
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Genetic Defect Based March Test Generation for SRAM / DI CARLO, Stefano; Politano, GIANFRANCO MICHELE
MARIA; Prinetto, Paolo Ernesto; Savino, Alessandro; Scionti, A.. - STAMPA. - 6625:(2011), pp. 141-150. (Intervento
presentato al convegno EvoCOMNET, EvoFIN, EvoHOT, EvoMUSART, EvoSTIM, and EvoTRANSLOG,
EvoApplications 2011 tenutosi a Torino (IT) nel April 27-29 2011) [10.1007/978-3-642-20520-0_15].

Original

Genetic Defect Based March Test Generation for SRAM

Publisher:

Published
DOI:10.1007/978-3-642-20520-0_15

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2387854 since: 2016-09-16T17:44:41Z

Springer

Genetic Defect Based March
Test Generation for SRAM
Authors: Di Carlo S., Politano G., Prinetto P., Savino A., Scionti A.,

Author’s version of the manuscript published in the LECTURE NOTES IN COMPUTER SCIENCE, Vol.
6625/2011 pp. 141-150.

The final publication is available at www.springerlink.com:

URL: http://www.springerlink.com/content/6l37213060502224/fulltext.pdf

DOI: 10.1007/978-3-642-20520-0_15

!Politecnico di Torino

http://www.springerlink.com/content/6l37213060502224/fulltext.pdf
http://www.springerlink.com/content/6l37213060502224/fulltext.pdf
http://dx.doi.org/10.1007/978-3-642-20520-0_15
http://dx.doi.org/10.1007/978-3-642-20520-0_15

Genetic Defect Based March Test Generation for

SRAM

Stefano Di Carlo, Gianfranco Politano, Paolo Prinetto, Alessandro Savino, and
Alberto Scionti

Politecnico di Torino, Control and Computer Engineering Department, Torino
I-10129, Italy,

stefano.dicarlo,gianfranco.politano,paolo.prinetto,alessandro.savino,

alberto.scionti@polito.it

http://www.testgroup.polito.it

Abstract. The continuos shrinking of semiconductor’s nodes makes semi-
conductor memories increasingly prone to electrical defects tightly re-
lated to the internal structure of the memory. Exploring the e↵ect of
fabrication defects in future technologies, and identifying new classes of
functional fault models with their corresponding test sequences, is a time
consuming task up to now mainly performed by hand. This paper pro-
poses a new approach to automate this procedure exploiting a dedicated
genetic algorithm.

Keywords: Memory testing, march test generation, defect based testing

1 Introduction

Semiconductor memories have been used for long time to push the state-of-
the-art in the semiconductor industry. The Semiconductor Industry Association
(SIA)1 forecasts that in the next 15 years up to 95% of the entire chip area will
be dedicated to memory blocks. Precise fault modeling and e�cient test design
are therefore pivotal to keep test cost and time within economically acceptable
limits.

Functional Fault Models (FFMs) coupled with e�cient test algorithms such
as march tests (the reader may refer to [1] to understand the concept of march
test) have been so far enough to deal with emerging classes of memory defects
[1]. FFMs do not depend on the specific memory technology and allow automa-
tion of test sequences generation [3]. Exploring the e↵ect of fabrication defects
in future technologies, and identifying new classes of FFMs with their relevant
test sequences, is a time consuming task up to now mainly performed by hand.
However, the continuos shrinking of semiconductor’s nodes makes semiconduc-
tor memories increasingly prone to electrical defects tightly related to the inter-
nal structure of the memory [8, 7]. Automating the analysis of these defects is
mandatory to guarantee the quality of next generation memory devices.
1
http://www.itrs.net/

2 Di Carlo et al.

Automatic defect level memory test generation is an area of test generation
and diagnosis that still needs to be fully explored. Cheng et al. [4] presented
FAME, a fault-pattern based memory failure analysis framework that applies
diagnosis-based fault analysis to narrow down potential causes of failure for a
specific memory architecture. Results of the analysis are then used to optimize a
given test sequence (march test) considering only the observed faults. Similarly,
Al-Ars at al.[2] proposed a framework for fault analysis and test generation in
DRAMs that uses Spice to model the memory under test and the target defects.
Spice simulations are used to perform fault analysis starting from well known test
algorithms available in literature. The main drawback of these methods is that
they allow the optimization of existing test sequences rather than the generation
of new and optimized set of stimuli.

This paper tries to overcome these problems proposing a software framework
for defect level march test generation . The generation process exploits a genetic
algorithm able to highlight faulty behaviors in a defective memory and to gen-
erate the related test sequences by means of electrical simulations. The use of a
genetic algorithm allows an e�cient exploration of a huge space of march test
alternatives guaranteeing high defect coverage.

2 Generation Framework Architecture

Figure 1 overviews the architecture of the proposed framework. The core block
of the system is the Genetic March Test Generator (GMTG), a genetic algorithm
used to drive the march test generation process.

GENETIC MARCH TEST
GENERATOR (GMTG)

SIMULATOR
(e.g. HSPICE)

Fault-Free
MEMORY

Defective
MEMORY

(DMi)

Defective Memories Set
(DMS)

Si
m

ul
at

or
 IN

TE
RF

AC
E

CONSTRAINTS

MARCH
TEST

Fig. 1. March test generation framework

We use electrical Spice models to precisely model the memory behavior and
the characteristics of the fabrication process (fault-free memory of Figure 1). In
a similar way, memory defects are modeled as electrical components (e.g., resis-
tors, parameter changes, etc.) on the fault-free memory obtaining a collection of
defective memories (DM

i

) named Defective Memory Set (DMS). Each defective
memory is characterized by a single defect.

The GMTG operates trying to highlight erroneous behaviors caused by the
inserted defects, and providing a march test for their detection. The comparison

Genetic Defect Based March Test Generation for SRAM 3

between the fault-free and the defective memory models is performed by analyz-
ing their electrical simulations (simulator block of Figure 1) when the target test
sequence is applied. To allow adaptation to di↵erent types of memories, descrip-
tion levels, description languages, and simulators, an interface layer is placed
between the GMTG and the simulator to virtualize the specific commands and
results format.

3 Genetic March Test Generator

The following pseudocode describes the way the GMTG algorithm works while
generating a march test for a specific set of defects.

GMTG (): begin

1: solution = "";

2: foreach (DM_i in DMS) {

3: generation=0; generate initial population based on current solution;

4: simulate (DM_i , population);

5: while (generation < MAX_GEN) {

6: coverage = check_coverage(solution,DM_i);

7: if (coverage) break;

8: evolve (population, offspringsize)

9: validate (population);

10: simulate (DM_i , population);

11: evaluate_fitness(population);

12: solution = update (population,solution);

13: generation ++;}

14: if (generation==MAX_GEN) exit_without_solution();}

15: show_solution (solution);

end

The algorithm starts with an empty solution (row 1). Each defect DM
i

is
examined separately with an iterative process (row 2). This slightly modifies
the algorithm structure w.r.t. traditional genetic algorithms. For each defect a
random population of individuals is generated. Individuals of the population
(chromosomes) represents candidate march tests, and the individual with higher
fitness represents the candidate solution. When generating the population for a
new defect, all new individuals will contain the genes of the current solution plus
new additional genes to guarantee the coverage of the already analyzed defects.
Rows 5 to 13 are the actual genetic process with each iteration representing
the evolution of the population from a generation to the next one. First the
coverage of the current solution w.r.t. the target defect is evaluated (row 6). If
the current solution already detects a faulty behavior in the defective model the
generation stops and moves to the next model (row 7). If not, the population
is evolved applying di↵erent genetic operators explained later in this section
(row 8). offspring size represents the number of individuals to substitute in
the current population. The new population is validated to guarantee that each
chromosome correctly represents a march test (row 9). Chromosomes that do

4 Di Carlo et al.

not pass the validation can be either discarded or genetically modified to fit the
constraints. The population is then simulated w.r.t. the target defect (row 10),
the fitness of each individual is computed (row 11), the new candidate solution is
selected (row 12) and the process continues. If the evolution reaches a maximum
number of iterations without identifying a suitable solution the generation fails
and the algorithm ends (row 14).

3.1 Chromosome Encoding

The proposed genetic algorithm works with chromosomes representing candidate
march tests. According to [10] there are six Degrees Of Freedom (DOF) that can
be exploited to increase the detection capabilities of march tests. These DOFs are
considered in our chromosome encoding to enhance the e�ciency of the GMTG.
Each chromosome is composed of a sequence of genes representing basic memory
operations used to build a march test. Each gene is encoded using a binary string
including the following basic fields:

– start marker (1 bit): when asserted, it denotes the beginning of a new march
element within the current gene;

– addressing order (1 bit): defined in correspondence of the beginning of a
march element to identify its addressing order (1: direct addressing order
*, 0: inverse addressing order +);

– stop marker (1 bit): when asserted denotes that the current gene concludes
a march element;

– operation: a sequence of bits encoding the memory operation to apply. The
list of available memory operations depends on the target memory (basic
operations we considered are write, read, and idle). During the generation
process, the simulator interface (see Figure 1) translates each operation into
the correct sequence of signals for the memory;

– data: defined in case of write operations, it represents the value to write into
the memory (0 or 1 in case of single bit memories);

– addressing sequence: is the sequence of addresses associated with the direct
and reverse addressing order. This field exploits the first two degrees of
freedom proposed in [10]:(i) the addressing sequence can be freely chosen
as long as all addresses occur exactly once and the sequence is reversible
(DOF1); (ii) the addressing sequence for initialization can be freely chosen
as long as all addresses occur at least once (DOF2). In this work we consider
two possible sequences: (i)
• column mode hci:each memory cell in a given row of the memory cell

array is scanned before moving to the next row;
• row mode hri: each cell in a given column of the memory cell array is

scanned before moving to the next column.
Additional and more complex addressing sequences can be defined and added
to the encoding schema to increase the space of possible solutions and to
enhance the detection capabilities of the generated algorithms;

Genetic Defect Based March Test Generation for SRAM 5

– data pattern: this field allows to exploits another degree of freedom defined in
[10]: the data within a read/write operation does not need to be the same for
all memory addresses as long as the detection probabilities for basic faults are
not a↵ected (DOF4). Basically this DOF allows to change the data written
into the memory while moving to the di↵erent cells of the array. We consider
four possible data patterns (solid hsoli: all cells are written with the same
value, checkboard hckbi: cells are written with alternate values, alternate
row halri: rows of the memory are filled with alternate values, and alternate
column halci: columns of the memory are filled with alternate values).

Each chromosome encodes at least a write operation needed to initialize the
memory array with a well known value and possibly sensitize a faulty behavior
and a read operation to observe the faulty behavior. The number of sensitiz-
ing operations can be then incremented to deal with more complex defects or
combination of defects.

3.2 Population Validation

During the evolution from a generation to the next one, the application of the
genetic transformations may lead to chromosomes with undesired properties, i.e.,
chromosomes that do not represent valid march tests. To avoid this situation,
when new individuals are generated their structure must be validated. Incorrect
individuals are not killed but whenever possible their structure is healed apply-
ing a set of transformations. These transformations work on the start and stop
markers of genes based on the following rules:

– if a gene has the stop marker asserted, the start marker of the next gene of
the chromosome must be asserted;

– if a gene has a start marker asserted, the stop marker of the previous gene
of the chromosome must be asserted;

– the start marker of the first gene and the stop marker of the last gene of a
chromosome must always be asserted.

We decided to introduce these transformations instead of simply discarding
individuals with erroneous genetic content to avoid discarding genetic material
that may contain interesting characteristics for the final solution.

3.3 Fitness Function

The fitness function is the key element used to drive the evolution process and
in particular to select those chromosomes that most likely lead to valid solutions
of the problem. The idea is to identify a function that privileges the ability of an
individual of sensitizing faulty behaviors, i.e., the ability of producing di↵erent
electrical signals at the nodes of the fault-free and defective memories. This
imposes to define a fitness function able to evaluate analog di↵erences among
signals.

6 Di Carlo et al.

The computation of the fitness is based on the concept of probe nodes, i.e.,
I/O nodes of a memory cell (i.e., bit lines) or output nodes of a sense amplifier.
The electrical signals (i.e., voltage) produced at each probe node of the target
memory during the electrical simulation of the test sequence associated to a
chromosome are traced. These values are then analyzed and combined into a
value of fitness according to Eq. 1:

f(x) =
T

maxX

t=0

N

probe

�1X

i=0

D

i,t

(1)

where x is the target chromosome, t the simulation time and N

probe

the number
of analyzed probe nodes. D

i,t

represents the absolute value of the di↵erence
between the voltage at probe node i in the fault-free memory and the voltage at
the probe node i in the defective memory, at simulation time t. These di↵erential
values are combined together considering all probe nodes and simulation times
by the two sums of Eq. 1. The proposed function has two main drawbacks:

– it can easily lead to populations with very small di↵erences between the in-
dividuals (premature convergence). This actually turns the evolution process
into a random selection among chromosomes reducing the e�ciency of the
genetic approach;

– it can produce among a high number of similar individuals, a single chromo-
some (super chromosome) with fitness much higher than all the remaining
ones. This is again negative since the evolution will be completely polarized
by this chromosome and the space of solutions will not be correctly explored.

To leverage these problems, we introduced a linear normalization able to cor-
rectly distribute the fitness values. The population is sorted by decreasing fitness
values. Chromosomes in the sorted list receive a new scaled fitness f

s

(x) accord-
ing to Eq. 2.

f

s

(x) = C � n · L (2)

where C is a constant value, L represents the linear normalization step (a
parameter of the method), and n is the position of the chromosome in the sorted
list.

3.4 Evolution

During the generation process, when the current solution does not provide the
required defect coverage the current population is evolved substituting a set
of individuals with new ones with di↵erent characteristics. In our framework,
in addition to traditional genetic operators (e.g., crossover [5]) we apply addi-
tional rules during the evolution. First of all, if a certain sequence of genes in
the chromosome has been used to detect a certain defect, it cannot be modi-
fied while analyzing a new defect. This in turns requires to add new genes to
the sequence in order to have a certain degree of freedom in the modification

Genetic Defect Based March Test Generation for SRAM 7

of the individuals. This is performed introducing a new genetic operator named
increase chromosome length able to increase by one the number of genes compos-
ing the chromosomes of the population. The problem in this case is the selection
of the type of gene to insert and, in particular, the type of memory operation the
new gene has to encode. Based on the fact that some fault models (i.e., dynamic
faults) are sensitized by long sequences of identical operations, the approach
we adopted inserts new genes repeating the last operation in the sensitizing se-
quence of each chromosome. Moreover, the new gene is always inserted as part
of the last march element.

3.5 Coverage Conditions

For each defective memory model DM
i

the GMTG ends the generation process
when either a chromosome able to sensitize and detect a faulty behavior appears
in the population, or a maximum computation e↵ort is reached. Every time a
new solution is identified the electrical simulations of the fault-free and target
defective memories are compared to identify if the given test sequence is able
to detect a new erroneous behavior. In particular, the analysis focuses on the
portions of the simulation (samples) corresponding to the genes encoding read
operations. The logic value returned by the observations is calculated (taking into
account the electrical parameters of the target memory) for the fault-free and
the defective memory. When the two values di↵er, a faulty behavior is detected
and the generation ends.

4 Experimental Results

The capability of the proposed framework has been validated on a 3⇥3 SRAM
consisting of an array of 9 classical 6 transistors cells implemented using the
130nm Predictive Technology Model2. The use of a reduced 3⇥3 matrix allows
to maintain the simulation time under control. Nevertheless, this simplification
still allows to obtain realistic results since it has been demonstrated in [1] that
defects are usually localized in a range of a few cells. Electrical simulations have
been performed using the commercial HSPICETM simulator while the GMTG
has been implemented in about 3,500 lines of C code executed on a 1.8GHz
AMD TURIONTM laptop equipped with 1GB of RAM and running the Linux
operating system. A preliminary set of experiments allowed us to derive the set
of tuning parameters for the GMTG3.

Figure 2 (a) and Figure 2 (b) propose the architecture of a single memory
cell including our target collection of defects. Figure 2 (a) proposes seven typical
resistive defect locations deeply analyzed in literature [6, 7], whereas Figure 2 (b)
proposes the set of short defects analyzed in [9]. During our experiments these
defects have been injected in the first cell of the memory matrix.

2 http://www.eas.asu.edu/ ptm
3 MAX GEN=200, population=10, o↵spring size=5, C=250, L=25.

8 Di Carlo et al.

Vdd

Gnd

BL BL

WL
DFR5

DFR3

DFR2DFR6

DFR4

DFR1
T F

nmos nmos

pmospmos

DFR2

nmos nmos

(a)

Vdd

Gnd

BL BL

WL

DFS1 DFS2

DFS3

DFS4

DFS5

pmos

Mp2

T F

pmos

nmos

nmosnmos

nmos

(b)

Fig. 2. Memory cell with target resistive defects (a) and short defects (b)

Table 1 shows the results obtained by considering both resistive defects
(DFT) and shorts (DFS) in isolation. For resistive defects, the minimum value of
resistance able to produce a faulty behavior (Rmin) is reported while for shorts,
we considered a resistive value of 1.0⌦. All simulations have been performed
at a temperature of 27�C. For each defect the generated test sequence and the
generation time are also provided. The obtained results show that we have been
able to automatically generate dedicated march tests for resistive defects DFR1,
DFR2, DFR3, DFR5, DFR6, DFR2 and for all short defects with a very low
e↵ort in terms of execution time. The generated test sequences are consistent
with the studies performed in [6] for resistive defects and in [9] for shorts, thus
confirming the e↵ectiveness of the proposed approach.

Table 1. March tests for single defects. Simulations have been performed using T =
27�C. Defects are measured in M⌦, while the execution time is expressed in s.

DFR Rmin Time Test Sequence DFS Time Test Sequence

DFR1 0.025 178 hcihckbi {* (W0, W1, R1); } DFS1 180 hcihckbi {* (W0, W1, R1); }
DFR2 0.020 175 hrihsoli {* (W0, W1, R1); } DFS2 180 hrihsoli {* (W0, W1, R1); }
DFR3 0.007 171 hcihalci {* (W1, R1, R1); } DFS3 180 hcihsoli {* (W0, W1, R1); }
DFR44 64.0 416 hcihckbi {* (W0, R0);* (R0); } DFS4 180 hrihsoli {* (W0, W1, R1); }
DFR5 2.0 177 hrihalri {* (W1, W0, R0); } DFS5 180 hrihalri {* (W0, W1, R1); }
DFR6 2.0 168 hcihalci {* (W1, W0, R0); } - -
DFR2 2.0 150 hcihalci {* (W1, W0, R0); } - -

Slightly more complex is the situation for DFR4. Experiments performed at
simulation temperature of 27�C were not able to identify any faulty behavior.
This is again coherent with the results of [6]. We thus performed di↵erent ex-
periments changing the operational temperature. By setting the temperature to

4 Defect DFR4 has been simulated using T = 125�C.

Genetic Defect Based March Test Generation for SRAM 9

Table 2. March tests for multiple defects. Execution time is expressed in s.

#Exp Time Test sequence

EXP1 510 hrihsoli {* (W0, W1, R1);+ (W0, R0); }
EXP2 2050 hcihsoli {* (W0, W1, R1, W0, R0); }
EXP3 2062 hcihckbi {* (W0, W1, R1);+ (W0, W0);* (R0);* (W1);* (R1);+ (R1); }

125�C and the defect size to 64.0M⌦, we have been able to produce a defective
behavior and to obtain a corresponding test sequence as shown in Figure 3.

The result obtained with DFR4 is particularly interesting. Looking at the
results proposed in [6], the authors identified for the same type of defect, injected
in their target memory, a dynamic faulty behavior instead of a data retention
fault. Once again, this result stresses the importance of resorting to an automatic
tool able to automatically generate test sequences customized on the target
memory.

In addition to the previous experiments we performed a set of three ex-
periments with groups of defects summarized by the results of Table 2. EXP1
considers a target defect list composed of DFR2 and DFR2. According to the
results of Table 1 these two defects introduce a Transition Fault into the mem-
ory. Looking at the generated test sequence in Table 2 we exactly obtained a
march test able to detect the Transition Fault. The second experiment (EXP2)
considers the same collection of defects of EXP1 plus DFS3. Again the result of
the three defects can be modeled as a Transition Fault and the generated march
test is able to detect this type of fault. Finally, EXP3 adds DFR3 to the defects
considered in EXP2. The generated sequence is able to detect the transition
fault introduced by the first three defects and also the read fault introduced by
DFR3. However, in this case, it is clear that the generated sequence contains re-
dundant operations. This situation is a direct consequence of the use of a genetic
approach to generate the test. Nevertheless, a post elaboration can be applied
in order to optimize the generated sequences.

5 Conclusion

This paper proposed a set of preliminary results toward the solution of the prob-
lem of defect based automatic march test generation. The proposed approach
is based on a genetic algorithm able to identify faulty behaviors in a defective
memory and to generate the corresponding test sequences. The use of a genetic
approach allows an e�cient exploration of a huge space of march test alter-
natives, guaranteeing high defect coverage and thereby reducing the time test
engineers need to explore test alternatives. Experimental results show the e↵ec-
tiveness of the approach that proved to be able to reproduce results of previous
studies with an acceptable execution time and without human intervention.

10 Di Carlo et al.

TABLE II
MARCH TEST FOR SINGLE DEFECTS

Resistive defects

#DFR Rmin [M�] T [�C] Ex. time [s] Test Sequence Fault primitive

DFR1 0.025 27 178 �col��ckb� {�(W0,W1,R1);} �0W1/0/��
DFR2 0.020 27 175 �row��sol�{�(W0,W1,R1);} �0W1/0/��
DFR3 0.007 27 171 �col��alc� {�(W1,R1,R1);} �1W1/0/0�
DFR4 64.0 125 416 �col��ckb� {�(W0,R0); �(R0);} �0T / � /?�
DFR5 2.0 27 177 �row��alr�{�(W1,W0,R0);} �1W0/1/��
DFR6 2.0 27 168 �col��alc� {�(W1,W0,R0);} �1W0/1/��
DFR2 2.0 27 150 �col��alc� {�(W1,W0,R0);} �1W0/1/��

Short defects

#DFS Rmin [M�] T [�C] Ex. time [s] Test Sequence Fault primitive

DFS1 - 27 180 �col��ckb� {�(W0,W1,R1);} �0W1/0/��
DFS2 - 27 170 �row��sol�{�(W0,W1,R1);} �0W1/0/��
DFS3 - 27 177 �col��sol� {�(W0,W1,R1);} �0W1/0/��
DFS4 - 27 176 �row��sol�{�(W0,W1,R1);} �0W1/0/��
DFS5 - 27 176 �row��alr�{�(W0,W1,R1);} �0W1/0/��

Fig. 7. Electrical simulation for DFR4 with T = 125�C and R = 64.0M�

TABLE III
MARCH TESTS FOR MULTIPLE DEFECTS

Multiple defects

#EXP Ex. time[s] Test sequence

EXP1 510 �row��sol�{�(W0,W1,R1); �(W0,R0);}
EXP2 2050 �col��sol� {�(W0,W1,R1,W0,R0);}
EXP3 2062 �col��ckb� {�(W0,W1,R1); �(W0,W0); �(R0); �(W1); �(R1); �(R1);}

[6] K.-L. Cheng, C.-W. Wang, J.-N. Lee, Y.-F. Chou, C.-T. Huang, and
C.-W. Wu, “Fault simulation and test algorithm generation for random
access memories,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 21, no. 4, pp. 480–490, Apr. 2002.

[7] S. M. Al-Harbi and S. Gupta, “Generating complete and optimal march

tests for linked faults in memories,” in Proc. 21st IEEE VLSI Test
Symposium (VTS’03). Napa Valley (CA), USA: IEEE Computer
Society, Apr.27–May1, 2003, pp. 254–261.

[8] D. Niggemeyer and E. M. Rudnick, “Automatic generation of diagnostic
memory tests based on fault decomposition and output tracing,” IEEE

Fig. 3. Electrical simulation for DFR4 with T = 125�C and R = 64.0M⌦

References

1. Al-Ars, Z., van de Goor, A.: Static and dynamic behavior of memory cell array
spot defects in embedded drams. IEEE Trans. on Comp. 52(3), 293–309 (2003)

2. Al-Ars, Z., Hamdioui, S., Mueller, G., van de Goor, A.: Framework for fault analysis
and test generation in drams. In: Proceedings Design, Automation and Test in
Europe, 2005. pp. 1020–1021 (2005)

3. Benso, A., Bosio, A., Di Carlo, S., Di Natale, G., Prinetto, P.: March test generation
revealed. IEEE Trans. Comput. 57(12), 1704 –1713 (Dec 2008)

4. Cheng, K.L., Chih-Wea, W., Jih-Nung, L., Yung-Fa, C., Chih-Tsun, H., Cheng-
Wen, W.: Fame: a fault-pattern based memory failure analysis framework. In:
International Conference on Computer Aided Design, 2003. ICCAD-2003. pp. 595–
598 (9-13 Nov 2003)

5. Davis, L.: Handbook of genetic algorithms. Van Nostrand Reinhold (1991)
6. Dilillo, L., Girard, P., Pravossoudovitch, S., Virazel, A., Borri, S., Hage-Hassan,

M.: Resistive-open defects in embedded-sram core cells: analysis and march test
solution. In: IEEE 13th Asian Test Symposium ATS 2004. pp. 266–271 (November
15–17 2004)

7. Dilillo, L., Girard, P., Pravossoudovitch, S., Virazel, A., Hage-Hassan, M.: Data
retention fault in sram memories: analysis and detection procedures. In: 23rd IEEE
VLSI Test Symposium (VTS 2005). pp. 183–188 (May, 1–5 2005)

8. Hamdioui, S., Al-Ars, Z., van de Goor, A.: Opens and delay faults in cmos ram
address decoders. IEEE Trans. Comput. 55(12), 1630–1639 (Dec 2006)

9. Huang, R.F., Chou, Y.F., We, C.W.: Defect oriented fault analysis for sram. In:
Proceedings of the 12th Asian Test Symposium. pp. 1–6 (2003)

10. Niggemeyer, N., Redeker, M., Ottersted, J.: Integration of non-classical faults in
standard march tests. In: IEEE International Workshop on Memory Technology,
Design and Testing, MTDT’98. pp. 91–96 (Aug 24–26 1998)

