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ABSTRACT

This paper describes the system submitted by Ladpesnd

Politecnico di Torino (LPT) for the 2009 NIST Larage

Recognition Evaluation. The system is a combinatibolassifiers

based on two core acoustic models and on two che@ne
tokenizers. It exploits several state-of-the-achteéques that have
been successfully applied in recent years bothpeaker and in
language recognition.

We llustrate the incremental training procedurattihas been
devised to deal with broadcast data, we also desd¢he models,
the classification techniques that have been used this

evaluation, and we comment on the performance efsystem
components alone and in combination.

The system obtained using these techniques was cathenbest
participants in this evaluation, obtaining on thg Rnguages
recognition task an actual DCFx100 of 1.6, 2.8, arilin the 30,

10 and 3 sec conditions respectively.

Index Terms— Spoken Language Recognition,
Feature compensation, Phone tokenizers

LID,

1. INTRODUCTION

A new challenge has been introduced in the 2009rNU&guage
Recognition Evaluation (LRE) [1]: while all of thprevious
evaluation data consisted of Conversational Teleph8peech
(CTS), two corpora of broadcast data consistingVofce of
America broadcasts in multiple languages have bésributed by
NIST as additional data for this evaluation. Moregumost of the
23 target languages were new, and several tanggtidges had no
CTS samples. For each of the target languagesvérat included
in these corpora, a labeled development set wasetteby LDC
including about 80 segments of approximately 30osds
duration, audited by the provider (LDC) and fourd dontain
narrowband speech in the target language.

Unfortunately this development corpus lacks theegsary intra-
language variability due to channel, gender and alsgre
differences, to train robust language models. Thughe NIST
evaluation plan it was allowed to collect additibtraining data
from any publicly available source.

In this paper we first illustrate the incrementatalselection and
training procedure that has been devised to gemaraappropriate
development set for the narrowband speech in besdiata. Then
we describe the models that have been created, thad
classification techniques that have been usedHhisr évaluation.
Finally, we comment on the performance of each esyst
component and of its combination with the otheiighlighting
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some still open problems such as the poor resbliired testing
CTS data using models trained with narrowband dpeetiected
from broadcast corpora.

2. TRAINING AND DEVELOPMENT DATA

While most of the CTS data were available from fmes NIST
evaluations, narrowband speech segments from baehdtata
(broadcast for short in the following) had to be carefullylesgted
to create the language models according to an rivameal
procedure starting from the Voice of America cogpprovided by
NIST for the 2009 evaluation, which contain speiechnost of the
23 target languages [1]. These corpora, referreastY OA2 and
VOAZ3 in the following, were supplied down-sampled8 KHz, in
8-bit mu-law format. VOA3 programs have VOA supglie
language labels, while those from VOA2 have assedia set of
hypothesized language labels created by an autormpedcedure
[2] , which may be erroneous.

2.1. Telephone development data

The following CTS corpora were used for training:

- The Callfriend corpus [3]. The conversations irstbdrpus were
split into slices of approximately 150s.

- The corpora provided by NIST for LRE03, LREO5 ariRHO7.

- The Russian through switched telephone network [3].

- The Cantonese and Portuguese data in the 22 LangD&j
corpus [4].

2.2. Broadcast development data

The development corpora were incrementally cretiedclude as
far as possible the intra-language variability ttuehannel, gender
and speaker differences. To obtain a language nittmy system
with good generalization capabilities, we had tonegate a
development set - further split in training, cadiion and test
subsets - covering the mentioned variability withsafficient
amount of examples, and without speaker overlap ngmihne
subsets. The LRE2009 broadcast development dattharalidited
corpus provided by NIST did not satisfy the pregoaquirements
for the following reasons:

- The segments are often from the same speakertedetbby our
speaker recognizer [5], and confirmed by the “usjkr” field
of the audited data set to ‘False’.

- After filtering the same speaker segments, a smathber of
segments remain for some languages.

- The speaker genders within a language are not dedan

- Excluding “French”, the segments of all the otherduages are
either telephone or broadcast.



- No audited data were available for Hindi, Russ@panish and
Urdu on VOAS3, only the automatic segmentation fr@mo
University (BUT) was given.

- No segmentation was provided in the first releasthe VOA3
development data for Cantonese, Korean,
Vietnamese.

For these 8 missing languages only the automatigulage

hypotheses provided by BUT were available for VQi&2a.
Overall, we had only CTS data for 13 languagesy bnbadcast

data for 21 languages, and data in both conditiond1 of these
languages. The “Persian” broadcast data in VOA2\&DA3 were
considered samples of the Farsi language.

2.3. Additional checked development data

For the 8 languages lacking audited broadcast, setgave been
generated accessing the VOA site [6] looking fer ¢higinal MP3
files, also included — down-sampled — in the VOA&dThe goal
was to collect about 300 broadcast segments pgu#e, which
were first processed by detecting narrowband fragsnevith a
procedure similar to the one described in [2]. Thedidates were
checked to eliminate segments including music, lchdnnel
distortions, and fragments of other languages wWet evidently
not corresponding to the file labels.

The telephone and the audited broadcast data,tipduslata of
this additional set were evenly split into a traimd a test set. Due
to the scarcity of data we did not create a cdiibna set,
performing simple score normalization by ZT-norm.

The segments belonging to the same speaker welkg@tt in
the same set. The speaker information was obtdipednning our
speaker recognizer on the broadcast segments.

This set was used to train preliminary “bootstrapidels, one
acoustic and one phonetic. The tests performedgusdirese
bootstrap models have highlighted the aforementdopeblems
related to the adequacy of the development dathfteanecessity
of further enriching the development sets.

2.4. Additional not audited development data

The samples necessary to enrich the developmesntwatit new
speakers and more segments were selected from @#8\and
VOAZ2 data. For the VOA3 database we assume thdfilehiabel
correctly identify the corresponding language. Agndhe VOA3
data segmented by BUT, but not audited, we seletbede
allowing us to include new speakers in the traalibcation and
test sets. The selection of speakers for each #eguwas
performed by means of the speaker recognizer. Tinditeal
segments were processed first, followed by theldtones, and
finally by the others in order to discard segmemtonging to
frequently appearing speakers. Whenever the besignition
score obtained by a segment was less than a pneddfireshold, a
new speaker model was added to the current seeaksr models.
The selection of segments from the VOA2 database ware
complex, and possibly error prone. Language retmgniwas
performed on each segment using a system combitiieg
bootstrap models. A segment was selected onlyhi&dt associated
a score greater than a given rather high threslaold,if the 1-best
language hypothesis of our system matched the tlHyp®thesis
provided by the BUT system. The speaker selectionguure was
applied also to these segments. The number ofreiffespeakers
per language resulting from this procedure is adéubn average.

Mandarimd a

Table 1: Number of segments and total segmentdatexted from
the Voice of America broadcast corpora

) Broadcast Corpora
Set Tim
voa3_Avoa2_ Al ftp_C\voa3_Uvoa2_ Uftp_U

Train 40 h 316 | 1955 590( 66
Extended| 4, 65 | 2483| 574| 151

train
Calibration 5, 329 | 1866| 449| 44
and Test

Table 1 shows the number of segments of broadcatt d
included in the final sets, and their total dumtitn these tables
the ftp label refers to the narrowband segments extrefobed the
original MP3 files available in the VOA site. SuiisA, C andU
refer to audited, checked, and additional uncheckegments
respectively.

3. LANGUAGE IDENTIFICATION SYSTEM

The LPT system is the combination of classifiersdohon two
acoustic core models and two core phonetic tokesize

The acoustic models are Gaussian Mixture Modelaiobd from
a common Universal Background Model (UBM). The UBivid
the language GMMs consist of mixtures of 2048 Ganss The
observation vector includes the usual 56 parametezdirst 7 Mel
frequency cepstral coefficients and their 7-1-347ift8d Delta
(SDC) coefficients.

Two core acoustic models have been trained, botiecban
Gaussian Mixtures. These models will be referredirtothe
following as pushed GMMs and MMIE trained GMMs
respectively.

3.1.1. Pushed GMMs
These discriminative models are obtained by a coatlun of
GMMs through the information provided by Support cie
Machine (SVM) classifiers (GMM-SVM) according toettmethod
proposed in [7]. A model per utterance is obtaii®d using
Maximum A Posteriori (MAP) adaptation with a smadlevance
factor. Channel dependent but gender independenvi&Mave
been trained to avoid reducing the number of pasittlass
examples. Training the channel dependent model dfrget
language is performed using as positive classehefghe channel
dependent GMMs of that language, and all the GMMNishe
competitor languages as negative classes (irréspadtchannel).
The total number of models that we use for scoanginknown
segment with this system is 34: the channel depgndedels are
22 (11 CTS and 11 broadcast) and the single chanadkls are
12 (2 telephone and 10 broadcast models only).

3.1.2. MMIE trained GMMs
The second set of acoustic models is trained byimdlax Mutual
Information Estimation (MMIE) [8].
Training is performed on frame blocks separated shgnces,
identified by a recognizer of broad phonetic class&ender
dependent models were trained with 7 iterationptdicapped
from gender independent pushed GMMs. The gendernmtion
was provided by labels, when available, or by opeaker
recognizer trained to perform only gender detection

Since we use channel independent but gender depemdelels,
the number of scores per segment is 46, 23 peregend



3.1.3. Nuisance compensation

For both models, the features domain compensagpnoach that
was successful in the previous evaluation [9] wadied to reduce
channel and speaker variability within the sameglege. We
estimated a subspace that represents the distonrtioe to inter-
language variability, and compensate these distwstiin the
domain of the features using factor analysis [T®le subspace of
the intra-language variability is modeled by a Immk matrixU,
of dimension 120 in these experiments. Thenatrix and UBM
that were trained for the LREO7 evaluation, wittepdone data
only, have been used to obtain the GMM bootstragetso When
the training set was enriched as illustrated in $leetion 2, new
matricesU and UBMs have been estimated. Each khematrix is
estimated by collecting the differences between GMidervectors
of each language. These differences have been rpedo
separately for segments labeled as broadcast ephtehe and
among broadcast and telephone segments.

3.2. Phonemodels

The combination of acoustic with phonetic systenas tbeen
successful in the past evaluations [9][11]. In isatér, in LREO7
we exploited the availability of several languagethe Loquendo-
ASR recognizer [12] to implement a phonetic systemmed on the
Parallel Phone tokenizer-SVM [13].

3.2.1. 1-best LID SVM

The first phonetic system is based on the standagdiendo-ASR
decoder, which uses hybrid ANN-HMM models describefiL4].

The decoder uses a phone-loop grammar with dipl@mesition
constraints, and produces the 1-best phone stringseach
segment. For this system, 12 different phone graminave been
used in parallel to collect the statistics of theggram phone
occurrences in each segment for the following laiggs: French,
German, Greek, Italian, Polish, Portuguese, Russ&panish,
Swedish, Turkish, UK and US English.

From each phone sequence produced by one of ourefibo
transcribers on the same segment, the frequenogafrrence of
each n-gram is computed and normalized by the sguet of its
frequency in the whole training set. By appendingai single
vector all these normalized n-gram frequenciespweluce the so
called Term Frequency Log-Likelihood Ratio (TFLLKRrnel [15]
used in the SVM approach to language identificaf@dfo].

Channel dependent linear SVM models of the targeguages
were trained. Two different TFLLR kernels have bemsed, the
first one based on 3-grams, and the second onmgeiy pruned
n-grams of order higher than 3 [8].

3.2.2 Lattice 3-grams

The second phonetic system is based on the sarhee®aand
phone-loop grammars, but uses slightly differentNAldcoustic
models and a search engine that produces phorieesatiThe
number of language transcribers for this systenils(a new
language, Catalan, is included in the previous distanguages,
whereas Greek, Portuguese and UK English were @éed)u
Again, channel dependent SVM models were trainadpcming
the 3-gram probability using the expected countsnfra lattice
rather than the statistics from the 1-best sequgrGlg17].

6. SCORE NORMALIZATION AND COMBINATION

The system produces its final scores by combirtiegstores of the
5 sub-systems illustrated in Section 3. Since theedsion of

Table 2: Performance of the 5 sub-system on thed@0slopment
set (MinDCFx100) and on the evaluation sets (a@@#x100)

SYSTEMS
TEST -
ON Pushed MMIE 3-grams Multi- “f, -tice| Fusion
GMMs | GMMs grams
Development 1.48 1.70 1.09 1.13 1.06 0.86
Evaluation 2.13| 215 1.64 159 147 116
Broadcast 2.03 2.01 1.63 1.5] 1.39 1.08
Telephone 3.09 3.47 2.25 2.24 2.49 2.06

the score vectors for all the channel dependenisgstems is 34,
whereas it is 23+23 for the MMIE GMMs sub-systehe total
number of scores is 182.

The back-end training procedure follows the normadion and
calibration procedure proposed in [11][18] and uHes FoCal
multiclass toolkit [19].

The final back-ends for the evaluation were trainadhe set of
scores obtained by the models on all the developamh test data
described in Section 2. Separate back-ends wereddor the 3,
10, and 30 sec conditions using the developmensetsitof the
corresponding durations

For each sub-system a set of channel dependentsi@aus
back-ends has been trained. In particular, theespthe scores
produced by each sub-system is transformed by meBh®A,
and 34 Gaussians with common full covariance aaéed by
Maximum Likelihood Estimation.

The output of each backend is a vector of 34 sc@Rsof
them related to languages having both telephone baoddcast
development data, 10 to languages having only lcastdiata, and
the remaining two — American and Indian Englishavihg only
telephone data.

The raw score vectors are transformed into logliliked
vectors by applying the Gaussian back-ends, andcéfierated
fusion of the 5 sub-systems is performed by mednsudticlass
Linear Logistic Regression (LLR), which finds thrarisformation
parameters that optimize the multi-class Clir otiyec function
[18].

The best log likelihood is selected for the 11 lzages having
both broadcast and telephone scores.

These probabilities are transformed into the I&glihood ratio
score llr=log P(segment|Language)/P(segmkatjguage) using
the a priori probabilities and costs given in thé&SN LREO9
evaluation plan [1], thus the decision thresholsinsply Q

7.RESULTS

The five subsystems and their fusion were assamsedtelephone
LREOQ7 subset (restricted to the LREQO9 target lagggpand on
the broadcast development data of Section 2. Thelalement set
was further split into 2 subsets, used for calibratand testing
purposes. Both subsets were used for calibratiosh testing,
exchanging their roles.

The first row of Table 2 summarizes the performaofcthe 5 sub-
system on 30 sec segments of the LREO9 developdsat in
terms of minDCFx100 [1]. The second row gives thaual
DCFx100 obtained on the evaluation set. The lastrows show
the performance of the sub-systems on broadcagetephone test
data only. The results of the fusion of the suliesysare given in
the last column.



We can notice different behaviours of the subsystem
different subsets. For instance, MMIE GMMs andid¢attmodels
are better on broadcast data, whereas pushed Gi¥14-aest 3-
gram systems perform better on CTS.

Another comparison of the sub-systems can be ajapedc
looking at the bar chart of Figure 1, where theimium and actual
DCF obtained on the 30 sec evaluation set are shdha first
three bars are related to the two acoustic subsgsend their
fusion. The next four bars are related to the ptiorsibsystems
and their fusion. The gap between the acoustic pimanetic
models is about 27%, far smaller then the 50% geghad in the
LREOQ7 evaluation. This improvement was probably thuthe use
of pushed models and of better MMIE models obtaistting
from pushed models. The fusion of acoustic and ptiormodels
is rather effective, with a 17% of relative minimeF reduction.
Looking at the last bar, which shows the perforneaotthe sub-
system combination, a rather high (30% relativéipcation error,
given by the difference between actual and mininD@F, still
remain.

It is interesting noting that, whereas for the 3€c dest
condition the best combination of 5/6 decoders atmeaches the
accuracy obtained with 12 phone recognizers, fer 3hsecond
condition using all the transcribers improves th@imum DCF
from 0.127 to 0.116.

Finally, the false alarm and the miss rates obthinsing
models trained with CTS only and CTS plus broaddash show
that these models perform quite well even whenetesbn
broadcast segments. Unfortunately, the reverse ds true:
broadcast models do not perform well on CTS dakés & valid
for every language, and our results confirm thdifigs in [2].

8. CONCLUSIONS

An incremental training procedure has been predeexploiting
state-of-the art techniques in speaker and in lagguecognition
to select and label narrowband segments withindwast data.
Although very good results have been obtained i HREQ09
evaluation, using discriminative channel compertsateoustic
models and several phonetic transcribers, our tesohfirm that
still open problems remain in using models trainveth easily
available broadcast data for recognizing CTS d&idferent
speaking styles - characterized by good pronumciatiand high
mismatch in channel characteristics seem to weakenmodels
against conversational speech.
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