
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Tunnel-aware Language for Network Packet Filtering / Ciminiera, Luigi; Leogrande, Marco; Liu, Ju; Morandi, Olivier;
Risso, FULVIO GIOVANNI OTTAVIO. - STAMPA. - (2010), pp. 1-6. (Intervento presentato al convegno 2010 IEEE
Global Telecommunications Conference (GLOBECOM 2010) tenutosi a Miami, FLO (USA) nel December 2010)
[10.1109/GLOCOM.2010.5683161].

Original

A Tunnel-aware Language for Network Packet Filtering

Publisher:

Published
DOI:10.1109/GLOCOM.2010.5683161

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2381239 since:

IEEE

A Tunnel-aware Language for Network Packet
Filtering

Luigi Ciminiera, Marco Leogrande, Ju Liu, Fulvio Risso
Dipartimento di Automatica e Informatica

Politecnico di Torino
10129 Torino, Italy

Email: $first.$last@polito.it

Olivier Morandi
Laser S.r.l.

Via Nazionale per Donnas, 55
11026 Pont Saint Martin, AO, Italy

Email: olivier.morandi@laser-group.com

Abstract—While in computer networks the number of possible
protocol encapsulations is growing day after day, network admin-
istrators face ever increasing difficulties in selecting accurately
the traffic they need to inspect. This is mainly caused by
the limited number of encapsulations supported by currently
available tools and the difficulty to exactly specify which packets
have to be analyzed, especially in presence of tunneled traffic.
This paper presents a novel packet processing language that,
besides Boolean filtering predicates, introduces special constructs
for handling the more complex situations of tunneled and stacked
encapsulations, giving the user a finer control over the semantics
of a filtering expression. Even though this language is principally
focused on packet filters, it is designed to support other advanced
packet processing mechanisms such as traffic classification and
field extraction.

I. INTRODUCTION

Many networking tools based on protocol parsing (packet
filters, firewalls, Intrusion Detection Systems, etc.) were de-
veloped in a time when the number of protocols was limited
and the encapsulation relationships among them were rather
simple.

Currently this assumption has become no longer valid. The
explosion of the number of applications triggered a corre-
sponding increase in the number of custom layer-7 protocols,
each one implementing its own format to fulfill the application
requirements. On the other hand, the number of possible
protocol encapsulations in network traffic is growing day after
day due to several reasons: the attempt to bypass application-
layer constraints and, in general, to escape network restrictions
(e.g., different application protocols transported in HTTP in
order to bypass firewalls), or the necessity to establish Virtual
Private Network sessions in many different environments and
to transport unsupported traffic. Many of these solutions re-
quire the encapsulation of lower-layer protocols in other ones
of the same level (as IPv6 in IPv4), or even in higher-layer
ones (e.g. IP in UDP).

Although current packet filtering tools are able to support
common conditional predicates (e.g, the presence of a protocol
or a field with a given value), they fail when requested to select
only specific types of encapsulation (e.g. IPv6 traffic encap-
sulated in IPv4). This is a problem for the aforementioned
network-based tools, whose solution requires the addition
of a module that is able to selectively inspect the network

traffic before the actual processing; this strategy is, however,
error-prone and adds computational overhead. Furthermore,
the list of supported encapsulations is generally hardcoded
in the packet filtering tools (therefore not easily expandable)
and it is often limited with respect to tunneled protocols.
This represents an additional limitation because the packet
filter needs to be recompiled in order to extend its supported
protocol set.

This paper proposes a new packet filtering language, called
NetPFL (Network Packet Filtering Language), which aims
at overcoming the previous limitations. Among its main
strengths, (i) it can handle complex situations of tunneled and
stacked encapsulations, giving the user a finer tuned control
over the semantics of a filtering expression; (ii) it supports
several independent filters that can lead to multiple matches;
(iii) it allows the user to choose, in an implementation-agnostic
way, the action that should be performed upon receipt of each
matching packet; finally, (iv) it is human-friendly, making it
suitable for fast command-line processing. Furthermore, no
protocol knowledge is embedded in NetPFL, facilitating its
integration with any other language that provides protocol
specification, e.g. external protocol databases that can be
defined (and updated) independently from the packet filter-
ing language. Particularly, our implementation associates the
NetPFL to the NetPDL [1] language, which provides the
protocol definition, enabling our implementation to support
run-time updates of the protocol data set.

This paper is structured as follows. Section II presents
the state of the art with regard to packet filter languages;
Section III introduces the proposed language specification;
Section IV evaluates our NetPFL implementation; Section V
draws the conclusions.

II. RELATED WORK

Current packet filtering solutions are based on different
filtering languages that look extremely similar, as they are
engineered with similar purposes in mind, but are often
different with respect to the language details or the approach
used to express Boolean conditions. A non-exhaustive listing
of the most common packet filtering languages is depicted
here.

libpcap [2] is probably the most famous packet capture
(and filtering) library; it runs on top of many UNIX-based
kernels (and Windows, in its WinPcap flavor [3]) and exposes
to the filtering applications a set of primitives [4] that can
be combined to fully express the desired capture syntax.
Predicates operate on selected fields of some of the most
common protocols (i.e. Ethernet, IEEE 802.11, IP, TCP, UDP
and others) or on the length of the packet. Wireshark [5] is
a popular packet sniffing and analysis application that, while
relying on libpcap as primary packet filtering engine, uses its
own syntax in post-processing mode. This language allows a
broader set of filters to be expressed, both in terms of allowed
predicates and in terms of protocol and fields supported; the
official website states that, as of version 1.2.6, over 85000
protocol fields can be specified. Both libpcap and Wireshark,
as many others, allow to define a filter that matches a selected
number of protocols (e.g., l2tp), but fail when requested
to express different conditions for the encapsulating protocols
(e.g., l2tp in ipv6) and do not support matching against
multiple filters. Furthermore, they do not have action capabil-
ities and have static protocol descriptions hardwired in their
code, making extensibility cumbersome.

The last problem is solved by the NetPDL [1] language,
which describes protocol formats and encapsulation rules.
However, this language is purely descriptive and it does not
specify any primitive to define the actual filter, requiring
another language for defining the filtering expression based
on its extensible protocol description. Binpac [6] is similar to
NetPDL since it focuses on protocol description, although its
many primitives also enable the definition of generic actions.
However, the language focuses on application-layer protocols,
and it requires full programming, making it not suitable for
fast, command-line interface commands.

While packet filtering is a fundamental part of most net-
working applications, often the resulting packet stream has to
be further processed in order to complete the application’s job.
These applications often define their own language, including
both filtering primitives and a specification of the actions to
be applied to the resulting packet stream. Some well-known
examples can be found in some popular Intrusion Detection
Systems (IDS) such as Snort [7] or Bro [8], which allow only
a handful of protocol fields to be inspected, focusing instead
on the action to be performed or on the payload of the transport
protocol. Still, primitives required to differentiate tunneling do
not exist and the protocol set is hardcoded in the application,
but in this case they are able to define some complex actions,
such as inspect the payload, raise an alert, and more. In fact,
their languages focus on the peculiar set of actions required
by the application, with limited possibility to reuse (or extend)
that language in case of a different application. Differently
from the previous applications, IDSs are able to define multiple
rules (i.e. filters) that can be active at the same time and that
can lead to multiple matching; the receiving module is made
aware of the filters that matched against each packet.

Similarly, also Stream-SQL [9] focuses on high-level
actions, enabling sophisticated elaborations (e.g. grouping,

counting, ordering, etc.) on a data live stream through a
SQL-like syntax. However, this language does not include the
traditional filtering capabilities operating on packets. Filtering
primitives (i.e., the SELECT keyword) operate on a live stream
that looks like a structured table, as in a traditional database,
making this approach unfeasible for classical packet filtering.
For the same reason, the number of protocols and fields
identified is limited to those known by the engine that pre-
processes the network traffic and creates the live stream in
tabular format.

All the approaches presented above suffer of at least one of
the five following problems:

1) no tunneling support: even if tunneling protocols are
successfully recognized, multiple instances of the same
protocol in the same packet cannot be treated separately;
furthermore, the user cannot select precisely which
encapsulations have to be considered when capturing
packets;

2) no multiple independent filters: most of the languages
do support multiple independent (and potentially over-
lapping) filters that can be satisfied at the same time, and
do not allow to return the list of the matching filters to
the application;

3) limited actions and no extensibility: each language
aims at solving only the problem of the particular
application and there is no provision of a generic action-
based language that can support many applications;

4) human-friendliness: we want the language to be used
on a command line tool, in order to be able to quickly
react to changing network conditions without having to
rely on complex building toolchains;

5) hardwired protocol description: the number of pro-
tocols recognized by each implementation can be in-
creased only by editing the source code of the applica-
tion and recompiling it.

NetPFL, as proposed in this paper, aims at solving the first
four problems: appropriate (and human-friendly) primitives
enable the identification and selection of each protocol in a
tunnel, while keeping an high degree of flexibility. Further-
more some common actions have been defined, which can
be further extended at will, and multiple independent filters
are supported. With respect to the fifth problem, NetPFL is
completely protocol-agnostic, as it has no a priori knowledge
about the structure of the packets to be processed. NetPFL
relies on other languages to describe protocol formats: in
our implementation it has been associated with NetPDL, that,
incidentally, was specifically designed to overcome exactly
the problem of decoupling protocol descriptions from network
tools.

III. NETWORK PACKET FILTERING LANGUAGE

This section presents the principles on which the NetPFL
language1 is based upon, by presenting at first an overview

1The complete NetPFL specification can be retrieved from http://nbee.org/
download/netpfl-20100315.pdf.

of the language and then moving onto its most peculiar
characteristics.

A. Operating Principles

NetPFL is defined as a rule-based language which follows
a filter-action-stream model; this architecture seamlessly sup-
ports different applications, such as accepting a packet for a
simple packet filter, extracting the actual values of a set of
fields for a more advanced processing tool, and more. The
basic syntax for a NetPFL rule is the following:

[<FilteringExpression>] [<Action>] [as
stream <StreamID>]

The rule is applied to every incoming packet with the
following semantics:

When FilteringExpression is true, perform Action.
Then associate the current packet and the results of the action
to the stream identified by StreamID.

B. Filters

The filtering expression is an optional part of the statement
and it is composed by a Boolean function, which can be
either based on (i) the presence of certain protocols and
fields (i.e. a filter is satisfied if the packet contains a specific
header, possibly in a specific position of the header chain,
or contains a field that may be optionally present in the
header itself) or (ii) the value of some fields (i.e. a filter is
specified as an expression based upon the value of one or
more header fields). The filtering expression may be omitted;
in this case the specified action will be applied to every
incoming packet. Multiple conditions can be defined through
the standard Boolean operators and, or and not.

If a packet matches a filtering condition, then the action
is performed: this action could consist in simply returning
the desired packet to the application; more details will be
presented in Section III-C.

The filtering expression is based on tokens (protocols and
protocol fields) that are not directly specified in the lan-
guage: in fact, these tokens are described in a companion
specification. Our implementation uses a database written in
the NetPDL language, even though any kind of description
language could be used for the same purpose, being even
a plain text file listing all the tokens. In other words, the
resolution of the protocols names and associated fields used
in a NetPFL rule is transparent to the language: the only
substantial requirement is that such identifiers correspond to
valid protocols and fields within the protocol database in use.

C. Actions

Whenever a packet matches a filtering expression, the
behavior that should be followed is described by the action
component. NetPFL currently defines the following actions:
(i) returnpacket, for simply accepting packets which

satisfy the rules imposed by the FilteringExpression,
(ii) extractfields, for extracting the values of an user-
defined list of fields and (iii) classify, for deploying traffic
classification mechanisms. returnpacket represents the
default action, which is invoked when the Action keyword
is missing.

While the behavior of the returnpacket action is self-
explanatory, the other two actions may need additional details.
In fact, extractfields allows the user to specify a list
of data references and/or some additional information to be
extracted and returned as metadata associated to the packet. In
this way, it is possible to extract only the required information
from the packet (for example the IP source address or the TCP
destination port) and obtain a more compact data stream for-
mat. Therefore, the extractfields action is considerably
suitable to be used in conjunction with a language such as the
aforementioned Stream-SQL, since it can format the output
stream accordingly. The classify action, instead, instructs
the processing engine not to return the entire packet, but to use
some fields as an entry for more advanced classification. For
instance, classify (tcp.sport) will create a table that
contains, for each value of the tcp.sport field, the number
of bytes and packets associated to those values. Both filtering
and classification are done in the processing engine and only
the final result (i.e. the table containing classification results)
will be returned to the user. The format of the returned data
is implementation-dependent.

It is worthy to notice that the filtering component and the
action component are two distinct but consecutive phases of
the processing mechanism: the filtering phase returns a set
of packets, which are then further processed in the action
phase. This architecture enables an high degree of flexibility,
since a specific action may be assigned to deal with each
filtering condition. In addition, this modular scheme facilitates
the extension of the language with more actions whenever new
behaviors are required, e.g. the possibility to raise an alert
when a specific condition occurs.

D. Streams

In NetPFL, the term “stream” is used to define the sequence
of processed packets associated with the corresponding meta-
data: in other words, the concept of stream defines both the set
of all the packets accepted by the filter and the set of all the
tuples of fields extracted from consecutive packets. With the
optional trailing component “as stream <StreamID>”,
the user can associate an identifier to each NetPFL statement.
If multiple filters are being used, the user is able to distinguish
which rule matched a certain packet; in addition, if more
than one rule matches the same packet, the whole set of
corresponding stream IDs would be returned to the user. The
actual format of this mechanism is implementation-dependent:
for example, it could be composed by a list of stream IDs or
by a vector containing a bitmask identifying the associated
streams.

Another advantage brought by the concept of stream is a
more user-friendly management interface for the end user:

in fact, it should be possible to add a new stream, delete or
replace an existing one, without interfering with the behavior
of the other active streams. The implementation of NetPFL
has to provide a number of primitives, such as setstream()
and deletestream() functions, in order to add, replace or
delete a stream. In general, the functions required to handle
streams (i.e. to get results from multiple streams at once) are
implementation-dependent.

E. Tunneling support

In order to correctly handle packets containing tunneled
encapsulations, the user must be given the possibility to
specify filtering conditions more restrictive than those defined
in the previous section: for example, if tunneling is used, a
packet may contain multiple headers belonging to the same
protocol. This section will use the concept of header instance,
which constitutes the basic building block of more complex
structures that will be described in the following paragraphs.

While the simplest filtering conditions on protocols and
fields, such as for example ip or ip.src, apply to any
instance of the chosen protocol, the user may prefer to enforce
more restrictive conditions on the filter; for this reason, the
header indexing technique allows to specify which specific
occurrence of the protocol header has to be analyzed. The
syntax to be used is:

proto_id%n

where n is an integer number indicating the ordinal
number of the occurrence of the proto_id protocol to
be considered. For example, “ip%2” refers to the second
instance of the ip protocol header and the resulting filter
will match all the packets containing at least two instances of
such header.

NetPFL provides some operators, called protocol placehold-
ers, which can be used to create very flexible matching condi-
tions: the (i) any keyword represents a wildcard matching any
protocol defined in the protocol database in use, while the (ii)
layer keyword followed by an integer n in the [2..5] range,
matches any protocol included in the database whose “natural”
layer is specified by n. The association of each protocol to
the right level (e.g. ip is a layer 3 protocol) falls under the
responsibility of the NetPFL implementation.

In order to describe situations where a particular header
may occur a variable number of times in the packet, repeat
operators are used; the paradigm and the syntax are borrowed
from the symbols used in the regular expressions. As an
example, we would use “ip+” if we would want to filter all
the packets that contain one or more consecutive instances of
the ip protocol, while we would use “mpls*” to match all
the packets that contain zero or more consecutive instances of
the mpls protocol.

F. Protocol chains

The NetPFL language includes two constructs, called chain-
ing operators. These are defined by the keywords in and

notin, which allow specifying the sequences of headers that
a packet must contain in order to be selected.

The in operator allows defining a chain where the left-hand
element is encapsulated within the right-hand one. Its dual is
represented by the notin operator, which allows specifying
a chain where the left-hand element is encapsulated in any
header other than the one defined by the right-hand element.
An example may be:

ip in vlan

where we would want to match all the packets containing an
ip header encapsulated in a vlan one. Instead

tcp notin ip

would match all the packets containing a tcp header
encapsulated in any header other than an ip one. A slightly
more complex example is

tcp in any in ip

which, by using the any keyword, matches all the packets
where tcp is encapsulated in any protocol, which however
must be encapsulated in ip. Analogously,

ip in vlan+ in ethernet

requires ip to be encapsulated in at least one vlan
header, transported within an ethernet frame.

G. Contexts

If we would prefer to deal with tunneling without having
to define a specific protocol chain, the paradigm of tunneling
contexts may come into help: even though contexts are less
flexible than protocol chains, they are more powerful when
writing some types of filters. The concept of context is fairly
simple:

• The sequence of headers in a packet is divided in one or
more consecutive contexts.

• The first context starts at the beginning of the packet. A
new context starts whenever a tunnel is detected, i.e. each
time the layer of a protocol is less or equal than the layer
of the protocol that encapsulates it.

Figure 1 depicts an example of how a packet can be divided
in various contexts: while the Ethernet header and the first IP
header belong to the first context, the presence of a second
IP header causes the beginning of a tunnel and, consequently,
the beginning of a new context.

The main importance of contexts is that, in many cases,
a set of conditions becomes interesting only when they are
all verified in the same context. For example, a network
administrator may want to intercept all the HTTP traffic
coming from a given server: in this case, it isn’t really
important if such traffic is tunneled or not, as long as the
source address of the IP instance directly carrying HTTP

Figure 1. Context example.

is the desired one. The syntax that expresses a context is
enclosed by < > symbols: the following filter matches all the
packets carrying http traffic coming from 192.168.1.3,
either encapsulated or not:

<ip.src == 192.168.1.3 and http>

In case of a tunnel, the value of the external ip address
does not affect the result of the filtering, because it is not part
of the same context of the http predicate.

It is worthy to remember that some of the constructs (such as
header indexing, protocol chains and contexts) that have been
introduced to manage tunneled and stacked encapsulations,
can be also used within an action. For instance, we can
extract a field from all the IP header instances in case of a
tunneled IP packet (e.g. extractfields (ip.src), or
selectively define the wanted instance (e.g. extractfields
(ip%2.src). Within the same protocol header, we can also
select if we want to extract the first instance of a certain field,
or the N-th instance or even all the instances of such a field.
The same applies also for the classify action.

IV. VALIDATION

The advantages of the NetPFL language have been validated
by implementing its specification in the NetBee framework,
which includes an experimental NetPFL compiler that creates
run-time code for the NetVM [10] virtual machine, using the
already mentioned NetPDL language as protocol database.

The architecture of the whole system is described in [11].
The NetPFL filter, coupled with the NetPDL protocol database,
is given as input to a high-level compiler that generates
NetIL code, a NetVM-specific assembly-like language. The
generated code can be interpreted by the NetVM itself, for
maximum compatibility, or compiled Just-In-Time if a back-
end compiler is available for the target architecture (Intel x86,
Octeon [12] and X11 [13] are currently supported)

Our experimental implementation supports most of the
primitives defined in Section III, including tunneling sup-
port and header indexing. Although we did not consider
performance as a main objective, we evaluated the outcome
of different filters with and without tunneling support, as
described in the next section.

A. Methodology

The aim of the following tests is to understand how different
captures, filters and protocol descriptions potentially impact on
the performance of our implementation.

The following packet captures were prepared: a reference
one, composed by 47 packets, carrying data from an HTTP and

a SSH session encapsulated in TCP packets; a more complex
one, made of 78 packets coming from various application
protocols, encapsulated in a IP-GRE-PPP-IP-TCP tunnel.

Three different NetPDL files were also written: a minimal
database, including definitions for Ethernet, IP, TCP and UDP,
without tunnel support; a medium one, that added GRE, PPP
and tunneling encapsulations; a complete and very complex
one, describing over 130 protocols and their full encapsulation
relationships.

All the tests were performed on a Linux-based, Xeon dual-
processor machine with 4 physical processing cores running
at 3 GHz and provided with 4 GiB of RAM; the test machine
was left otherwise unloaded and a single core was used. A
benchmark script was deployed, giving the different traces
and protocol databases as inputs, and the number of clock
cycles needed to recognize the tcp protocol was measured,
by using the RDTSC assembly instruction available on the x86
architecture. The result is the average value calculated after
1000 repetitions of the measurements, excluding the samples
that are substantially different from the average value.

B. Tunneling verification

The first sequence of tests was focused on evaluating the
correct behaviour of our tunneling-handling implementation:
the different NetPDL databases were used in three different
batches of tests to verify the ability to recognize an encapsu-
lated protocol header. The results are provided in Table I.

NetPDL complexity Reference trace Tunneled trace
(clock cycles/pkt) (clock cycles/pkt)

minimal 16 n/a
medium 57 94
complete 69 104

Table I
AVERAGE NUMBER OF CLOCK CYCLES NEEDED TO RECOGNIZE A PACKET

CARRYING A TCP HEADER.

Note that these results represent only the performance of
the prototypical implementation: since the main goal of this
paper is to explain the characteristics of the NetPFL language,
the performance estimate may be only approximate. In fact, it
seems that the computational cost required to filter a tunneled
protocol is linear with regard to the header length and not
to the encapsulation complexity. This is a good result since
it shows that, given an encapsulation ruleset, there is no
increased difficulty in recognizing tunnels, other than the
expected cost to process more protocols. In this example,
the difference between the two columns can be explained by
realizing that a normal TCP header begins at the 35th byte
(note that the traces were captured on an Ethernet link), while
the same header in a GRE-PPP tunnel starts at the 75th byte.

On the other hand, the results show also that the increased
computational cost must be payed either if the incoming packet
is tunneled or not. This is a direct consequence of the larger
number of checks that should be performed to discover poten-
tial tunnels. However, it should be taken into account that this

implementation is prototypal and only the few optimizations
described in [12] (compared to the thousands of algorithms
available in commercial compilers) were implemented.

Finally, it is shown that the modular approach offered by
an external protocol definition let the user selectively choose
which tunnels have to be supported: this choice increases
consistently the scalability of the system, as shown by the
comparison between the second and third row in Table I.

C. Action verification

In order to verify the behaviour of the filter-action-stream
mechanism, various tests have been performed on the ac-
tions that were available in the framework. In particular, a
sequence of tests was run to compare the performance of the
extractfields action, inserted within the NetPDL and
NetPFL architecture, with the performance of a simple extrac-
tion function implemented in C. While the integrated approach
used the string ‘‘tcp extracfields(tcp.sport,
tcp.dport)’’ to perform both the filtering and the extrac-
tion, the latter approach used the filter ‘‘tcp’’ to match all
the TCP traffic and then proceeded to extract the desired fields
by manually editing the functions involved in the filtering. The
results are shown in Table II.

NetPFL extractfields Simple C extraction
(clock cycles/pkt) (clock cycles/pkt)

44 47

Table II
AVERAGE NUMBER OF CLOCK CYCLES NEEDED TO EXTRACT THE COUPLE

(TCP source port, TCP destination port) USING A MINIMAL NETPDL.

Looking at the results obtained, we may notice that the ex-
tractfields action slightly outperforms the manual field extrac-
tion: in addition, if the size of the NetPDL database increases,
the integrated approach would still execute the filtering and
the extraction in one single step, while the separated approach
would have to analyze the protocol encapsulations twice,
therefore doubling the computational effort. Moreover, the
level of flexibility of the integrated approach is fairly superior,
especially considering its easiness of use.

V. CONCLUSION

This paper presented NetPFL, a new packet filtering lan-
guage, which can naturally support complex situations of
tunneled and stacked encapsulations. While this feature is
becoming more and more important, it is crucial especially in
case of network security applications because of the necessity
to inspect also tunneled traffic and/or to control precisely
which encapsulations we are referring to.

Additionally, the filter-action-stream model allows to con-
figure thoroughly the behavior of the filter, giving the user
a more precise control over the dynamics of a filtering ex-
pression and extending the operations done (efficiently) in the
packet filter without the necessity to deliver all the packets
to the application. For example, this model supports several
independent filters to be deployed on the same datastream,

thus allowing multiple matching of different conditions; the
user can also configure which action has to be taken whenever
a filtering condition is satisfied.

Furthermore, another structural choice that enhanced the
flexibility of the architecture is the separation between the
filtering component and the protocol description one: in fact,
while in our implementation NetPFL has been used in conjunc-
tion with NetPDL, any kind of protocol description language
can be adapted to be deployed, since NetPFL does not contain
in itself any knowledge regarding protocols, headers and fields.

Our tests show that an efficient implementation is possible
and that the modularity offered by the combination between
NetPFL and NetPDL allows a finer configuration with respect
to supported tunnels.

Current NetPFL implementation is still partial and some
primitives are not yet optimized; a more complete implemen-
tation is in progress.

ACKNOWLEDGMENT

The authors would like to thank Lorenzo De Carli, who
took part in the early specification of the NetPFL language.

REFERENCES

[1] F. Risso, M. Baldi, NetPDL: An Extensible XML-based Language for
Packet Header Description. Computer Networks (COMNET), Vol. 50,
No. 5, Elsevier, pp. 688-706, April 2006.

[2] S. McCanne, V. Jacobson, The BSD Packet Filter: A New Architecture
for User-level Packet Capture. In Proceedings of the 1993 Winter
USENIX Technical Conference, San Diego, CA, Jan. 1993, USENIX.

[3] F. Risso, L. Degioanni, An Architecture for High Performance Network
Analysis. In Proceedings of the 6th IEEE Symposium on Computers and
Communications (ISCC 2001), Hammamet (Tunisia), pp. 686-693, July
2001.

[4] The PCAP Library Man Page. Available at http://www.tcpdump.org/
pcap3 man.html

[5] G. Combos, The Wireshark Network Protocol Analyzer. Available at
http://www.wireshark.org/

[6] R. Pang, V. Paxson, R. Sommer, L. Peterson, Binpac: a yacc for writing
application protocol parsers. In Proceedings of the 6th ACM Internet
Measurement Conference, pp. 289-300, Rio de Janeiro, Brazil, October
2006.

[7] M Roesch, Snort - Lightweight Intrusion Detection for Networks. In
Proceedings of the 13th Systems Administration Conference (LISA ’99),
pp. 229-238, Seattle, WA, November 1999.

[8] V. Paxson, Bro: A System for Detecting Network Intruders in Real-
Time, Computer Networks, Vol. 31, No. 23-24, pp. 2435-2463, Elsevier,
December 1999.

[9] StreamBase Systems, StreamSQL online documentation. Available
at http://streambase.com/developers/docs/latest/streamsql/index.html,
2007.

[10] M.Baldi, F. Risso, Towards Effective Portability of Packet Handling
Applications Across Heterogeneous Hardware Platforms, In Proceedings
of the 7th Annual International Working Conference on Active and
Programmable Networks, Sophia Antipolis, France (November 2005).

[11] O. Morandi, F. Risso, M. Baldi, A. Baldini, Enabling Flexible Packet
Filtering Through Dynamic Code Generation. In Proceedings of IEEE
International Conference on Communications (ICC 2008), Beijing,
China, pp. 5849-5856, May 2008.

[12] O. Morandi, F. Risso, S. Valenti, P. Veglia, Design and Implementation
of a Framework for Creating Portable and Efficient Packet Processing
Applications. In Proceedings of the 7th ACM International Conference
on Embedded Software (EMSOFT 2008), Atlanta, GA, pp. 237-244,
October 2008.

[13] O. Morandi, F. Risso, P. Rolando, O. Hagsand, P. Ekdahl, Mapping
Packet Processing Applications on a Systolic Array Network Processor.
IEEE International Workshop on High Performance Switching and
Routing (HPSR 2008), Shanghai (China), pp. 213-220, May 2008.

