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a b s t r a c t

In this paper, the static and free vibration analysis of laminated shells is performed by radial basis func-
tions collocation, according to a sinusoidal shear deformation theory (SSDT). The SSDT theory accounts
for through-the-thickness deformation, by considering a sinusoidal evolution of all displacements with
the thickness coordinate. The equations of motion and the boundary conditions are obtained by the Car-
rera’s Unified Formulation, and further interpolated by collocation with radial basis functions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The efficient load-carrying capabilities of shell structures make
them very useful in a variety of engineering applications. The con-
tinuous development of new structural materials leads to ever
increasingly complex structural designs that require careful analy-
sis. Although analytical techniques are very important, the use of
numerical methods to solve shell mathematical models of complex
structures has become an essential ingredient in the design
process.

The most common mathematical models used to describe shell
structures may be classified in two classes according to different
physical assumptions: the Koiter model [1], based on the Kirchhoff
hypothesis and the Naghdi model [2], based on the Reissner–Mind-
lin assumptions that take into account the transverse shear
deformation. In this paper, the Unified Formulation (UF) by Carrera
[3–8] is proposed to derive the equations of motion and boundary
conditions. This formulation contains a large variety of 2D models
that differ in the order of used expansion in thickness direction and
in the manner the variables are modelled along the thickness. In
particular, the UF is here applied to analyse laminated shells by ra-
dial basis functions (RBF) collocation, according to a sinus-based
shear deformation theory that accounts for through-the-thickness

deformations. This theory is an expansion of the developments by
Touratier [9–11], and Vidal and Polit [12]. It allows a sinusoidal
variation of all displacement components along the thickness and
it is more convenient than the classical Taylor polynomials because
the sine function can be expressed by means of Taylor expansion.
Moreover, the derivative of displacements in the deformations
does not reduce the order of the approximating functions. The
choice of the sine function can be justified from the three-dimen-
sional point of view, using the work of Cheng [13]. As it can be seen
in Polit [14], a sine term appears in the solution of the shear equa-
tion (see Eq. (7) in [2]). Therefore, the kinematics proposed can be
seen as an approximation of the exact three-dimensional solution.
Furthermore, the sine function has an infinite radius of conver-
gence and its Taylor expansion includes not only the third-order
terms but all the odd terms.

The most common numerical procedure for the analysis of the
shells is the finite element method [15–19]. It is known that the
phenomenon of numerical locking may arise from hidden con-
strains that are not well represented in the finite element approx-
imation and, in scientific literature, it is possible to find many
methods to overcome this problem [20–25]. The present paper,
that performs the bending and free vibration analysis of laminated
shells by collocation with radial basis functions, avoids the locking
phenomenon. A radial basis function, /(kx � xjk) is a spline that de-
pends on the Euclidian distance between distinct data centers
xj;j ¼ 1;2; . . . ;N 2 Rn, also called nodal or collocation points. The
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so-called unsymmetrical Kansa method, introduced by Kansa [26],
is employed. The use of radial basis function for the analysis of
structures and materials has been previously studied by numerous
authors [27–41]. The authors have recently applied the RBF collo-
cation to the static deformations of composite beams and plates
[42–44].

In this paper it is investigated for the first time how the Unified
Formulation can be combined with radial basis functions to the
analysis of thin and thick laminated shells, using the SSDT, allow-
ing for through-the-thickness deformations. The quality of the
present method in predicting static deformations and free vibra-
tions of thin and thick laminated shells is compared and discussed
with other methods in some numerical examples.

2. Applying the Unified Formulation to SSDT

The Unified Formulation proposed by Carrera, also known as
CUF, is a powerful framework for the analysis of beams, plates
and shells. This formulation has been applied in several finite ele-
ment analysis, either using the Principle of Virtual Displacements,
or by using the Reissner’s Mixed Variational theorem. The stiffness
matrix components, the external force terms or the inertia terms
can be obtained directly with this UF, irrespective of the shear
deformation theory being considered.

In this section, it is shown how to obtain the fundamental nu-
clei, which allows the derivation of the equations of motion and
boundary conditions according to CUF, in weak form for the finite
element analysis and in strong form for the present RBF
collocation.

3. A sinus shear deformation theory

The present sinus shear deformation theory involves the follow-
ing expansion of displacements

u ¼ u0 þ zu1 þ sin
pz
h

� �
u3; v ¼ v0 þ zv1 þ sin

pz
h

� �
v3; w

¼ w0 þ zw1 þ sin
pz
h

� �
w3 ð1Þ

where u0, v0 and w0 are translations of a point at the middle-surface
of the plate, and u1, v1, u3, v3 denote rotations. This theory is an
expansion of early developments by Touratier [9–11], and Vidal
and Polit [12]. It considers a sinusoidal variation of all displace-
ments u, v, w, allowing for through-the-thickness deformations.
Extension to shells becomes evident in the next sections.

3.1. Governing equations and boundary conditions in the framework of
Unified Formulation

Shells are bi-dimensional structures in which one dimension (in
general the thickness in z direction) is negligible with respect to

the other two in-plane dimensions. Geometry and the reference
system are indicated in Fig. 1. The square of an infinitesimal linear
segment in the layer, the associated infinitesimal area and volume
are given by:

ds2
k ¼ Hk

a
2

da2 þ Hk
b

2
db2 þ Hk

z

2
dz2

dXk ¼ Hk
aHk

b dadb

dV ¼ Hk
aHk

bHk
z dadbdz

ð2Þ

where the metric coefficients are:

Hk
a ¼ Akð1þ z=Rk

aÞ; Hk
b ¼ Bkð1þ z=Rk

bÞ; Hk
z ¼ 1 ð3Þ

k denotes the k-layer of the multilayered shell; Rk
a and Rk

b are the
principal radii of curvature along the coordinates a and b, respec-
tively. Ak and Bk are the coefficients of the first fundamental form
of Xk (Ck is the Xk boundary). In this work, the attention has been
restricted to shells with constant radii of curvature (cylindrical,
spherical, toroidal geometries) for which Ak = Bk = 1.

Although one can use the UF for one-layer, isotropic shell, a
multi-layered shell with Nl layers is considered. The Principle of
Virtual Displacements (PVD) for the pure-mechanical case reads:

XNl

k¼1

Z
Xk

Z
Ak

d�k
pG

Trk
pC þ d�k

nG
Trk

nC

n o
dXk dz ¼

XNl

k¼1

dLk
e ð4Þ

where Xk and Ak are the integration domains in plane (a,b) and z
direction, respectively. Here, k indicates the layer and T the trans-
pose of a vector, and dLk

e is the external work for the kth layer. G
means geometrical relations and C constitutive equations.

The steps to obtain the governing equations are:

� Substitution of the geometrical relations (subscript G).
� Substitution of the appropriate constitutive equations (sub-

script C).
� Introduction of the Unified Formulation.

Stresses and strains are separated into in-plane and normal
components, denoted, respectively, by the subscripts p and n. The
mechanical strains in the kth layer can be related to the displace-
ment field uk ¼ fuk

a;u
k
b;u

k
zg via the geometrical relations:

�k
pG ¼ ½�k

aa; �
k
bb; �

k
ab�

T ¼ ðDk
p þ Ak

pÞuk; �k
nG ¼ ½�k

az; �
k
bz; �

k
zz�

T

¼ ðDk
nX þ Dk

nz � Ak
nÞuk ð5Þ

The explicit form of the introduced arrays follows:

Dk
p ¼

@a
Hk

a
0 0

0 @b

Hk
b

0

@b

Hk
b

@a
Hk

a
0

2
66664

3
77775; Dk

nX ¼

0 0 @a
Hk

a

0 0 @b

Hk
b

0 0 0

2
664

3
775; Dk

nz ¼
@z 0 0
0 @z 0
0 0 @z

2
64

3
75;

ð6Þ

Fig. 1. Geometry and notations for a multilayered shell (doubly curved).
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Ak
p ¼

0 0 1
Hk

aRk
a

0 0 1
Hk

bRk
b

0 0 0

2
664

3
775; Ak

n ¼

1
Hk

aRk
a

0 0

0 1
Hk

bRk
b

0

0 0 0

2
664

3
775 ð7Þ

The 3D constitutive equations are given as:

rk
pC ¼ Ck

pp�
k
pG þ Ck

pn�
k
nG

rk
nC ¼ Ck

np�
k
pG þ Ck

nn�
k
nG

ð8Þ

with

Ck
pp ¼

Ck
11 Ck

12 Ck
16

Ck
12 Ck

22 Ck
26

Ck
16 Ck

26 Ck
66

2
664

3
775; Ck

pn ¼
0 0 Ck

13

0 0 Ck
23

0 0 Ck
36

2
664

3
775;

Ck
np ¼

0 0 0
0 0 0

Ck
13 Ck

23 Ck
36

2
64

3
75; Ck

nn ¼
Ck

55 Ck
45 0

Ck
45 Ck

44 0

0 0 Ck
33

2
664

3
775

ð9Þ

According to the Unified Formulation by Carrera, the three displace-
ment components ua, ub and uz and their relative variations can be
modelled as:

ðua;ub;uzÞ ¼ Fsðuas;ubs;uzsÞ; ðdua; dub; duzÞ
¼ Fsðduas; dubs; duzsÞ ð10Þ

where the Fs are functions of the thickness coordinate z and s is a
sum index. Taylor expansions from first- up to fourth-order are em-
ployed: F0 = z0 = 1, F1 = z1 = z,. . ., FN = zN,. . ., F4 = z4 if an Equivalent
Single Layer (ESL) model is used. For ESL approach, one means that
the displacements are assumed for the whole laminate if a multi-
layer structure is considered.

Resorting to the displacement field in Eq. (10), the vectors
Ft ¼ 1 z sin pz

h

� �� �
are chosen for the displacements u, v, w. Then,

all the terms of the equations of motion are obtained by integrating
through the thickness direction.

It is interesting to note that under this combination of the Uni-
fied Formulation and RBF collocation, the collocation code depends
only on the choice of Ft, in order to solve this type of problems. A
MATLAB code has been designed that, just by changing Ft, can ana-
lyse static deformations, and free vibrations for any type of C� shear
deformation theory. An obvious advantage of the present method-
ology is that the tedious derivation of the equations of motion and
boundary conditions for a particular shear deformation theory is
no longer an issue, as this MATLAB code does all that work for us.

In Fig. 2, it is shown the assembling procedures of the stiffness
matrix on layer k for the ESL approach.

Substituting the geometrical relations, the constitutive equa-
tions and the Unified Formulation into the variational statement
PVD, for the kth layer, one has:

XNl

k¼1

Z
Xk

Z
Ak

ðDpþApÞduk
� �T

Ck
ppðDpþApÞukþCk

pnðDnXþDnz�AnÞuk
� �n(

þ ðDnXþDnz�AnÞduk
� �T

Ck
npðDpþApÞuk

�

þCk
nnðDnXþDnz�AnÞuk

�o
dXk dzk

)
¼
XNl

k¼1

dLk
e ð11Þ

At this point, the formula of integration by parts is applied:Z
Xk

ðDXÞdak
� �T

akdXk ¼ �
Z

Xk

dakT ðDT
XÞak

� �
dXk

þ
Z

Ck

dakT ðIXÞak
� �

dCk ð12Þ

where IX matrix is obtained applying the Gradient theorem:

Z
X

@w
@xi

dt ¼
I

C
niwds ð13Þ

being ni the components of the normal n̂ to the boundary along the
direction i. After integration by parts and the substitution of CUF,
the governing equations and boundary conditions for the shell in
the mechanical case are obtained:

XNl

k¼1

Z
Xk

Z
Ak

dukT
s ð�DpþApÞT FsðCk

ppðDpþApÞFsuk
s

hn(

þCk
pnðDnXþDnz�AnÞFsuk

sÞ
i

þdukT
s ð�DnXþDnz�AnÞT FsðCk

npðDpþApÞFsuk
s

h
þCk

nnðDnXþDnz�AnÞFsuk
sÞ
io

dXkdzk

o

þ
XNl

k¼1

Z
Ck

Z
Ak

dukT
s IT

pFsðCk
ppðDpþApÞFsuk

s

hn(

þCk
pnðDnXþDnz�AnÞFsuk

sÞ
i
þdukT

s IT
npFsðCk

npðDp�ApÞFsuk
s

h

þCk
nnðDnXþDnz�AnÞFsuk

sÞ
io

dCkdzk

o
¼
XNl

k¼1

Z
Xk

dukT
s Fspk

u

( )
ð14Þ

where Ik
p and Ik

np depend on the boundary geometry:

Ip ¼

na
Ha

0 0

0 nb

Hb
0

nb

Hb

na
Ha

0

2
664

3
775; Inp ¼

0 0 na
Ha

0 0 nb

Hb

0 0 0

2
64

3
75 ð15Þ

The normal to the boundary of domain X is:

n̂ ¼
na

nb

� 	
¼

cosðuaÞ
cosðubÞ

" #
ð16Þ

where ua and ub are the angles between the normal n̂ and the
direction a and b, respectively.

The governing equations for a multi-layered shell subjected to
mechanical loadings are:

duk
s

T
: Kkss

uu uk
s ¼ Pk

us ð17Þ

where the fundamental nucleus Kkss
uu is obtained as:

Fig. 2. Assembling procedure for ESL approach.

1278 A.J.M. Ferreira et al. / Composites: Part B 42 (2011) 1276–1284

Rettangolo



Author's personal copy

Kkss
uu ¼

Z
Ak

½�DpþAp�T Ck
pp½DpþAp�þ ½�DpþAp�T Ck

pn½DnXþDnz�An�
h

þ½�DnXþDnz�An�T Ck
np½DpþAp�

þ½�DnXþDnz�An�T Ck
nn½DnXþDnz�An�

i
FsFsH

k
aHk

b dz ð18Þ

and the corresponding Neumann-type boundary conditions on Ck

are:

Pkss
d uk

s ¼ Pkss
d

�uk
s ð19Þ

where

Pkss
d ¼

Z
Ak

IT
pCk

pp½Dp þ As
p� þ IT

pCk
pn½DnX þ Dnz � As

n� þ IT
npCk

np½Dp þ As
p�

h
þIT

npCk
nn½DnX þ Dnz � As

n�
i
FsFsH

k
aHk

b dz ð20Þ

and Pk
us are variationally consistent loads with applied pressure.

3.2. Fundamental nuclei

The following integrals are introduced to perform the explicit
form of fundamental nuclei:

Jkss; Jkss
a ; Jkss

b ; Jkss
a
b
; Jkss

b
a
; Jkss

ab

� �
¼
Z

Ak

FsFs 1;Ha;Hb;
Ha

Hb
;
Hb

Ha
;HaHb


 �
dz

Jkszs; Jkszs
a ; Jkszs

b ; Jkszs
a
b
; Jkszs

b
a

; Jkszs
ab

� �
¼
Z

Ak

@Fs

@z
Fs 1;Ha;Hb;

Ha

Hb
;
Hb

Ha
;HaHb


 �
dz

Jkssz ; Jkssz
a ; Jkssz

b ; Jkssz
a
b
; Jkssz

b
a

; Jkssz
ab

� �
¼
Z

Ak

Fs
@Fs

@z
1;Ha;Hb;

Ha

Hb
;
Hb

Ha
;HaHb


 �
dz

Jkszsz ; Jkszsz
a ; Jkszsz

b ; Jkszsz
a
b

; Jkszsz
b
a

; Jkszsz
ab

� �
¼
Z

Ak

@Fs

@z
@Fs

@z

1;Ha;Hb;
Ha

Hb
;
Hb

Ha
;HaHb


 �
dz ð21Þ

The fundamental nuclei Kkss
uu is reported for doubly curved shells (ra-

dii of curvature in both a and b directions (see Fig. 1)):

Kssk
uu

� �
11
¼ �Ck

11Jkss
b=a@

s
a@

s
a � Ck

16Jkss@s
a@

s
b � Ck

16Jkss@s
a@

s
b � Ck

66Jkss
a=b@

s
b@

s
b

þ Ck
55 Jkszsz

ab � 1
Rak

Jkszs
b � 1

Rak

Jkssz
b þ 1

R2
ak

Jkss
b=a

 !

Kssk
uu

� �
12
¼ �Ck

12Jkss@s
a@

s
b � Ck

16Jkss
b=a@

s
a@

s
a � Ck

26Jkss
a=b@

s
b@

s
b � Ck

66Jkss@s
a@

s
b

þ Ck
45 Jkszsz

ab � 1
Rbk

Jkszs
a � 1

Rak

Jkssz
b þ 1

Rak

1
Rbk

Jkss

 �

Kssk
uu

� �
13
¼ �Ck

11
1

Rak

Jkss
b=a@

s
a � Ck

12
1

Rbk

Jkss@s
a � Ck

13Jkssz
b @s

a � Ck
16

1
Rak

Jkss@s
b

� Ck
26

1
Rbk

Jkss
a=b@

s
b � Ck

36Jkssz
a @s

b þ Ck
45 Jkszs

a @s
b �

1
Rak

Jkss@s
b


 �

þ Ck
55 Jkszs

b @s
a �

1
Rak

Jkss
b=a@

s
a


 �

Kssk
uu

� �
21
¼ �Ck

12Jkss@s
a@

s
b � Ck

16Jkss
b=a@

s
a@

s
a � Ck

26Jkss
a=b@

s
b@

s
b � Ck

66Jkss@s
a@

s
b

þ Ck
45 Jkszsz

ab � 1
Rbk

Jkssz
a � 1

Rak

Jkszs
b þ 1

Rak

1
Rbk

Jkss

 �

Kssk
uu

� �
22
¼ �Ck

22Jkss
a=b@

s
b@

s
b � Ck

26Jkss@s
a@

s
b � Ck

26Jkss@s
a@

s
b � Ck

66Jkss
b=a@

s
a@

s
a

þ Ck
44 Jkszsz

ab � 1
Rbk

Jkszs
a � 1

Rbk

Jkssz
a þ 1

R2
bk

Jkss
a=b

 !

Kssk
uu

� �
23
¼ �Ck

12
1

Rak

Jkss@s
b � Ck

22
1

Rbk

Jkss
a=b@

s
b � Ck

23Jkssz
a @s

b � Ck
16

� 1
Rak

Jkss
b=a@

s
a � Ck

26
1

Rbk

Jkss@s
a � Ck

36Jkssz
b @s

a

þ Ck
45 Jkszs

b @s
a �

1
Rbk

Jkss@s
a


 �
þ Ck

44 Jkszs
a @s

b �
1

Rbk

Jkss
a=b@

s
b


 �

Kssk
uu

� �
31
¼ Ck

11
1

Rak

Jkss
b=a@

s
a þ Ck

12
1

Rbk

Jkss@s
a þ Ck

13Jkszs
b @s

a þ Ck
16

1
Rak

Jkss@s
b

þ Ck
26

1
Rbk

Jkss
a=b@

s
b þ Ck

36Jkszs
a @s

b � Ck
45 Jkssz

a @s
b �

1
Rak

Jkss@s
b


 �

� Ck
55 Jkssz

b @s
a �

1
Rak

Jkss
b=a@

s
a


 �

Kssk
uu

� �
32
¼ Ck

12
1

Rak

Jkss@s
b þ Ck

22
1

Rbk

Jkss
a=b@

s
b þ Ck

23Jkszs
a @s

b þ Ck
16

1
Rak

Jkss
b=a@

s
a

þ Ck
26

1
Rbk

Jkss@s
a þ Ck

36Jkszs
b @s

a � Ck
45 Jkssz

b @s
a �

1
Rbk

Jkss@s
a


 �

� Ck
44 Jkssz

a @s
b �

1
Rbk

Jkss
a=b@

s
b


 �

Kssk
uu

� �
33
¼ Ck

11
1

R2
ak

Jkss
b=a þ Ck

22
1

R2
bk

Jkss
a=b þ Ck

33Jkszsz
ab þ 2Ck

12
1

Rak

� 1
Rbk

Jkss þ Ck
13

1
Rak

Jkszs
b þ Jkssz

b

� �
þ Ck

23

� 1
Rbk

Jkszs
a þ Jkssz

a

� �
� Ck

44Jkss
a=b@

s
b@

s
b � Ck

55Jkss
b=a@

s
a@

s
a

� Ck
45Jkss@s

a@
s
b � Ck

45Jkss@s
a@

s
b ð22Þ

The application of boundary conditions makes use of the fundamen-
tal nuclei Pd in the form:

Pssk
uu

� �
11 ¼ naCk

11Jkss
b=a@

s
a þ nbCk

66Jkss
a=b@

s
b þ nbCk

16Jkss@s
a þ naCk

16Jkss@s
b

Pssk
uu

� �
12 ¼ naCk

16Jkss
b=a@

s
a þ nbCk

26Jkss
a=b@

s
b þ naCk

12Jkss@s
b þ nbCk

66Jkss@s
a

Pssk
uu

� �
13 ¼ na

1
Rak

Ck
11Jkss

b=a þ na
1

Rbk
Ck

12Jkss þ naCk
13Jkssz

b þ nb
1

Rak
Ck

16Jkss

þ nb
1

Rbk
Ck

26Jkss
a=b þ nbCk

36Jkssz
a

Pssk
uu

� �
21 ¼ naCk

16Jkss
b=a@

s
a þ nbCk

26Jkss
a=b@

s
b þ nbCk

12Jkss@s
a þ naCk

66Jkss@s
b

Pssk
uu

� �
22 ¼ naCk

66Jkss
b=a@

s
a þ nbCk

22Jkss
a=b@

s
b þ nbCk

26Jkss@s
a þ naCk

26Jkss@s
b

Pssk
uu

� �
23 ¼ na

1
Rak

Ck
16Jkss

b=a þ na
1

Rbk
Ck

26Jkss þ naCk
36Jkssz

b þ nb
1

Rak
Ck

12Jkss

þ nb
1

Rbk
Ck

22Jkss
a=b þ nbCk

23Jkssz
a

Pssk
uu

� �
31 ¼ �na

1
Rak

Ck
55Jkss

b=a þ naCk
55Jkssz

b � nb
1

Rak
Ck

45Jkss þ nbCk
45Jkssz

a

Pssk
uu

� �
32 ¼ �na

1
Rbk

Ck
45Jkss þ naCk

45Jkssz
b � nb

1
Rbk

Ck
44Jkss

a=b þ nbCk
44Jkssz

a

Pssk
uu

� �
33 ¼ naCk

55Jkss
b=a@

s
a þ nbCk

44Jkss
a=b@

s
b þ nbCk

45Jkss@s
a þ naCk

45Jkss@s
b ð23Þ

One can note that all the equations written for the shell degenerate
in those for the plate when 1

Rak
¼ 1

Rbk
¼ 0. In practice, the radii of cur-

vature are set to 109.

3.3. Dynamic governing equations

The PVD for the dynamic case is expressed as:
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XNl

k¼1

Z
Xk

Z
Ak

d�k
pG

Trk
pC þ d�k

nG
Trk

nC

n o
dXk dz

¼
XNl

k¼1

Z
Xk

Z
Ak

qkdukT €uk dXk dzþ
XNl

k¼1

dLk
e ð24Þ

where qk is the mass density of the kth layer and double dots de-
note acceleration.

By substituting the geometrical relations, the constitutive equa-
tions and the Unified Formulation, one obtains the following gov-
erning equations:

duk
s

T
: Kkss

uu uk
s ¼Mkss €uk

s þ Pk
us ð25Þ

In the case of free vibrations one has:

duk
s

T
: Kkss

uu uk
s ¼Mkss €uk

s ð26Þ

where Mkss is the fundamental nucleus for the inertial term. The ex-
plicit form of that is:

Mkss
11 ¼ qkJkss

ab

Mkss
12 ¼ 0

Mkss
13 ¼ 0

Mkss
21 ¼ 0

Mkss
22 ¼ qkJkss

ab

Mkss
23 ¼ 0

Mkss
31 ¼ 0

Mkss
32 ¼ 0

Mkss
33 ¼ qkJkss

ab

ð27Þ

where the meaning of the integral Jkss
ab has been illustrated in Eq.

(21). The geometrical and mechanical boundary conditions are the
same of the static case. Because the static case is only considered,
the mass terms will be neglected.

4. The radial basis function method

4.1. The static problem

Radial basis functions (RBF) approximations are mesh-free
numerical schemes that can exploit accurate representations of
the boundary, are easy to implement and can be spectrally accu-
rate. In this section the formulation of a global unsymmetrical col-
location RBF-based method to compute elliptic operators is
presented.

Consider a linear elliptic partial differential operator L and a
bounded region X in Rn with some boundary oX. In the static
problems, the displacements (u) are computed from the global sys-
tem of equations

Lu ¼ f in X ð28Þ
LBu ¼ g on @X ð29Þ

where L; LB are linear operators in the domain and on the bound-
ary, respectively. The right-hand side of (28) and (29) represent the
external forces applied on the plate or shell and the boundary con-
ditions applied along the perimeter of the plate or shell, respec-
tively. The PDE (Partial Differential Equation) problem defined in
(28) and (29) will be replaced by a finite problem, defined by an
algebraic system of equations, after the radial basis expansions.

4.2. The eigenproblem

The eigenproblem looks for eigenvalues (k) and eigenvectors (u)
that satisfy

Luþ ku ¼ 0 in X ð30Þ
LBu ¼ 0 on @X ð31Þ

As in the static problem, the eigenproblem defined in (30) and (31)
is replaced by a finite-dimensional eigenvalue problem, based on
RBF approximations.

4.3. Radial basis functions approximations

The radial basis function (/) approximation of a function (u) is
given by

~uðxÞ ¼
XN

i¼1

ai/ðkx� yik2Þ; x 2 Rn ð32Þ

where yi, i = 1, . . . ,N is a finite set of distinct points (centers) in Rn.
The most common RBFs are

Cubic : /ðrÞ ¼ r3

Thin plate splines : /ðrÞ ¼ r2 logðrÞ
Wendland functions : /ðrÞ ¼ ð1� rÞmþpðrÞ

Gaussian : /ðrÞ ¼ e�ðcrÞ2

Multiquadrics : /ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p
Inverse multiquadrics : /ðrÞ ¼ ðc2 þ r2Þ�1=2

where the Euclidian distance r is real and non-negative and c is a
positive shape parameter. Hardy [45] introduced multiquadrics in
the analysis of scattered geographical data. In the 1990s Kansa
[26] used multiquadrics for the solution of partial differential equa-
tions. Considering N distinct interpolations, and knowing u(xj),
j = 1,2, . . . ,N, one finds ai by the solution of a N � N linear system

Aa ¼ u ð33Þ

where A = [/(kx � yik2)]N�N, a = [a1,a2, . . . ,aN]T and
u = [u(x1),u(x2), . . . ,u(xN)]T.

4.4. Solution of the static problem

The solution of a static problem by radial basis functions con-
siders NI nodes in the domain and NB nodes on the boundary, with
a total number of nodes N = NI + NB. One can denote the sampling
points by xi 2X, i = 1, . . . ,NI and xi 2 oX, i = NI + 1, . . . ,N. At the
points in the domain, the following system of equations is solved

XN

i¼1

aiL/ðkx� yik2Þ ¼ fðxjÞ; j ¼ 1;2; . . . ;NI ð34Þ

or

LIa ¼ F ð35Þ

where

LI ¼ L/ðkx� yik2Þ½ �NI�N ð36Þ

At the points on the boundary, the following boundary conditions
are imposed

XN

i¼1

aiLB/ðkx� yik2Þ ¼ gðxjÞ; j ¼ NI þ 1; . . . ;N ð37Þ

or

Ba ¼ G ð38Þ
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where

B ¼LB/ kxNIþ1 � yjk2

� �� �
NB�N

Therefore, one can write a finite-dimensional static problem as

LI

B

" #
a ¼

F
G

� 	
ð39Þ

By inverting the system (39), one obtains the vector a. Then, the
solution u is calculated using the interpolation Eq. (32).

4.5. Solution of the eigenproblem

Consider NI nodes in the interior of the domain and NB nodes on
the boundary, with N = NI + NB. The interpolation points are de-
noted by xi 2X, i = 1, . . . ,NI and xi 2 oX, i = NI + 1, . . . ,N. At the
points in the domain, the following eigenproblem is defined

XN

i¼1

aiL/ðkx� yik2Þ ¼ k~uðxjÞ; j ¼ 1;2; . . . ;NI ð40Þ

or

LIa ¼ k~uI ð41Þ

where

LI ¼ L/ðkx� yik2Þ½ �NI�N ð42Þ

At the points on the boundary, the imposed boundary conditions
are

XN

i¼1

aiLB/ðkx� yik2Þ ¼ 0; j ¼ NI þ 1; . . . ;N ð43Þ

or

Ba ¼ 0 ð44Þ

Eqs. (41) and (44) can now be solved as a generalized eigenvalue
problem

LI

B

" #
a ¼ k

AI

0

" #
a ð45Þ

where

AI ¼ / ðkxNI � yjk2Þ
� �

NI�N

4.6. Discretization of the equations of motion and boundary conditions

The radial basis collocation method follows a simple implemen-
tation procedure. Taking Eq. (39), one computes

a ¼ LI

B

" #�1
F
G

� 	
ð46Þ

This a vector is then used to obtain solution ~u, by using (32). If
derivatives of ~u are needed, such derivatives are computed as

@~u
@x
¼
XN

j¼1

aj
@/j

@x
ð47Þ

@2 ~u
@x2 ¼

XN

j¼1

aj
@2/j

@x2 ; etc: ð48Þ

In the present collocation approach, one needs to impose essential
and natural boundary conditions. Consider, for example, the condi-

tion w = 0, on a simply supported or clamped edge. The conditions
are enforced by interpolating as

w ¼ 0!
XN

j¼1

aW
j /j ¼ 0 ð49Þ

Other boundary conditions are interpolated in a similar way.

4.7. Free vibrations problems

For free vibration problems, the external forces are set to zero,
and an harmonic solution is assumed for the displacements u0,
u1, v0, v1, . . .

u0 ¼ U0ðx; yÞeixt; u1 ¼ U1ðx; yÞeixt ; u3 ¼ U3ðx; yÞeixt ð50Þ
v0 ¼ V0ðx; yÞeixt; v1 ¼ V1ðx; yÞeixt; v3 ¼ V3ðx; yÞeixt ð51Þ
w0 ¼W0ðx; yÞeixt; w1 ¼W1ðx; yÞeixt ; w3 ¼W3ðx; yÞeixt ð52Þ

where x is the frequency of natural vibration. Substituting the har-
monic expansion into Eq. (45) in terms of the amplitudes U0, U1, U3,
V0, V1, V3, W0, W1, W3, one can obtain the natural frequencies and
vibration modes for the plate or shell problem, by solving the
eigenproblem

L�x2G
� �

X ¼ 0 ð53Þ

where L collects all stiffness terms and G collects all terms related
to the inertial terms. In (53) X are the modes of vibration associated
with the natural frequencies defined as x.

5. Numerical examples

All numerical examples consider a Chebyshev grid (see Fig. 3)
and a Wendland function, defined as

/ðrÞ ¼ ð1� crÞ8þ 32ðcrÞ3 þ 25ðcrÞ2 þ 8cr þ 1
� �

ð54Þ

where the shape parameter (c) was obtained by an optimization
procedure, as detailed in Ferreira and Fasshauer [46].

5.1. Spherical shell in bending

A laminated composite spherical shell is here considered, of
side a and thickness h, composed of layers oriented at [0�/90�/0�]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x−coordinates

y−
co

or
di

na
te

s

Chebyshev grid

Fig. 3. A sketch of a Chebyshev grid for 13 � 13 points.
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and [0�/90�/90�/0�]. The shell is subjected to a sinusoidal vertical
pressure of the form

pz ¼ P sin
px
a

� �
sin

py
a

� �
with the origin of the coordinate system located at the lower left
corner on the midplane and P the maximum load (at center of shell).

The orthotropic material properties for each layer are given by

E1 ¼ 25:0E2; G12 ¼ G13 ¼ 0:5E2; G23 ¼ 0:2E2; m12 ¼ 0:25

The in-plane displacements, the transverse displacements, the nor-
mal stresses and the in-plane and transverse shear stresses are pre-
sented in normalized form as

�w ¼ 103wða=2;a=2;0Þh
3E2

Pa4 ; �rxx ¼
rxxða=2;a=2;h=2Þh

2

Pa2 ; �ryy

¼ ryyða=2;a=2;h=4Þh
2

Pa2 ; �sxz ¼
sxzð0;a=2;0Þh

Pa
; �sxy ¼

sxyð0;0;h=2Þh
2

Pa2

The shell is simply supported on all edges.
In Table 1, the static deflections for the present shell model are

compared with results of Reddy shell formulation using first-order
and third-order shear deformation theories [47]. Nodal grids with
13 � 13, 17 � 17, and 21 � 21 points are considered. Various val-
ues of R/a and two values of a/h (10 and 100) are taken for the anal-
ysis. Results are in good agreement for various a/h ratios with the
higher-order results of Reddy [47].

Table 1
Non-dimensional central deflection, �w ¼ w 102 E2 h3

P0 a4 variation with various number of grid points per unit length, N for different R/a ratios, for R1 = R2.

a/h Method R/a

5 10 20 50 100 109

[0�/90�/0�] 10 Present (13 � 13) 6.6874 6.9044 6.9615 6.9781 6.9806 6.9816
10 Present (17 � 17) 6.6879 6.9047 6.9618 6.9784 6.9809 6.9819
10 Present (21 � 21) 6.6880 6.9048 6.9618 6.9784 6.9809 6.9820
10 HSDT [47] 6.7688 7.0325 7.1016 7.1212 7.1240 7.125
10 FSDT [47] 6.4253 6.6247 6.6756 6.6902 6.6923 6.6939

100 Present (13 � 13) 1.0244 2.3651 3.5151 4.0692 4.1629 4.1951
100 Present (17 � 17) 1.0249 2.3661 3.5165 4.0707 4.1644 4.1966
100 Present (21 � 21) 1.0250 2.3662 3.5167 4.0709 4.1646 4.1966
100 HSDT [47] 1.0321 2.4099 3.617 4.2071 4.3074 4.3420
100 FSDT [47] 1.0337 2.4109 3.6150 4.2027 4.3026 4.3370

[0�/90�/90�/0�] 10 Present (13 � 13) 6.7199 6.9418 7.0004 7.0174 7.0201 7.0211
10 Present (17 � 17) 6.7204 6.9423 7.0007 7.0178 7.0204 7.0214
10 Present (21 � 21) 6.7205 6.9423 7.0008 7.0178 7.0204 7.0215
10 HSDT [47] 6.7865 7.0536 7.1237 7.1436 7.1464 7.1474
10 FSDT [47] 6.3623 6.5595 6.6099 6.6244 6.6264 6.6280

100 Present (13 � 13) 1.0190 2.3581 3.5119 4.0694 4.1638 4.1962
100 Present (17 � 17) 1.0195 2.3591 3.5132 4.0708 4.1653 4.1978
100 Present (21 � 21) 1.0195 2.3592 3.5134 4.0711 4.1655 4.1980
100 HSDT [47] 1.0264 2.4024 3.6133 4.2071 4.3082 4.3430
100 FSDT [47] 1.0279 2.4030 3.6104 4.2015 4.3021 4.3368

Table 2
Nondimensionalized fundamental frequencies of cross-ply laminated spherical shells, �x ¼ x a2

h

ffiffiffiffiffiffiffiffiffiffiffi
q=E2

p
, laminate ([0�/90�/90�/0�]).

a/h Method R/a

5 10 20 50 100 109

10 Present (13 � 13) 12.0999 11.9378 11.8967 11.8851 11.8835 11.8829
Present (17 � 17) 12.0995 11.9375 11.8964 11.8849 11.8832 11.8827
Present (21 � 21) 12.0994 11.9375 11.8964 11.8849 11.8832 11.8827
HSDT [47] 12.040 11.840 11.790 11.780 11.780 11.780

100 Present (13 � 13) 31.2175 20.5753 16.8713 15.6760 15.4977 15.4378
Present (17 � 17) 31.2076 20.5690 16.8663 15.6714 15.4931 15.4333
Present (21 � 21) 31.2063 20.5683 16.8658 15.6711 15.4929 15.4331
HSDT [47] 31.100 20.380 16.630 15.420 15.230 15.170

Table 3
Nondimensionalized fundamental frequencies of cross-ply laminated spherical shells, �x ¼ x a2

h

ffiffiffiffiffiffiffiffiffiffiffi
q=E2

p
, laminate ([0�/90�/0�]).

a/h Method R/a

5 10 20 50 100 109

10 Present (13 � 13) 12.1258 11.9661 11.9256 11.9142 11.9126 11.9120
Present (17 � 17) 12.1254 11.9658 11.9253 11.9140 11.9123 11.9112
Present (21 � 21) 12.1253 11.9658 11.9253 11.9140 11.9123 11.9112
HSDT [47] 12.060 11.860 11.810 11.790 11.790 11.790

100 Present (13 � 13) 31.1360 20.5441 16.8634 15.6764 15.4993 15.4398
Present (17 � 17) 31.1262 20.5388 16.8584 15.6718 15.4948 15.4353
Present (21 � 21) 31.1249 20.5381 16.8579 15.6714 15.4944 15.4349
HSDT [47] 31.020 20.350 16.620 15.420 15.240 15.170
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5.2. Free vibration of spherical and cylindrical laminated shells

Nodal grids with 13 � 13, 17 � 17, and 21 � 21 points are con-
sidered. In Tables 2 and 3 the nondimensionalized natural frequen-
cies from the present SSDT theory for various cross-ply spherical
shells are compared with analytical solutions by Reddy and Liu
[47], who considered both the First-order Shear Deformation The-
ory (FSDT) and the High-order Shear Deformation Theory (HSDT).
The first-order theory overpredicts the fundamental natural fre-
quencies of symmetric thick shells and symmetric shallow thin
shells. The present radial basis function method is compared with
analytical results by Reddy [47] and shows excellent agreement.

Table 4 contain nondimensionalized natural frequencies ob-
tained using the present SSDT theory for cross-ply cylindrical
shells with lamination schemes [0/90/0], [0/90/90/0]. Present re-
sults are compared with analytical solutions by Reddy and Liu
[47] who considered both the first-order (FSDT) and the third-or-
der (HSDT) theories. The present radial basis function method is
compared with analytical results by Reddy [47] and shows excel-
lent agreement.

In Fig. 4, the first four vibrational modes of cross-ply laminated
spherical shells, �x ¼ x a2

h

ffiffiffiffiffiffiffiffiffiffiffi
q=E2

p
, are illustrated for a laminate ([0�/

90�/90�/0�]), using a grid of 13 � 13 points, for a/h = 100, R/a = 10.
The modes of vibration are quite stable.

6. Concluding remarks

In this paper a sinusoidal shear deformation theory was imple-
mented for the first time for laminated orthotropic elastic shells
through a multiquadrics discretization of equations of motion
and boundary conditions. The multiquadric radial basis function
method for the solution of shell bending and free vibration prob-

lems was presented. Results for static deformations and natural
frequencies were obtained and compared with other sources. This
meshless approach demonstrated that is very successful in the sta-
tic deformations and free vibration analysis of laminated compos-

Table 4
Nondimensionalized fundamental frequencies of cross-ply cylindrical shells, �x ¼ x a2

h

ffiffiffiffiffiffiffiffiffiffiffi
q=E2

p
.

R/a Method [0/90/0] [0/90/90/0]

a/h = 100 a/h = 10 a/h = 100 a/h = 10

5 Present (13 � 13) 20.4988 11.9234 20.5310 11.9010
Present (17 � 17) 20.4871 11.9230 20.5214 11.9007
Present (21 � 21) 20.4856 11.9230 20.5202 11.9007
FSDT [47] 20.332 12.207 20.361 12.267
HSDT [47] 20.330 11.850 20.360 11.830

10 Present (13 � 13) 16.8448 11.9149 16.8598 11.8874
Present (17 � 17) 16.8448 11.9146 16.8538 11.8872
Present (21 � 21) 16.8441 11.9146 16.8531 11.8872
FSDT [47] 16.625 12.173 16.634 12.236
HSDT [47] 16.620 11.800 16.630 11.790

20 Present (13 � 13) 15.8048 11.9127 15.8055 11.8840
Present (17 � 17) 15.7998 11.9125 15.8006 11.8838
Present (21 � 21) 15.7993 11.9125 15.8001 11.8838
FSDT [47] 15.556 12.166 15.559 12.230
HSDT [47] 15.55 11.79 15.55 11.78

50 Present (13 � 13) 15.4988 11.9121 15.4972 11.8831
Present (17 � 17) 15.4942 11.9119 15.4926 11.8829
Present (21 � 21) 15.4938 11.9119 15.4922 11.8829
FSDT [47] 15.244 12.163 15.245 12.228
HSDT [47] 15.24 11.79 15.23 11.78

100 Present (13 � 13) 15.4546 11.9120 15.4527 11.8830
Present (17 � 17) 15.4501 11.9118 15.4481 11.8827
Present (21 � 21) 15.4497 11.9118 15.4477 11.8827
FSDT [47] 15.198 12.163 15.199 12.227
HSDT [47] 15.19 11.79 15.19 11.78

Plate Present (13 � 13) 15.4398 11.9120 15.4378 11.8829
Present (17 � 17) 15.4353 11.9118 15.4333 11.8827
Present (21 � 21) 15.4349 11.9118 15.4328 11.9927
FSDT [47] 15.183 12.162 15.184 12226
HSDT [47] 15.170 11.790 15.170 11.780
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Fig. 4. First four vibrational modes of cross-ply laminated spherical shells,
�x ¼ x a2

h

ffiffiffiffiffiffiffiffiffiffiffi
q=E2

p
, laminate ([0�/90�/90�/0�]) grid 13 � 13 points, a/h = 100,R/a = 10.
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ite shells. Advantages of radial basis functions are absence of mesh,
ease of discretization of boundary conditions and equations of
equilibrium or motion and very easy coding. The static displace-
ments and the natural frequencies obtained from present method
are shown to be in excellent agreement with analytical solutions.
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