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Stochastic Analysis of Multiconductor Cables and
Interconnects

Igor S. Stievano, Senior Member, IEEE Paolo Manfredi, Student Member, IEEE,
Flavio G. Canavero, Fellow, IEEE,

Abstract—This paper provides an effective solution for the
simulation of cables and interconnects with the inclusion of the
effects of parameter uncertainties. The problem formulation is
based on the telegraphers equations with stochastic coefficients,
whose solution requires an expansion of the unknown parameters
in terms of orthogonal polynomials of random variables. The
proposed method offers accuracy and improved efficiency in com-
puting the parameter variability effects on system responses with
respect to the conventional Monte Carlo approach. The approach
is validated against results available in the literature, and applied
to the stochastic analysis of a commercial multiconductor flat
cable.

Index Terms—EMC, Transmission-lines, Stochastic analysis,
Tolerance analysis, Uncertainty, Circuit modeling, Circuit Simu-
lation.

I. INTRODUCTION

Nowadays, great attention is attributed to the availability
of simulation techniques allowing for the analysis of cables
or interconnects and including the effects of the variability of
geometrical or electrical parameters of the structures. During
the early design phase, the stochastic analysis of a circuit is
a powerful tool that is extremely useful for the assessment of
system performance and for setting realistic design margins.

Uncertainties like the position of wires within a cable bundle
would require a large set of simulations with different samples
of the random parameters to collect quantitative information
on the statistical behavior of the structure. This solution, that
is mainly based on possible enhancements of the well-known
Monte Carlo (MC) method ( e.g., see [1]), turns out to be
extremely inefficient, thus leading to large simulation times
and preventing us from its application to the analysis of
complex realistic structures.

Recently, an effective solution that overcomes the previous
limitations has been proposed. It is based on the so-called
Polynomial Chaos (PC) technique, that assumes a series of
orthogonal polynomials of random variables for the description
of the solution of a stochastic problem [2], [3], [4]1. This
technique has been successfully applied to several problems
in different domains, including the extension of the classical
circuit analysis tools, like the modified nodal analysis (MNA),
to the prediction of the stochastic behavior of circuits [6], [7],
[8]. However, so far, the application has been mainly focused
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1In this context, the word Chaos is used in the sense originally defined by
Wiener [5] as an approximation of a Gaussian random process by means of
Hermite polynomials.

on the gaussian variability of model parameters and limited to
dynamical circuits consisting only of lumped elements.

In this paper, the original contribution is twofold: (i)
the Polynomial Chaos theory is extended to handle long
and distributed interconnects described by multiconductor
transmission-line equations [9] and (ii) the unknown param-
eters are described by uniform random variables, that seem
to be the most suitable distributions for the description of the
geometrical uncertainties of cables. For the specific application
at hand, uncertainties like the position of wires in a bundle
are known in terms of bounds available from the official
documentation and datasheets.

The proposed approach has been validated against the
results published in [10], that provides a probabilistic model of
the crosstalk between two wires. It is worth noticing that the
results of [10] are limited to the specific case of two lossless
circular conductors over a ground plane and can be hardly
extended to more complex structures. Also, the development
in [10] is not fully analytical and its validity is limited to
electrically short lines, as pointed out by [11] that provides an
extension valid for the mean value and standard deviation of
crosstalk.

The approach of this paper is more general than previous
work and is well suited to account for multiconductor struc-
tures with arbitrary geometries. The feasibility and strength
of the advocated approach are verified by applying it to the
stochastic analysis of a commercial multiconductor flex-cable
used for the communication between PCB cards.

II. POLYNOMIAL CHAOS OVERVIEW

This Section provides a quick overview of the PC method,
that has been established as a reference tool for the solution
of stochastic equations. The idea underlying this technique is
the spectral expansion of a stochastic process in terms of a
truncated series of orthogonal polynomials. For a comprehen-
sive and formal discussion of PC theory, the reader is referred
to [2], [3], [12] and references therein.

In order to illustrate the main steps and characteristics
of the proposed method, we refer to a simple yet repre-
sentative example, consisting in a known nonlinear function
y = ln(1 + ξ/4) of a random variable ξ with predefined
( e.g., Gaussian) distribution. The functional dependence of
this example is inspired from the class of relationships that
can be found in the analytical computation of the per-unit-
length parameters of canonical transmission-line structures
(cfr. Eq. (14)). The mechanics of the method developed in
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this Section will be generalized in Sect. III to the treatment
of a differential equation with several stochastic parameters.

The PC expansion that approximates y in a mathematical
sense writes

y = ln(1 + ξ/4) ≈
P∑
k=0

αk · φk(ξ) (1)

where φk are suitable orthogonal polynomials expressed in
terms of the random variable ξ. The above expression is
defined by the class of the orthogonal basis, by the number of
terms P and by the expansion coefficients αk.

As an example, the first three orthogonal functions of
the expansion based on Gaussian variables are the Hermite
polynomials φ0 = 1, φ1 = ξ and φ2 = (ξ2 − 1). The
orthogonality property of Hermite polynomials is expressed
by

< φk, φj >=< φk, φk > δkj (2)

where δkj is the Kronecker delta and < ·, · > denotes the inner
product in the Hilbert space of the variable ξ with Gaussian
weighting function, i.e., < φk, φj >=

∫ +∞

−∞
φk(ξ)φj(ξ)W (ξ)dξ

W (ξ) = exp(−ξ2/2)/(
√

2π).

(3)

With the above definitions, the expansion coefficients are
computed via the projection of y onto the orthogonal compo-
nents φk as follows:

αk =< y(ξ), φk(ξ) > / < φk(ξ), φk(ξ) > . (4)

It is worth noticing that relation (1), that turns out to be
a known nonlinear function of the random vector ξ, can be
used to predict the probability density function (PDF) of y via
numerical simulation or analytical formulas [13].

In order to highlight the strengths of the proposed method,
Fig. 1 collects the results of the approximation of the random
variable y by means of Equation (1) with an increased number
of terms. This Figure shows the reference and the predicted
deterministic functions defining y and their corresponding
probability distributions (top panels) along with the Gaussian
distribution of the variable ξ (bottom panel). The accuracy of
the PC expansion with a small number of terms can be clearly
appreciated in the Figure. Also, this comparison confirms
the flexibility of the proposed technique in reproducing the
behavior of random variables with arbitrary distribution.

It is relevant to remark that the Hermite-based PC expansion
uniformly converges for any arbitrary random process with
finite second-order moments. However, the convergence rate
is optimal for Gaussian processes [14]. This can be simply un-
derstood by observing that the weighting function W (ξ) of (3)
is assumed to coincide with the probability density function of
the Gaussian random variables fξ(ξ) = exp(−ξ2/2)/(

√
2π).

For different statistics, the convergence rate may be substan-
tially slower and alternative orthogonal polynomials have been
proven to provide better results. In particular, when the system
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Fig. 1. Nonlinear function y = ln(1 + ξ/4) of a random variable of known
probability distribution (top left panel) and its corresponding probability
density function fy(y) (right panel). The probability function fξ(ξ) of the
Gaussian random variable ξ is reported in the bottom panel. The curves
marked “exact” are the reference curves; The other curves refer to the
prediction obtained with a first and a third order polynomial chaos expansion.

parameters are known in terms of bounded uncertainties with
uniform distribution, the most appropriate representation is
the one based on Legendre orthogonal polynomials [3]. In
this case, the random variable ξ in (1) corresponds to the
normalized uniform random variable with support [−1, 1] and
probability density function

fξ(ξ) =

{
1/2, |ξ| ≤ 1
0, |ξ| > 1.

(5)

According to what is done for the Gaussian variable, the
weighting function in (3) is substituted by the above uniform
distribution.

Table I summarizes the basic definitions and properties
of Legendre polynomials and extends the basic results of
the PC theory for one random variable to the case of an
arbitrary number of random variables. As an example, Table II
collects the first ten terms of the Legendre-based expansion
for two random variables and a third order expansion. Briefly
speaking, the orthogonality relations allow the construction of
the higher dimension polynomials as the product combination
of the polynomials in one variable. This holds true both for
Hermite- and Legendre-based expansions [15].

III. STOCHASTIC TRANSMISSION-LINE MODEL

This section discusses the modification to the transmission-
line equations, allowing to include the effects of the statistical
variation of the per-unit-length (p.u.l.) parameters via the PC
theory. For the sake of simplicity, the discussion is based
on the multiconductor transmission-line structure shown in
Fig. 2 that represents the typical problem of two wires whose
heights above ground and separation are not known exactly,
thus leading to a probabilistic definition of crosstalk between
the wires.

In the structure of Fig. 2, the height h and the separation d
are assumed to be defined by
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TABLE I
LEGENDRE POLYNOMIAL CHAOS DEFINITIONS AND PROPERTIES.

Object e.g., parameter or variable y that

depends on ξ = [ξ1, ξ2, . . . , ξn]
T

Expansion y(ξ) =

P∑
k=0

αk · φk(ξ)

Orthogonal

basis

Legendre polynomials {φk(ξ)}
( e.g., see Tab. II for the case n = 2)

Inner product < φk, φj >=
∫
<n φk(ξ)φj(ξ)W (ξ)dξ

Weighting

function
W (ξ) =


1

2n
, |ξj | ≤ 1

0, |ξj | > 1

, j = 1, . . . , n

Orthogonality < φk, φj >=< φk, φk > δkj

Expansion

Coefficients
αk =< y, φk > / < φk, φk >

Mean α0

TABLE II
LEGENDRE POLYNOMIALS FOR THE CASE OF TWO INDEPENDENT
RANDOM VARIABLES (n = 2, ξ = [ξ1, ξ2]T ) AND A THIRD ORDER

EXPANSION (p = 3).

index k order p k-th basis φk < φk, φk >

0 0 1 1

1 1 ξ1
1
3

2 1 ξ2
1
3

3 2 3
2
ξ21 − 1

2
1
5

4 2 ξ1ξ2
1
9

5 2 3
2
ξ22 − 1

2
1
5

6 3 5
2
ξ31 − 3

2
ξ1

1
7

7 3 3
2
ξ21ξ2 − 1

2
ξ2

1
15

8 3 3
2
ξ1ξ

2
2 − 1

2
ξ1

1
15

9 3 5
2
ξ32 − 3

2
ξ2

1
7

{
h = h̄+ (∆h/2)ξ1
d = d̄+ (∆d/2)ξ2

(6)

where ξ1 and ξ2 are independent normalized uniform random
variables, with h̄ and d̄ mean values and ∆h and ∆d supports.

A. Transmission line model

The electrical behavior in frequency-domain of the line of
Fig. 2 is described by the well-known telegraph equations,

r1 r2

d

h

Fig. 2. Cross-section of two coupled lines, whose height above ground and
wire separation are uncertain parameters.

d

dz

[
V(z, s)
I(z, s)

]
= −s

[
0 L
C 0

] [
V(z, s)
I(z, s)

]
(7)

where s is the Laplace variable, V = [V1(z, s), V2(z, s)]T and
I= [I1(z, s), I2(z, s)]T are vectors collecting the voltage and
current variables along the multiconductor line (z coordinate)
and C and L are the p.u.l. capacitance and inductance matrices
depending on the geometrical and material properties of the
structure [9]. It is important to remark that, for notational
convenience, a lossless assumption is done, leading to Equa-
tion (7) that includes the inductive and capacitive terms only.
However, the proposed method is general and holds for the
lossy case as well. Equation (7) and the forthcoming equations
can be suitably modified by including the conductance and
resistance matrices.

In order to account for the uncertainties affecting the
guiding structure, we must consider the p.u.l. matrices C
and L as random quantities, with entries depending on the
random vector ξ = [ξ1, ξ2]T . In turn, (7) becomes a stochastic
differential equation, leading to randomly-varying voltages and
currents along the line.

B. PC expansion of the p.u.l. parameters

For the current application, the random p.u.l. matrices in (7)
are represented through the Legendre expansion as follows,

C =

P∑
k=0

Ck · φk(ξ), L =

P∑
k=0

Lk · φk(ξ) (8)

where {Ck} and {Lk} are expansion coefficients matrices
with respect to the orthogonal components {φk} defined in
Tab. II. For a given number of random variables n and order
p of the expansion (that corresponds to the highest order of
the polynomials in (8) and generally lies within the range 2÷5
for practical applications), the total number of terms is

(P + 1) =
(n+ p)!

n!p!
(9)

that turns out to be equal to ten for the case n = 2 and p = 3.

C. Stochastic model

The randomness of the p.u.l parameters reflects into stochas-
tic values of the voltage and current unknowns and makes
us decide to use expansions similar to (8) for the electrical
variables. This yields a modified version of (7), whose second
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row is provided below in extended form for P = 2, as an
exemplification

d
dz (I0(z, s)φ0(ξ) + I1(z, s)φ1(ξ) + I2(z, s)φ2(ξ)) =

−s(C0φ0(ξ) + C1φ1(ξ) + C2φ2(ξ))(V0(z, s)φ0(ξ)+

+V1(z, s)φ1(ξ) + V2(z, s)φ2(ξ))
(10)

where the interpretation of the new variables is straightfor-
ward.

Projection of (10) on the first three Legendre polynomials
leads to the following set of equations, where the explicit de-
pendence on variables is dropped for notational convenience,

d
dz (I0<φ0, φj>+ I1<φ1, φj>+ I2<φ2, φj>)

= −s(C0<φ0φ0, φj>V0 + C0<φ0φ1, φj>V1+

+ . . .+ C2<φ2φ2, φj>V2), j = 0, 1, 2

(11)

The above equation, along with the companion relation
arising from the first row of (7), can be further simplified by
using the orthogonality relations of Tab. I and Tab. II for the
computation of the inner products <φk, φj> and <φkφl, φj>,
leading to the following augmented system, where the random
variables collected in vector ξ do not appear, due to the
integration process:

d

dz

[
Ṽ(z, s)

Ĩ(z, s)

]
= −s

[
0 L̃

C̃ 0

] [
Ṽ(z, s)

Ĩ(z, s)

]
(12)

In the above equation, the new vectors Ṽ = [V0,V1,V2]T

and Ĩ= [I0, I1, I2]T collect the coefficients of the PC expansion
of the unknown variables.

It is worth noticing that Equation (12) belongs to the same
class of (7) and plays the role of the set of equations of an
extended multiconductor transmission line, whose number of
conductors is (P + 1) times larger than in the original line.
Despite the increased system size, for limited values of P
(as typically occurs in practice), the additional overhead in
handling the augmented equations is much less than the time
required to run a large number of MC simulations. Additional
results are collected in Table III of Sec. V, summarizing
the quantitative information on the speed-up introduced by
the proposed approach for the stochastic simulation of a
commercial cable.

The extension of the proposed technique to different multi-
conductor structures that possibly include losses and to a larger
number of random variables is straightforward.

D. Boundary conditions and simulation

For the deterministic case, the simulation of an interconnect
like the one of Fig. 3 amounts to combining the port electrical
relations of the two terminal elements defining the source and
the load with the transmission line equation, and solving the
system. This is a standard procedure as illustrated for example
in [9]. The port equations of the terminations of Fig. 3 in the
Laplace domain become

{
Va(s) = E(s)− ZS(s)Ia(s)

Vb(s) = ZL(s)Ib(s)
(13)

where ZS = diag([ZS1, ZS2]), ZL = diag[ZL1, ZL2] and
E = [E1, 0]T . Also, in the above equation, the port voltages
and currents need to match the solutions of the differential
Equation (7) at line ends ( e.g., Va(s) = V(z=0, s), Vb(s) =
V(z=L, s)).

Similarly, when the problem becomes stochastic, the aug-
mented transmission-line Equation (12) is used in place of
(7) together with the projection of the characteristics of the
source and the load elements (13) on the first P Legendre
polynomials. It is worth noticing that in this specific example,
no variability is included in the terminations and thus the
augmented characteristics of the source and load turn out to
have a diagonal structure.

Once the unknown voltages and currents are computed, the
quantitative information on the spreading of circuit responses
can be readily obtained from the analytical expression of the
unknowns. As an example, the frequency-domain solution of
the magnitude of voltage Va1 with P = 2, leads to |Va1(jω)| =
|Va10(jω)φ0(ξ) + Va11(jω)φ1(ξ) + Va12(jω)φ2(ξ)|. As al-
ready outlined in the introduction, the above relation turns
out to be a known nonlinear function of the random vector ξ
that can be used to compute the PDF of |Va1(jω)| via standard
techniques as numerical simulation or analytical formulae [13].

ZS1

E1(s) ZL1

ZS2 ZL2

p.u.l. parameters
L, C

b z

L
Ia1 Ib1

Ia2 Ib2Va1 Vb1

Va2 Vb2

Fig. 3. Test setup considered to demonstrate the proposed approach.

r1

r2

S
x1

h1 h2

x2

Fig. 4. Cross-section of the coupled lines setup used for validation. The
heights above ground and separation of wires are selected as uncertain
parameters.

IV. VALIDATION

This Section summarizes the validation of the proposed
technique by reproducing the results published in [10], where
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the frequency-domain analysis of the test setup of Fig. 3 with
the cross-section geometry of Fig. 4 is considered.

This case is an extension of the illustrative example of
Sect. III, where the location of each wire is defined by a pair
of independent random variables (the wire heights h1,2 above
the ground plane and the horizontal distances x1,2 from a
conventional origin), thus leading to a problem that involves a
total of four uniformly-distributed random variables. However,
the expressions of the entries of the p.u.l. inductance matrix
L ([9]): 

lii =
µ0

2π
ln(2hi/ri) i = 1, 2

l12 =
µ0

4π
ln(1 + 4

h1h2
S2 ) (= l21)

(14)

suggest that only three random variables are needed to com-
pute the actual p.u.l. matrix, the third variable being the
separation S between the wires, given by

S =
√

(h1 − h2)2 + (x1 − x2)2. (15)

The dependence of S from the other random variables and
the additional constraint of a minimal separation between
wires (2 mm) in order to avoid overlapping, imply that S is
not uniformly distributed, but this fact does not jeopardize the
validity of PC technique, as stated in Sect. II. The previous
consideration applies also to the p.u.l. capacitance matrix,
which is determined by C = µ0ε0L

−1, since no dielectric
coating on the wires is assumed.

The computation of this validation case was performed
for the following values: L = 10 m, r1 = r2 = 0.4 mm,
ZS1 = 0 Ω, ZS2 = (1 + j0) Ω, ZL1,2 = (10 + j0) Ω and
f = 10 kHz. The wire heights and the horizontal distances
were defined as uniform variables in the range [0.1, 2] cm and
[0, 2] cm, respectively. The definitions and properties of Tab. I
are directly applicable to this case, whereas the entire set of
basis functions can be readily obtained by an extension of
Tab. II to the case of three random variables.

Figure 5 shows a comparison between the probability den-
sity function of the crosstalk |Va2/E1| reproduced from [10],
and the results computed via the advocated PC method with a
fifth order expansion; the results of the MC procedure with a
large number of simulations (40, 000 in this case) are also
shown. The comparison of Fig. 5 validates the advocated
PC method by demonstrating that the results agree with the
general (although computationally expensive) MC approach
and with analytical/numerical results published in [10] (al-
though limited to the specific two-wire case with random
cross-section). In addition, Fig. 5 confirms the potential of
the proposed PC method to be efficiently used in practical
applications dealing with parameters characterized by large
variability with non-uniform statistical distributions.

V. APPLICATION

As a proof of the capabilities of the proposed technique, the
analysis of the test structure depicted in Fig. 6 is presented.
The structure represents a .050” High Flex Life Cable in a
standard 9-wire configuration. Figure 6 collects both the key

0 0.5 1 1.5 2 2.5 3 3.5
0

200

400

600

800

|Va2/E1|

PDF @ f = 10 kHz

 

 

[10]
MC
PC, P = 5

Fig. 5. Probability distribution of |Va2/E1| for the test structure described
in Fig.s 3 and 4 (see text for details).

parameters defining the geometry of the wires as well as the
information on the two-terminal circuit elements connected at
the near-end of the cable. The cable length is 80 cm and the far-
end terminations are defined by identical RC parallel elements
(R = 10 kΩ, C = 10 pF) connecting the wires #1,. . . ,#8 to the
reference wire #0.

In this example, the goal is to estimate the response vari-
ability of the near-end crosstalk between two adjacent wires
in a bundle of many wires. As highlighted in Fig. 6, line #4 is
energized by the voltage source E4 and the other lines are quiet
and kept in the low state via the RS resistors. The variability
is introduced by the relative permittivity εr of the coating
and by the separations d34 and d45 between the active and its
immediately adjacent lines. These quantities are assumed to
behave as independent uniform random variables as follows:
εr ∈ [2.8, 4] and d34, d45 ∈ [48, 52] mils. The adopted values
of variability correspond to the tolerance limits available from
the official datasheet of the cable. The other separations are
considered to be equal to the nominal value of 50 mils,
since their possible variations have negligible effects on the
crosstalk. For this comparison a third order PC expansion of
the p.u.l. parameters is computed via numerical integration
based on the method described in [9].

dc

dw

d34 d45

RS

RS

E4

RS RS

0 3 4 5 8

V3

V4

Fig. 6. Application test structure: 80 cm long commercial flex cable
(.050” High Flex Life Cable, 28 AWG Standard, PVC, 9-wire configuration).
RS = 50 Ω, dw = 15 mils, dc = 35 mils. The nominal value of the distance
between adjacent wires ( e.g., d34 and d45) is 50 mils.

Figure 7 shows a comparison of the Bode plot (magnitude)
of the transfer function H(jω) = V3(jω)/E4 defining the
near-end crosstalk computed via the advocated PC method
and determined by means of the MC procedure. The solid
black thin curves of Fig. 7 represent the ±3σ interval of the
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transfer function, where σ indicates the standard deviation,
determined from the results of the proposed technique. For
comparison, the deterministic response with nominal values of
all parameters is reported in Fig. 7 as a solid black thick line;
also, a limited set of MC simulations (100, out of the 40,000
runs, in order not to clutter the figure) are plotted as gray
lines. Clearly, the thin curves of Fig. 7 provide a qualitative
information of the spread of responses due to parameters
uncertainty. A better quantitative prediction can be appreciated
in Fig. 8, comparing the PDF of |H(jω)| computed for
different frequencies with the distribution obtained via the
analytical PC expansion. The frequencies selected for this
comparison correspond to the dashed lines shown in Fig. 7.
The good agreement between the actual and the predicted
PDFs and, in particular, the accuracy in reproducing the tails
and the large variability of non-uniform shapes of the reference
distributions, confirm the potential of the proposed method.
For this example, it is also clear that a PC expansion with
P = 3 is already accurate enough to capture the dominant
statistical information of the system response.

10
2

10
3

−100

−50

0

m
ag
n
it
u
d
e,

d
B

f , MHz (log scale)

Fig. 7. Bode plots (magnitude) of the near-end crosstalk transfer function
H(jω) of the example test case (see text for details). Solid black thick line:
deterministic response; solid black thin lines: 3σ tolerance interval of the third
order polynomial chaos expansion; gray lines: a sample of responses obtained
by means of the MC method (limited to 100 curves, for graph readability).
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Fig. 8. Probability density function of |H(jω)| for the example of this study,
computed at different frequencies. Of the two distributions, the one marked
MC refers to 40000 MC simulations, and the one marked PC refers to the
response obtained via third order polynomial chaos expansion.

Finally, Tab. III collects the main figures related to the
efficiency of the proposed PC method vs. conventional MC.
Table data indicate that the PC computation of the curves of
Fig. 7 is faster by almost two orders of magnitude with respect
to MC computation. This holds even if for fairness we consider
the computational overhead required by the solution of the
augmented set of TL Equations (12). The above comparison
confirms the strength of the proposed method, that allows to
generate accurate predictions of the statistical behavior of a
realistic interconnect with a great efficiency improvement.

TABLE III
CPU TIME REQUIRED BY THE SIMULATION OF THE SETUP OF FIG. 6 (FOR

A SINGLE FREQUENCY SAMPLE) BY THE MC AND THE PROPOSED
PC-BASED METHODS.

Method Order p Overhead Simulation time

MC - 0 sec 3 min 10 sec

PC 3 2 sec 1 sec

VI. CONCLUSIONS

This paper derives an enhanced multiconductor
transmission-line equation allowing to include parameter
uncertainties into interconnect structures. The proposed
method, that enables to compute the quantitative information
on the transmission-line response sensitivity to parameters
variability, is based on the expansion of the voltage and
current variables into a sum of a limited number of
orthogonal polynomials. The advocated technique, while
providing accurate results, turns out to be more efficient than
conventional solutions like Monte Carlo, also in presence
of several random variables. The method has been validated
against reference results available in the literature and has
been applied to the stochastic analysis of a commercial
multiconductor flex cable with three uncertain parameters
described by independent Uniform random variables.
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