

a condition that can be easily enforced during the macromodel
generation [9].

The Hamiltonian matrix associated to the state-space real-
ization (1) provides an effective tool for deriving the passivity
conditions in a purely algebraic form, without resorting to
sampling. In the scattering case, the Hamiltonian matrix reads

M =

[
A−BR−1DTC −BR−1BT

CTS−1C −AT + CTDR−1BT

]
, (5)

with R = (DTD − I) and S = (DDT − I). The set
Ω of purely imaginary eigenvalues of M correspond to the
frequencies where one or more singular values cross or touch
the unit threshold. If Ω is empty, the model is passive thanks
to condition (4). If Ω is not empty and at least one imaginary
eigenvalue has odd multiplicity (usually all eigenvalues are
simple), then the model is not passive. Therefore, knowledge
of Ω allows a full qualification of the model passivity [7], [8].

Once this characterization is available, one of the standard
perturbation methods for passivity enforcement [8]– [21] can
be applied. No further details on passivity enforcement will be
provided here, since this subject is well developed in the above
literature. We will rather focus on the efficient determination
of the set Ω.

III. SINGLE-SHIFT ITERATIONS

The set Ω of imaginary Hamiltoniam eigenvalues can be
determined by postprocessing the full set of eigenvalues
computed by a full eigensolver. This option is however un-
acceptable for large-size macromodels, due to the excessive
computational cost. The Hamitonian matrix has size 2n× 2n
and is full, regardless of the special structure of the adopted
state-space realization. Consequently, the cost for the full
eigensolution scales as O(n3), which prevents good scaling
to dynamic orders of several thousands.

Alternative approaches have been proposed to reduce this
cost. One technique [9] is based on a shifted and restarted
Arnoldi process, aimed at the extraction of few eigenvalues
in a disk centered on the imaginary axis. Iteration of this
process via bisection on the desired bandwidth leads to the
identification of all imaginary eigenvalues, disregarding the
remaining part of the spectrum. A second approach, based on
the Laguerre’s method [20], [21], allows the computation of
the full eigenspectrum in O(n2) operations. In this work, we
focus on the former approach, due to its superior potential for
efficient parallelization.

We recall that, given an arbitrary shift ϑ ∈ C, the shifted
and inverted Hamiltonian matrix can be represented as

(M− ϑI)−1 =

[
Aϑ

−AT
−ϑ

]
(6)

−
[
Aϑ

−AT
−ϑ

] [
B
−CT

]
×
[
−Hϑ I
I −HT

−ϑ

]−1 [
C

BT

] [
Aϑ

−AT
−ϑ

]
by application of the Shermann Morrison Woodbury
Lemma [9], [25], where A±ϑ = (A ± ϑI)−1 and H±ϑ =
D−CA±ϑB. The number of operations required by the above
computations has a leading term which is linear in the number
of macromodel states n. This fact enables using Krylov-
subspace techniques to find selected eigenvalues. Starting from
a random initial vector v1, a d-dimensional orthogonal basis

Vd = [v1, . . . ,vd] (7)

of the Krylov subspace

span
{
v1, (H− ϑI)−1v1, . . . , (H− ϑI)−d+1v1

}
(8)

is found by constructing one vector at the time and orthonor-
malizing it with respect to previous vectors. The Galerkin pro-
jection of the original Hamiltonian eigenvalue problem onto
this subspace provides an approximation of few eigenvalues
that are closest to the shift (the convergence rate improves the
closer is the eigenvalue to the shift).

The implementation of the above process needs some spe-
cial tricks in order to avoid missing eigenvalues and con-
verge quickly. In particular, explicit restarts and incremental
deflation are adopted in our implementation, according to the
guidelines of [9]. A few remarks are in order

• For best efficiency, the dimension of the Krylov subspace
d is chosen to be much smaller than the matrix order 2n.
For all examples we used a maximum size d = 60.

• For a given shift ϑ, only a small number nϑ of eigen-
values are sought for, typically 4–6. In fact, we have
the requirement that nϑ � d in order to guarantee
good eigenvalue stabilization. Moreover, we require a fine
granularity in view of the parallelization effort, to be de-
scribed below. The best implementation is thus achieved
with a very fast determination of very few eigenvalues
closest to ϑ. Calculation of all desired eigenvalues in Ω
will be achieved by repeating the process using many
shifts, which will be allocated to different computing
threads.

• In addition to the eigenvalue estimates, we will need the
guarantee that no other eigenvalues are present within a
disk Cϑ,ρ = {s ∈ C : |s− ϑ| < ρ}. Obviously, the radius
of this disk depends on the eigenvalue distribution around
the shift. Therefore, we start with an initial guess of the
radius ρ0 and we update it during the restarted iterations
by monitoring the convergence of all eigenvalues. If more
eigenvalues than nϑ are converging within the current
disk, the radius is reduced so that only nϑ eigenvalues are
enclosed, and the remaining ones are discarded. If some
of the nϑ converging eigenvalues are outside the initial
disk, the radius is redefined to the maximum distance of a
converging eigenvalue from the shift. Therefore, the final
radius can be ρ R ρ0.

The above observations are summarized by what we call
single-shift Arnoldi iteration S, which can be formally de-
scribed in functional form as

({λk}, ρ)← S(ϑ, ρ0) (9)

where the input parameters are the shift and the initial radius,
and the output parameters are the complete set of eigenval-
ues {λk} that are included in the disk Cϑ,ρ. Note that this
eigenvalue set may be empty if the initial radius is small.
A graphical illustration of the single-shift iteration results is
outlined in Fig. 1. Additional details and derivations can be
found in [9].

ρ0

ϑ

ρ

ϑ

λ1

λ2

λ3

λ4

S(ϑ, ρ0)

Fig. 1. Schematic representation of the single-shift operator S.

IV. PARALLEL HAMILTONIAN EIGENSOLVER

The S-iteration (9) finds few eigenvalues that are localized
around a prescribed point ϑ. As described in [9], placing a
set of multiple shifts {ϑk, k ∈ K} on the imaginary axis
via a bisection process allows covering the entire bandwidth
of interest [ωmin, ωmax] with the union of the corresponding
disks Cϑk,ρk , thus guaranteeing the detection of all imaginary
Hamiltonian eigenvalues.

The main issue with a standard bisection process is the
strong dependency of each iteration step on the completion
of previous steps, since the convergence radius of each shift
is not known. We illustrate this difficulty with reference to
Fig. 2. The first two shifts ϑ1, ϑ2 are placed at the edges of
the search band and processed. The resulting radii ρ1, ρ2 are
generally different. Since the optimal location of the third shift
is in the midpoint

ϑ3 =
(ϑ1 + ρ1) + (ϑ2 − ρ2)

2
, (10)

processing of ϑ3 requires full completion of the single-shift
iterations associated to ϑ1 and ϑ2. This data dependency
is obviously found at any level of the bisection tree. One
could neglect this dependency and predistribute the shifts on a
regular grid, to be processed by successive binary subdivision.
However, in a multi-threaded implementation where individual
shifts are processed by individual threads, it is very likely
that the work performed on some preallocated shifts will be
useless, since they could be included in the convergence disks
associated to nearby disks. Although this strategy is acceptable
for a serial implementation, there is no potential for good
scalability to a multi-threaded implementation deployed on a
machine with many computational cores. This poor scalability
was indeed verified experimentally.

ρ1 ρ2

ϑ1 ϑ2ϑ3
ωmin ωmax

ρ1 ρ2ρ3

ϑ1 ϑ2ϑ3ϑ4 ϑ5
ωmin ωmax

ρ1 ρ2ρ3ρ4 ρ5

ϑ1 ϑ2ϑ3ϑ4 ϑ5
ωmin ωmax

Fig. 2. Bisection process used to cover the bandwidth [ωmin, ωmax].

We now introduce the adopted parallelization strategy,
which is aimed at

• allocating individual single-shift iterations to individual
threads;

• making sure that the work of all concurrent threads is
independent on each other;

• making sure that no thread performs a single-shift itera-
tion that is not strictly required.

The above requirements are addressed by a dedicated schedul-
ing strategy, illustrated below.

A. Data organization and initialization

We assume that the search area is represented by the
frequency interval [ωmin, ωmax]. Usually, the lower bound
corresponds to zero frequency ωmin = 0, whereas the upper
bound is precomputed as the magnitude of the largest Hamil-
tonian eigenvalue, which can be otbained with a single-shift
iteration on the Hamiltonian matrix M without applying any
shift-and-invert operation.

The algorithm is parameterized by the number of threads
T that will run concurrently. We first subdivide the search
area into N adjacent and non-overlapping intervals Ĩν =
[ĨL,ν , ĨU,ν], where

ĨL,ν = ωmin ν = 1 ,

ĨL,ν = IU,ν−1 1 < ν ≤ N ,

ĨU,ν = ωmax ν = N .

The number of these intervals is at least double the number
of threads, N = κT with κ ≥ 2. A tentative shift ϑ̃ν is then
attributed to each interval according to the rule

ϑ̃ν = ĨL,ν ν = 1 ,

ϑ̃ν = (ĨL,ν + ĨU,ν)/2 1 < ν < N ,

ϑ̃ν = ĨU,ν ν = N .

These tentative shifts are collected into a set

Θ̃0 = {ϑ̃ν , ν ∈ I0} (11)

where I0 is an index set that at the initialization step coincides
with the set of consecutive integers {1, . . . , N}. We also define
a set Θ0 = ∅, that will include all shifts that are being
processed (denoted as ϑ̂µ) or have been processed (denoted
as ϑµ) by single-shift iterations. The same notation will be
propagated to the intervals surrounding each shift.

B. Algorithm startup

In the startup phase, a number of T threads must start
processing at the same time. Each thread will then pick one of
the tentative shifts from Θ̃0 and will perform the corresponding
single-shift iteration. These tentative shifts that are selected for
processing are removed from the set Θ̃0 and “promoted” to
the set Θ0. We will use a global index k in order to keep track
of individual threads and shifts. After this startup phase, we
have k = T shifts in the processing state

Θk = {ϑ̂1, . . . , ϑ̂k} (12)

with

ϑ̂1 = ϑ̃1 , (13)

ϑ̂2 = ϑ̃N , (14)

ϑ̂ν = ϑ̃ν−1, 3 ≤ ν ≤ T (15)

so that the extrema of the search bandwidth are processed first,
followed by as many shifts as allowed by the available threads,
see Fig. 3 for an illustration. The set of tentative shifts is also
deflated as

Θ̃k = Θ̃0 \ {ϑ̃1, ϑ̃N , ϑ̃2, . . . ϑ̃T−1} . (16)

At successive iterations the set of tentative shifts will be best
described by a compact notation

Θ̃k = {ϑ̃ν | ν ∈ Ik} , (17)

where Ik is an index set (possibly with non-consecutive
elements) that depends on the iteration count, and whose
number of elements will be denoted as Mk,

Ik = {i(k)1 , . . . , i
(k)
Mk
} . (18)

ωmin ωmax

ϑ̃1 ϑ̃2 ϑ̃3 ϑ̃N

ϑ̂1 ϑ̂3 ϑ̂2

ĨL,1 ĨU,1

ĨL,2 ĨU,2

ĨL,3 ĨU,3

ĨL,4

ĨU,N

Fig. 3. Shifts in the processing state after the startup phase for the case
T = 3.

C. Shift selection and processing

The above process can be applied anytime a new thread is
idle and needs to select and process a shift. Assuming a global
iteration count k ≥ T , a new shift is added to the processing
list as

Θk+1 = Θk ∪ {ϑ̂k+1} , (19)

where

ϑ̂k+1 = ϑ̃µ , µ ∈ Ik , @ϑ̂ν , ϑ̃ν ∈
[
Ĩµ,L, Ĩµ,U

]
. (20)

In other words, an equivalence is established between the
index µ in the tentative queue and the index k + 1 in the
processing queue, see Fig. 4. Conditions (20) ensure that a
“free” interval will be processed, i.e., not including any shift
that is being processed or has the potential to be processed by
a successive thread. Of course, the set of tentative shifts and
the corresponding index set will be deflated accordingly

Θ̃k+1 = Θ̃k \ {ϑ̂k+1} = Θ̃k \ {ϑ̃µ} . (21)

ϑ̂k+1

ϑ̃µ

Ĩµ,L Ĩµ,U

Fig. 4. Choice of the center to be processed.

Once the shift ϑ̂k+1 = ϑ̃µ is promoted for processing as
in (20), the corresponding single-shift iteration

(Λk+1, ρk+1)← S(ϑ̂k+1, ρk+1,0) (22)

is assigned to a computing thread and executed. The initial
radius is initialized as

ρk+1,0 = α
IU,k+1 − IL,k+1

2
, (23)

where α ? 1 in order to allow a small overlap with adjacent
intervals.

D. Completion of single-shift iteration and update

As soon as a thread has completed processing a single-shift
iteration, the corresponding shift is promoted ϑ̂k → ϑk and the
corresponding radius ρk is used to update all data structures.
Two cases may occur

• If the convergence disk covers the interval associated to
the current shift 2ρk > IU,k − IL,k, then Ik is simply
deleted, since all eigenvalues within this interval have
been found. It may be the case that, when the starting
radius (23) is updated by the single-shift iteration to
a larger value, the convergence disk includes some of
the tentative shifts. Such shifts will be useless and are
immedately deleted

Θ̃k ← Θ̃k \ {ϑ̃ν ∈ Θ̃k : ϑ̃ν ∈ [ϑk − ρk, ϑk + ρk]} (24)

• If the radius has been redefined to a smaller value by the
single-shift iteration (see Fig. 5), the embedding interval
is split into three portions

[IL,k, IU,k] = [IL,k, ϑk − ρk] ∪ (25)
[ϑk − ρk, ϑk + ρk] ∪ [ϑk + ρk, IU,k]

The inner portion does not need further processing,
whereas the two outer portions will define respectively
new tentative intervals Ĩµk,1

, Ĩµk,2
with associated shifts

ϑ̃µk,1
=

IL,k + (ϑk − ρk)

2
(26)

ϑ̃µk,2
=

IU,k + (ϑk + ρk)

2
(27)

with µk,i = max{Ik}+ i, which in turn are added to the
tentative set

Θ̃k+1 = Θ̃k ∪ {ϑ̃µk,1
, ϑ̃µk,2

} (28)

ρk

ϑkϑ̃µk,1
ϑ̃µk,2IL,k IU,k

ĨL,µk,1
ĨU,µk,1

ĨL,µk,2
ĨU,µk,2

Fig. 5. Quantities involved in the update of the data structures when 2ρk <
IU,k − IL,k .

E. Termination

The algorithm stops at the iteration K as soon as condition
Θ̃K = ∅ occurs, and at the same time there are no shifts ϑ̂ν
in the processing state, i.e.

ΘK = {ϑ1, . . . , ϑK} . (29)

TABLE I
SUMMARY OF MAIN RESULTS. THE TABLE REPORTS DYNAMIC ORDER n,

NUMBER OF PORTS p, AND NUMBER OF IMAGINARY HAMILTONIAN
EIGENVALUES Nλ FOR EACH ANALYZED TEST CASE. THE LAST FOUR

COLUMNS REPORT THE CPU TIME IN SECONDS FOR RUNNING THE
SINGLE-THREAD SERIAL CODE (τ̄1), THE PARALLEL CODE USING 16

THREADS (MEAN τ̄16 AND WORST-CASE τmax
16), AND THE

CORRESPONDING AVERAGE SPEEDUP FACTOR η̄.

Case # n p Nλ τ̄1 τ̄16 τmax
16 η̄16

Case 1 1000 20 6 13.763 0.655 0.844 21.028
Case 2 1000 20 42 10.911 0.521 0.579 20.957
Case 3 1000 20 40 11.729 0.565 0.639 20.745
Case 4 1980 18 0 81.193 5.020 5.208 16.175
Case 5 2240 56 22 33.972 1.950 2.121 17.420
Case 6 1728 18 0 46.735 3.022 3.109 15.463
Case 7 1734 83 10 22.836 1.518 1.563 15.040
Case 8 1792 56 104 50.933 3.627 3.736 14.044
Case 9 1702 56 115 14.206 0.976 1.055 14.554
Case 10 4150 83 114 64.396 5.171 6.024 12.453
Case 11 1792 56 125 54.470 3.809 3.911 14.301
Case 12 2432 83 46 27.842 1.955 2.043 14.242

V. RESULTS AND DISCUSSION

This section illustrates the performance of the proposed
parallel solver on several test cases. The first four columns
of Table I summarize the main features of each benchmark,
namely the dynamic order n, the number of ports p, and
the number of imaginary Hamiltonian eigenvalues Nλ to be
computed. All numerical results have been produced on a
IBM LS42 Blade server with four AMD Opteron quad-core
processors running at 2.3 GHz, thus summing to 16 total
computing cores, and with 2 GB RAM per core. This allows
us to investigate the scalability, efficiency and speedup of the
parallel solver with up to 16 parallel threads.

The proposed scheme relies on the iterative random selec-
tion of the starting vectors for each individual restart of the
single-shift Arnoldi processes. Therefore, we expect some sta-
tistical variation in the code efficiency, since different choices
of starting vectors might lead to a different number of restarts
and/or iterations. This was in fact verified experimentally, as
depicted in Fig. 6 for Case 5. The graph depicts η̄t±δt, where
t is the number of concurrent threads, η̄t is the average and
δt is the standard deviation of the speedup factor ηt = τt/τ̄1,
computed over 20 independent runs, and τt is the CPU time.

The last four columns of Table I compare the average
and the worst-case CPU time of the 16-thread parallel solver
with the corresponding CPU time of the one-thread serial
implementation, together with the average speedup factor. This
table demonstrates a close-to-ideal speedup. In some cases
(e.g., Cases 7–12) the speedup is slightly below expectation,
reaching 78% of parallel efficiency in the worst case. For
other cases (e.g., Cases 1–5), the speedup exceeds the ideal
behavior and exhibits a superlinear trend. This variation and
speedup bonus is a byproduct of the dynamic shift allocation
process, which may eliminate from the tentative queue some
shifts before they enter the processing queue. The occurence
of such conditions depends on the problem itself and on
the number of running threads, and is affected by additional

Number of threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Ideal speedup
Speedup

Fig. 6. Speedup factor vs number of threads for Case 5, compared to the ideal
speedup (red dashed line). The dots and the vertical bars depict the average
speedup and the associated standard deviation computed on a number of 20
independent runs (see text).

statistical variations due to the random selection of the starting
vectors. However, the overall impact of such variability does
not significantly affect the parallel efficiency, as demonstrated
by the worst-case CPU time results.

VI. CONCLUSIONS

We have presented a parallel eigensolver for structured
Hamiltonian matrices associated to interconnect state-space
macromodels. The results demonstrate that the selective ex-
traction of all purely imaginary eigenvalues can be per-
formed in very few seconds even for large-scale problems,
leading to an almost real-time algebraic characterization of
macromodel passivity. The scalability and parallel efficiency
achieved by our implementation on a 16-core machine are
remarkable, showing good promise for the deployment of
high-performance macromodeling tasks on next-generation
computing platforms.

VII. ACKNOWLEDGEMENT

The Authors are grateful to Dr. Katopis and Dr. Becker
(IBM) for supporting this activity through an IBM Shared
University Research (SUR) Grant. This work was supported
in part by the Italian Ministry of University (MIUR) under a
Program for the Development of Research of National Interest
(PRIN grant #2008W5P2K) and in part by IdemWorks s.r.l.

REFERENCES

[1] B. Gustavsen, A. Semlyen, “Rational approximation of frequency re-
sponses by vector fitting”, IEEE Trans. Power Delivery, Vol. 14, N. 3,
July 1999, pp. 1052–1061.

[2] B. Gustavsen, ”Computer code for rational approximation of frequency
dependent admittance matrices”, IEEE Trans. Power Delivery, Vol. 17,
N. 4, October 2002, pp. 1093–1098.

[3] B. Gustavsen, A. Semlyen, “A robust approach for system identification
in the frequency domain”, IEEE Trans. Power Delivery, Vol. 19, N. 3,
July 2004, pp. 1167–1173.

[4] D. Deschrijver, B. Haegeman, T. Dhaene, ”Orthonormal Vector Fit-
ting: A Robust Macromodeling Tool for Rational Approximation of
Frequency Domain Responses”, IEEE Transactions on Advanced Pack-
aging, vol. 30, n. 2, May 2007, pp. 216–225.

[5] S. Grivet-Talocia, M. Bandinu, “Improving the Convergence of Vector
Fitting in Presence of Noise”, IEEE Transactions on Electromagnetic
Compatibility, vol. 48, n. 1, pp. 104-120, February, 2006.

[6] B.D.O. Anderson and S.Vongpanitlerd, Network Analysis and Synthesis,
Prentice-Hall, Englewood Cliffs, NJ, 1973.

[7] S. Boyd, V. Balakrishnan, P. Kabamba, “A bisection method for com-
puting the H∞ norm of a transfer matrix and related problems”, Math.
Control Signals Systems, Vol. 2, 1989, pp. 207–219.

[8] S. Grivet-Talocia, “Passivity enforcement via perturbation of Hamil-
tonian matrices”, IEEE Trans. CAS-I, pp. 1755-1769, vol. 51, n. 9,
September, 2004

[9] S. Grivet-Talocia, A. Ubolli “On the Generation of Large Passive
Macromodels for Complex Interconnect Structures”, IEEE Trans. Adv.
Packaging, vol. 29, No. 1, pp. 39–54, Feb. 2006

[10] D. Saraswat, R. Achar and M. Nakhla, ”Global Passivity Enforcement
Algorithm for Macromodels of Interconnect Subnetworks Characterized
by Tabulated Data”, IEEE Transactions on VLSI Systems, Vol. 13, No. 7,
pp. 819–832, July 2005.

[11] C.P.Coelho, J.Phillips, L.M.Silveira, “A Convex Programming Ap-
proach for Generating Guaranteed Passive Approximations to Tabulated
Frequency-Data”, IEEE Trans. Computed-Aided Design of Integrated
Circuits and Systems, Vol. 23, No. 2, February 2004, pp. 293–301.

[12] H. Chen, J. Fang, “Enforcing Bounded Realness of S parameter through
trace parameterization”, in 12th IEEE Topical Meeting on Electrical
Performance of Electronic Packaging, October 27–29, 2003, Princeton,
NJ, pp. 291–294.

[13] B. Dumitrescu, ”Parameterization of Positive-Real Transfer Functions
With Fixed Poles”, IEEE Trans. CAS-I, vol. 49, n. 4, April 2002, pp. 523-
526.

[14] B. Gustavsen, A. Semlyen, “Enforcing passivity for admittance matri-
ces approximated by rational functions”, IEEE Trans. Power Systems,
Vol. 16, N. 1, Feb. 2001, pp. 97–104.

[15] B. Gustavsen, “Computed Code for Passivity Enforcement of Rational
Macromodels by Residue Perturbation,” IEEE Trans. Adv. Packaging,
vol. 30, pp. 209–215, May 2007.

[16] D. Saraswat, R. Achar and M. Nakhla, ”A Fast Algorithm and Practical
Considerations For Passive Macromodeling Of Measured/Simulated
Data”, IEEE Transactions on Components, Packaging and Manufactur-
ing Technology, Vol. 27, N. 1, pp. 57–70, Feb. 2004.

[17] S. Grivet-Talocia, “An adaptive sampling technique for passivity char-
acterization and enforcement of large interconnect macromodels,” IEEE
Trans. Adv. Packaging, vol. 30, pp. 226–237, May 2007.

[18] A Lamecki and M. Mrozowski, “Equivalent SPICE Circuits With
Guaranteed Passivity From Nonpassive Models,” IEEE Transactions
on Microwave Theory And Techniques, Vol. 55, No. 3, March 2007,
pp. 526–532.

[19] S. Grivet-Talocia, A. Ubolli “Passivity Enforcement with Relative Error
Control”, IEEE Trans. on Microwave Theory and Techniques, vol. 55,
No. 11, November 2007, pp. 2374–2383.

[20] Z. Ye, L. M. Silveira, and J. R. Phillips, “Fast and Reliable Passivity
Assessment and Enforcement with Extended Hamiltonian Pencil,” in
International Conference on Computer Aided Design, 2009, pp. 774–
778.

[21] Z. Ye, L. M. Silveira, and J. R. Phillips, “Extended Hamiltonian Pencil
for Passivity Assessment and Enforcement for S-parameter Systems,” in
DATE 2010 Conference, pp. 1148–1152.

[22] Z. Zhang, C. U. Lei, and N.Wong, “GHM: A generalized Hamiltonian
method for passivity test of impedance/admittance descriptor systems,”
in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA, Nov. 2009,
pp. 767–773.

[23] Z. Zhang and N. Wong, “Passivity test of immittance descriptor systems
based on generalized Hamiltonian methods,” IEEE Trans. Circuits Syst.
II: Express Briefs, vol. 57, no. 1, pp. 61–65, Jan. 2010.

[24] V. Mehrmann and D. Watkins, “Structure-preserving methods for com-
puting eigenpairs of large sparse skew-hamiltonian/hamiltonian pencils,”
SIAM J. Sci. Comput, vol. 22, pp. 1905–1925, 2000.

[25] G. H. Golub, C. F. van Loan, Matrix computations, 3rd ed., Baltimore:
Johns Hopkins University Press, 1996

