
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The capacitated transshipment location problem under uncertainty: a computational study / Baldi, MAURO MARIA;
Ghirardi, Marco; Perboli, Guido; Tadei, Roberto. - In: PROCEDIA: SOCIAL & BEHAVIORAL SCIENCES. - ISSN 1877-
0428. - 39:(2012), pp. 424-436. (Intervento presentato al convegno 7th International Conference on City Logistics
tenutosi a Mallorca, Spain nel June 7-9, 2011) [10.1016/j.sbspro.2012.03.119].

Original

The capacitated transshipment location problem under uncertainty: a computational study

Publisher:

Published
DOI:10.1016/j.sbspro.2012.03.119

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2381913 since: 2016-02-19T13:40:53Z

Elsevier



The Capacitated Transshipment Location Problem under Uncertainty: a computational study 
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Roberto Tadei, Politecnico di Torino, Italy 

ABSTRACT 

We consider the stochastic capacitated transshipment problem for freight transportation where 

an optimal location of the transshipment facilities, which minimizes the total cost, must be 

found. The total cost is given by the sum of the total fixed cost plus the expected minimum 

total flow cost, when the throughput costs of the facilities are random variables with unknown 

probability distribution. By applying the asymptotic approximation method derived from the 

Extreme Value Theory, a deterministic non-linear model, which belongs to a wide class of 

Entropy maximizing models, is then obtained. The computational results show a very good 

performance of this deterministic model when compared to the stochastic one. 
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INTRODUCTION 

Multi-Echelon Distribution Systems are quite common for distributing freight in supply chains 

and complex transportation systems. In these systems, the freight is not directly delivered from 

origins to destinations, but it is consolidated into intermediate depots. 

Recently Multi-Echelon Distribution Systems have been investigated in City Logistics for their 

flexibility in freight delivery and the opportunity to integrate environmental-friendly vehicles 

into urban logistics systems (Crainic et al. 2009; Perboli et al. 2008). One of the main issues 

associated to Multi-Echelon Distribution Systems is the location of intermediate depots, which 

highly affects the total transportation cost. While the transportation cost can be easily 

calculated for the links outside the urban area, for urban links this task becomes quite difficult. 

In fact, the transportation cost between intermediate depots and customers, which are usually 

located in the urban area, highly changes day-by-day and is affected by several parameters, 

including the hour of the day. 

Thus, whenever medium term decisions must be taken (e.g. the location of intermediate depots, 

which is a decision that must be valid for several years), the transportation cost between 

intermediate depots and customers cannot be considered deterministic, but intrinsically 

stochastic. Then the transportation cost becomes a stochastic variable, whose probability 

distribution is unknown. In fact, any assumption on the shape of this probability distribution 

would not be realistic, being affected by many and incommensurable parameters. 

In this paper we consider the Capacitated Transshipment Location Problem under Uncertainty 

(CTLPU), a variant of the classical transshipment problem where the costs between 

intermediate depots and customers are stochastic with unknown probability distribution. More 

in details, given a set of origins with given supply, a set of destinations with given demand, a 

set of potential depot locations with deterministic fixed costs of location, upper capacity 

constraints for the depots, and random generalized transportation costs from origins to 

destinations through the depots, the CTLPU consists in finding a depot location which 

minimizes the total cost, given by the sum of the deterministic total fixed cost plus the 

expected minimum total flow cost, subject to supply, demand, and upper depot capacity 

constraints. Each generalized transportation cost is a random variable given by the sum of a 

deterministic transportation cost from an origin to a destination through an intermediate depot 

plus a random term, with unknown probability distribution, which represents the throughput 

cost of the intermediate depot. 

In the huge literature on the Transshipment Facility Location Problem there are  just a few 

papers where  stochasticity is considered, but this stochasticity mainly concerns the arc 

capacity or the customer demand, while random costs are generally ignored. Glockner and 

Nemhauser (2000) consider a dynamic network flow problem where arc capacities are random 

variables and derive a multistage stochastic linear program. In Zhou and Liu (2003) a  

capacitated location-allocation problem with stochastic demands is originally formulated as 

expected value model, chance-constrained programming and dependent-chance programming 

according to different criteria. In Klose and Drexl (2005) the authors present a review of some 

contributions to the current state-of-the-art on facility location problems. Also probabilistic 

models are presented where  some of the input data of the location models are subject to 

uncertainty. A more recent review covering stochastic and some non-linear facility location 

problems is due to Snyder (2006). In Zhao and Sen (2006) the authors formulate the multi-

location transshipment as a two-stage stochastic  program with recourse, where the demand is 

stochastic. In Shakeel and Gupta (2008) the authors analyze  a stochastic  fractional 

transshipment problem with uncertain demands and prohibited routes, which is solved by 

reformulating the stochastic transshipment problem into an equivalent deterministic 
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transportation problem. In Unnikrishnan et al. (2009) a two-stage linear program with recourse 

formulation is developed to determine the optimal storage capacity to be installed on 

transshipment nodes by shippers in a dynamic shipper carrier network under stochastic demand. 

In the first stage, the shipper decides the optimal capacity to be installed on transshipment 

nodes, while in the second stage, the shipper chooses a routing strategy based on the realized 

demand. 

Just a few papers concerning location problems with stochastic costs are available in literature. 

Among them, Snyder et al. (2007) consider a scenario-based stochastic version of a joint 

location-inventory model that minimizes the expected cost of locating depots, allowing costs, 

lead times, demand, and some other parameters to be stochastic. In Tadei et al. (2009c) the 

authors consider a stochastic p-median problem where the cost for using a depot is a random 

variable, with unknown probability distribution. In Tadei et al. (2009a) the CTLPU, where 

only upper capacity constraints for the depots are considered, is introduced. The problem is 

modeled as a stochastic program, and a deterministic approximation of it, named CTLPD, is 

given. Although the authors showed that CTLPD is quite satisfactory when the random costs 

follow a Gumbel distribution, no tests have been made with other probability distributions.  

In this paper, we present a deep analysis of the impact of different probability distributions on 

the optimum of CTLPU, as well as on the number of depots located. In particular, we analyze 

the performance of the deterministic approximation CTLPD by comparing its results with 

those obtained from CTLPU under three different probability distributions: Gumbel, Laplace, 

and Uniform.  

THE STOCHASTIC PROBLEM AND ITS DETERMINISTIC APPROXIMATION 

Let be: 

 : set of origins

 : set of destinations

 : set of potential transshipment locations

 kL : set of throughput operation scenarios at transshipment facility Kk

 iP : supply at origin Ii

 jQ : demand at destination Jj

 kU : throughput capacity of transshipment facility Kk

 kf : fixed cost of locating a transshipment facility Kk

 ky : binary variable which takes value 1 if transshipment facility Kk  is located, 0 

otherwise 

 k

ijc : unit transportation cost from origin Ii  to destination Jj  through 

transshipment facility Kk

 kl : unit throughput cost of transshipment facility Kk  in throughput operation

scenario kLl

 k

ijs : flow from origin Ii  to destination Jj  through transshipment facility Kk . 
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Let us assume 

i. the system is balanced, i.e. TQP
Jj

j

Ii

i 


ii. the unit throughput costs kl are independent and identically distributed (i.i.d.) random

variables with a common and unknown probability distribution

   xFxkl Pr (1) 

Assumption i. is a standard one and it is straightforward to balance the system if necessary. 

Assumption ii. is justified by the fact that the unit throughput costs usually vary among 

transshipment facilities and inside each of them in a random way and are quite difficult to be 

measured. Thus they become random variables with unknown probability distribution. 

Moreover, these random variables are independent each other and there is no reason to 

consider different shapes for their unknown probability distributions (Leonardi 1983; Leonardi 

and Tadei 1984). 

Let  kl

ijr  be the stochastic generalized unit transportation cost from origin i  to destination j

through transshipment facility k  in throughput operation scenario l  given by 

  kkl

k

ij

kl

ij LlKkJjIicr  ,,,,     (2) 

with unknown probability distribution 

        k

ij

k

ijklkl

k

ij

kl

ij cxFcxxcxr   PrPrPr     (3)    

Let us define 

Kkkl
Ll

k

k




,min     (4) 

with unknown probability distribution 

   xxH k  Pr     (5) 

As kklk Llxx  ,  and kl are independent, using (1) one gets

           k

kk

n

LlLl

klk xFxFxxxH 


  PrPr     (6) 

where kk Ln   is the number of the different throughput operation scenarios at the 

transshipment facility k . 
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The stochastic generalized unit transportation cost from origin i  to destination j  through 

transshipment facility k  is the minimum among the costs for the different throughput 

operation scenarios at facility k  and becomes 

    KkJjIiccrr k
k

ijkl
Ll

k

ij

kl

ij
Ll

k

ij
kk




,,,minmin  (7) 

The CTLPU may be formulated as follows 

  







 

   Ii Jj Kk

k

ij

k

ij
s

Kk

kk
y

srEyf  minmin  (8) 

subject to 

IiPs
Jj

i

Kk

k

ij 
 

,           (9) 

JjQs
Ii

j

Kk

k

ij 
 

,   (10) 

KkyUs
Ii

kk

Jj

k

ij 
 

,   (11) 

KkJjIisk

ij  ,,,0  (12) 

  Kkyk  ,1  0,   (13) 

where E  denotes the expected value with respect to  ; the objective function (8) expresses 

the minimization of the total cost given by the sum of the minimum total fixed cost plus the 

expected minimum total flow cost; constraints (9) and (10) ensure that supply at each origin i  

and demand at each destination j  are satisfied; constraints (11) ensure the capacity restriction 

at each transshipment facility k ; (12) are the non-negativity constraints, and (13) are the 

integrality constraints. 

It is shown (see Tadei et al. 2009a) that, by applying the asymptotic approximation method 

derived from the Extreme Value Theory (Galambos 1978), the deterministic approximation of 

the Capacitated Transshipment Location Problem under Uncertainty, named CTLPD, becomes 

















 

     Ii Jj Kk

k

ij

k

ij

Ii Jj Kk

k

ij

k

ij
s

Kk

kk
y

csssyf


1
ln

1
maxmin (14) 

subject to 

IiPs
Jj

i

Kk

k

ij 
 

,   (15) 

JjQs
Ii

j

Kk

k

ij 
 

,   (16) 

KkyUs
Ii

kk

Jj

k

ij 
 

, (17) 

KkJjIisk

ij  ,,,0   (18) 

  Kkyk  ,1  0,   (19) 
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which is a mixed-integer deterministic non-linear model in the unknowns ky  and k

ijs . 

We observe that the non-linearity affects only the objective function through the Entropy term 


  


Ii Jj Kk

k

ij

k

ij ss ln
1


, while all the constraints are linear. 

It is interesting to note that when   problem (14)-(19) turns into the classical 

Capacitated Transshipment Location Problem (CTLP). In fact, the Entropy term in the 

objective function disappears and only the linear classical total transportation cost does remain. 

This is also coherent with the well-known property of the multinomial Logit model which 

states that this model collapses into a classical minimum transportation cost choice model as 

 (Domencich and McFadden, 1975).

We also observe that, provided 0ln
1

max  
  Ii Jj Kk

k

ij

k

ij
s

ss


, the optimum of the classical 

Capacitated Transshipment Location Problem is a Lower Bound for the Capacitated 

Transshipment Location Problem under Uncertainty. 

COMPUTATIONAL RESULTS 

In this section we compare the Capacitated Transshipment Location Problem under 

Uncertainty CTLPU, given by (8)-(13), with its deterministic approximation CTLPD, given by 

(14)-(19). 

This section is organized as follows. As no instance for CTLPU is available in literature, new 

instances are generated and introduced next (see subsection Instance generation). The setting of 

a commercial stochastic solver to solve CTLPU as well as the identification of an appropriate 

non-linear solver to solve CTLPD are given in subsection “Stochastic solver setting and non-

linear solver identification”. A detailed comparison between CTLPU under different 

probability distributions and its deterministic approximation CTLPD is discussed in subsection 

“Comparison between CTLPU under different probability distributions and CTLPD”. Finally, 

in order to show the effect of the Entropy term in CTLPD, in subsection “Comparison between 

CTLPD and the classical CTLP” we compare CTLPD with the classical CTLP, and we 

evaluate the speed of convergence of CTLPD to the classical CTLP, when the value of 

parameter   does increase. 

Instance generation 

We consider a subset of the test classes given in Keskin and Uster (2007), where the authors 

generate 4 classes of 20 instances each. Here, due to the much higher computational effort 

required to solve the stochastic and the non-linear problems, we consider only the first class 

from Keskin and Uster (2007) and generate 10 instances instead of 20, using uniform 

distribution with corresponding ranges according to the following criteria: 

 number of depots I is drawn from  3  ,2U

 number of customers J is drawn from  40  ,30U
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 number of possible locations for the transshipments K is drawn from  20  ,10U

 supply iP  is drawn from  1000  ,900U

 demand jQ  is drawn from 








Ii

i JPU   ,1 . If necessary, the demand of the last 

customer is adjusted so that the total demand is equal to the total supply 

 capacity kU  is drawn from  avUavUU 3  ,5.0 , where 



Ii

i KPavU

 unit transportation cost k

ijc  is drawn from  10  ,1U

 fixed cost  JIUTCf kk   , where TC  is the total unit transportation cost over all the 

possible arcs 

 random cost k is generated using three different probability distributions, Gumbel,

Laplace, and Uniform, as follows (the cumulative distribution functions are

considered):

o Gumbel:  xe exp  (with mode equal to 0). The parameter   is set to 0.1, 

which ensures to have a mean of the Gumbel distribution ( 7.5 ) quite close to

the mean of the distribution used to obtain the deterministic unit costs k

ijc . In 

this way, the random costs k have the same order of magnitude of the

deterministic unit costs k

ijc

o Laplace:



















 









 







x
b

x

x
b

x

 ifexp5.01

 ifexp5.0

with mean equal to  . The parameters of the distribution are set such that the 

mean of the Laplace distribution is the same of the Gumbel one 

o Uniform:

















bx

bxa
ab

ax
ax

 if1

 if

 if0

 

o The costs are generated in the range    10  1,  , ba , such that the mean of the

Uniform distribution is quite close to the Gumbel one.

The random unit generalized transportation costs k

ijr  in (8) are computed by (7). If some of 

them become negative, they are set to 1.  

Stochastic solver setting and non-linear solver identification 

As stated above, we compare CTLPU  with its deterministic approximation CTLPD. 

The solution of CTLPU is generated by implementing the stochastic model in XPress-SP, i.e. 

the stochastic programming module provided by XPress (see Dormer et al. 2005). 
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The tests are performed by generating an appropriate number of scenarios for each instance. In 

order to tune this number, we start with 50 scenarios and increase them by step 50. Then we 

solve each instance 10 times, reinitializing every time the pseudo-random generator of the 

stochastic components with a different seed, and compute the standard deviation and the mean 

of the optima over the 10 runs. The appropriate number of scenarios is then fixed to the 

smallest value ensuring for each instance a maximum ratio between the standard deviation and 

the mean less than 0.5% (see Kaut and Wallace 2007). According to our tests, this value is 

fixed to 100 scenarios, which show a maximum ratio between standard deviation and mean 

equal to 0.17%. 

In order to solve the deterministic approximation CTLPD we consider the most efficient and 

effective state-of-the-art non-linear solvers: BonMIN, MinLP, KNITRO, LINGO and 

FilMINT. In order to have uniformity in input, output and computational results, we use the 

NEOS infrastructure (Czyzyk et al. 1998) to make the tests, giving to the solvers a time limit of 

1000 seconds per instance. 

According to our results, BonMIN and KNITRO outperform the other solvers, obtaining the 

best solutions on the overall set of instances. By comparing each other these two solvers, 

BonMIN is 10 times faster than KNITRO, which also shows some memory problems when 

running large instances (with more than 50000 arcs). For these reasons, we select BonMIN 

(release 1.1) (Bonami et al. 2008; Bonami and Lee 2009) to solve CTLPD within a time limit 

of 1000 seconds. The parameters are set to their default values, which show a satisfactory 

behavior both in accuracy and computational effort. 

Comparison between CTLPU under different probability distributions and CTLPD 

In the following we analyze the performance of the deterministic approximation CTLPD, by 

comparing its results with those obtained from CTLPU under the three different probability 

distributions. All the tests are done on a Pentium Q6600 2.4GHz Machine with 2 Gb of RAM. 

The parameter   in the CTLPD objective function (14) is set to 0.1 as the corresponding   

value in the Gumbel distribution for CTLPU. 

A comparison between the optimum of the deterministic approximation CTLPD and that of the 

stochastic model CTLPU under the three different probability distributions is presented in 

Table 1. 

The table columns have the following meaning: 

 Column 1: instance number

 Column 2: optimum of CTLPD

 Columns 3-5: optimum of CTLPU using Gumbel, Laplace, and Uniform distributions,

respectively

 Columns 6-8: percentage gap between the stochastic optimum using Gumbel, Laplace,

and Uniform distributions, respectively, and the deterministic approximation one. The

gap is computed as   SDS 100 , where S  is the optimum of CTLPU and D  the

optimum of CTLPD.

Table 1 reports the results for each instance, as well as their mean in the last row. 

The optima of the stochastic problem and its deterministic approximation are quite close 

together, with a mean gap around 2%. The gap is lower for the Gumbel and Laplace 

distributions than the Uniform one, which is coherent with the assumption done for the 

probability distribution used to derive CTLPD (i.e. it acts as an exponential function in its left 
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tail). About the negative value for some gap values present in Table 1, we remind that when the 

random cost k is generated and added to the deterministic unit cost in (7), if the resulting k

ijr

is negative it is set to 1. This implies a slight change in the distribution functions, producing 

such negative gap values. 

The results of Table 1, even if satisfactory, are not sufficient to qualify the performance of 

CTLPD. In fact, besides the optimum, another important comparison concerns the optimal 

solution of the two models. This is considered in Tables 2 and 3. 

Table 1 - Comparison between the optimum of the deterministic approximation CTLPD and 

that of the stochastic model CTLPU under the three different probability distributions 

Table 2 compares the optimal solutions of CTLPD with those of CTLPU, in terms of open 

facilities. The table columns have the following meaning: 

 Column 1: instance number

 Columns 2-5: number of open facilities in CTLPD and CTLPU under Gumbel, Laplace,

and Uniform distributions, respectively

 Columns 6, 8, 10: number of open facilities which are equal in the optimal solution of

CTLPD and CTLPU under the three different distributions

 Columns 7, 9, 11: percentage of open facilities which are equal in the optimal solution

of CTLPD and CTLPU under the three different distributions.
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Table 2 - Comparison of the open facilities in the optimal solutions of the deterministic 

approximation CTLPD and the stochastic model CTLPU under different probability 

distributions 

Table 3 reports the results for each instance, as well as their mean in the last row. 

The main conclusion we can draw from these results is that the optimal solution of the 

stochastic model under the three different distributions is quite similar to that of its 

deterministic approximation, since on average 75% of the open facilities are in common. Let us 

consider instance 1 with Laplace and Uniform distributions, for which the open facilities in the 

optimal solution are exactly the same of those of the deterministic approximation. 

Nevertheless, the gap between the two optima is 2.18% and 6.05% (see Table 1), respectively. 

We should then conclude that this gap is due to a different flow distribution in the two optimal 

solutions. 

In order to verify this conclusion we consider the optimum of CTLPU when the open facilities 

are those of the CTLPD optimal solution and we compare this optimum with the original 

CTLPU optimum in Table 3. 

The table columns have the following meaning: 

 Column 1: instance number

 Column 2-4: percentage gap between the stochastic optimum when the facilities are

compulsory opened as in the CTLPD optimal solution and the stochastic optimum

when CTLPU can decide which facilities must be opened.

Table 3 - Performance of the optimal solution of the deterministic approximation CTLPD when 

used as optimal solution of the stochastic model CTLPU 

According to these results, the gap between the optimum of CTLPU obtained with given open 

facilities and the original one is on average less than 0.5 for all the three distributions. This 

implies that the optimal decisions taken by CTLPD and CTLPU in terms of open facilities are 

equivalent (i.e. they generate almost the same optimum) and that the gap between the CTLPD 

optimum and the CTLPU one when the open facilities are different is mainly due to a different 

flow distribution in the two optimal solutions. 

Comparison between CTLPD and the classical CTLP 

The discussion of the computational results ends by showing the behavior of the Entropy term 

of CTLPD in (14).  
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In Table 4 the contribution given by the Entropy term to the optimum of CTLPD is presented. 

The table compares the optimum of CTLPD with that of the classical CTLP, which differs 

from the former by the Entropy term. 

The table columns have the following meaning: 

 Column 1: instance number

 Column 2: percentage gap between the optimum of CTLPD and that of the classical

CTLP

 Column 3: number of open facilities which are equal in the two optimal solutions

 Column 4: percentage of open facilities which are equal in the two optimal solutions.

Table 4 reports the results for each instance, as well as their mean in the last row. 

According to the results, even if a large part of the open facilities are common to the two 

optimal solutions, the gap between the two optima is relevant, showing an important role 

played by the Entropy term in CTLPD. 

We remind that when   the coefficient of the Entropy term tends to 0 and CTLPD turns 

into the classical CTLP. 

The last test we perform is devoted to show the speed of convergence of CTLPD to the 

classical CTLP, while the value of parameter   increases. Figure 1 reports the mean gap 

between the optimum of CTLPD and that of the classical CTLP while   varies. 

According to Figure 1, the gap is almost zero for   equal to 5, so a very fast convergence is 

guaranteed. 

Table 4 - Contribution of the Entropy term in CTLPD 

11



City Logistics VII 

Figure 1 - Convergence of the deterministic approximation CTLPD to the classical CTLP as 

  

CONCLUSION 

In this paper the Capacitated Transshipment Location Problem under Uncertainty CTLPU, 

which is a stochastic program, has been approximated to an equivalent non-linear deterministic 

Capacitated Transshipment Location Problem CTLPD, which belongs to a wide class of 

Entropy maximizing models. The performance of CTLPD is pretty good. In fact, the mean gap 

between the two optima is around 2%. 

The gap is smaller for the Gumbel and Laplace distributions (2.25% and 1.43%, respectively) 

than the Uniform one (2.93%) This is coherent with the assumption done for the probability 

distribution used to derive CTLPD, i.e. the costs act as an exponential function in their left tail. 

Also when we consider the number of located depots which are in common between the 

solutions of the stochastic model and the deterministic one, the results are satisfactory. In fact 

the behavior of the three probability distributions is quite similar to that of the deterministic 

approximation, since on average 75% of open depots are in common. Moreover, additional 

tests prove that, even when the depots opened by CTLPU and CTLPD are exactly the same, 

there is still a small gap between the costs due to some different freight flows. 

The role of the Entropy term in CTLPD, weighted by the non-negative parameter   set to 0.1, 

is particularly relevant.  We observe that this role is highly affected by the value of the 

parameter  . In fact, when this parameter  increases, the contribution of the Entropy term to 

the optimum rapidly  decreases and for 5  CTLPD collapses into the classical linear 

Capacitated Transshipment Location Problem. Both CTLPU and CTLPD have been exactly 

solved for small size instances (up to 3 origins, 20 potential transshipment locations and 40 

destinations) in 1000 seconds by means of existing solvers. Larger instances will likely deserve 

some heuristic approaches (Tadei 2009b). 
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