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Abstract: The calculation of orbital fluctuations and of the phase-orbital correlation within Floquet-based noise analysis of
autonomous systems requires the availability of all the direct and adjoint Floquet eigenvectors associated with the noiseless
limit cycle. Here the authors introduce a novel numerical technique for their frequency domain determination. The algorithm is
entirely based on the Jacobian matrices already available from the harmonic balance-based calculation of the limit cycle, thus
avoiding any time-domain integration. The Floquet eigenvalues and adjoint eigenvectors are calculated from a generalised
eigenvalue problem, thus making the approach readily implementable into CAD tools provided that the Jacobian matrices are
made available.
1 Introduction

Noise analysis of oscillators has been the object of research
for decades because of their widespread use in
communication systems, and of the impact of oscillator
noise on receiver sensitivity [1]. Recently, a mathematically
rigorous noise analysis technique has been proposed in
[2, 3], further developing the seminal approach in [4, 5].
The approach in [2] considers only phase noise in the
output fluctuations, neglecting orbital noise which may in
some cases become important [6]. The inclusion of orbital
noise, and of the phase-orbit correlation, is treated in detail
in [7], where we derive a full perturbative characterisation
of oscillator phase and orbital noise in the case of white
Gaussian noise sources (see also [8]). Other authors
proposed different analyses in [4–6]: all these methods,
however, share the same foundation, that is, Floquet theory
applied to the linearised oscillator equations. In particular,
in all cases the direct and adjoint (see the discussion later
on) Floquet eigenvectors associated with the Floquet
exponents of the unperturbed oscillator orbit are a basic
ingredient for determining the noise spectrum (see also [9]).

In this contribution, we propose a novel frequency domain
numerical algorithm, fully based on the harmonic balance
(HB) technique and on the jacobian matrices exploited for
its numerical implementation, which allows for an efficient
estimation of the relevant quantities required for the
calculation of the oscillator complete noise spectrum.

2 Glimpse on Floquet-based oscillator
noise analysis

The theory developed in [2, 7] allows one to express the noise
spectrum of an oscillator by exploiting a non-linear
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perturbation analysis around the noiseless oscillator limit
cycle. Such a spectrum is decomposed into the phase noise
contribution, the orbital (amplitude) fluctuations and their
correlation. All these components are in turn given by a
superposition of Lorentzian spectra around the harmonics of
the fundamental frequency f0. The parameters of the
Lorentzian components (i.e. amplitude and corner
frequency) depend, besides of course from the input noise
sources, from the Floquet eigenvalues and eigenvectors of
the direct and adjoint linear periodically time-varying
(LPTV) system obtained linearising the oscillator dynamical
equations around the noiseless orbit. Notice that, although
with different final expressions for the spectra, this holds
also for the other Floquet-based orbital noise theories
proposed in [4–6], thus confirming the necessity to estimate
all the Floquet quantities associated with the limit cycle.

The available orbital noise analyses are currently limited to
the case of oscillators described by ordinary differential
equations [4–7], although this is not the most general case
because the modified nodal analysis of circuits, in general,
leads to describing the system under consideration by
means of differential-algebraic equations (DAEs) [10]. The
Floquet-based analysis of phase noise has been formulated
for DAEs in [11], whereas the extension of the
methodology for orbital fluctuations analysis described in
[7] is currently under development. Therefore here we
consider the more general case of an autonomous circuit
represented by an index-1 DAE [11]

dt

dt
q(x) − f (x) = 0 (1)

where x(t) [ Rn is the state vector, and q(·), f (·): Rn � Rn

are non-linear functions.
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Assuming that (1) admits of a non-trivial periodic solution
(limit cycle) xS(t) of period T, the LPTV direct system derived
by linearising (1) around xS(t) is defined by

dt

dt
[C(t)z(t)] − A(t)z(t) = 0 (2)

where the T-periodic C and A n × n matrices are the
Jacobians of the non-linear functions q(.) and f (.) evaluated
in the limit cycle. According to [11], we assume here that
C(t) has a rank m ≤ n independent of time. The adjoint
of (2) is [11]

CT(t)
dt

dt
w(t) + AT(t)w(t) = 0 (3)

The generalised Floquet theorem (Floquet theorem was
originally derived for ordinary differential equations, and
recently extended [11] to the case of index-1 DAEs.) valid
for index-1 DAEs allows us to express the solution of (2)
and (3), respectively, as

z(t) = emk tuk (t) w(t) = e−mk tvk(t) k = 1, . . . , n (4)

where mk are the Floquet eigenvalues or exponents (FE) of the
limit cycle, and uk (t), vk (t) are the T-periodic direct and
adjoint Floquet eigenvectors. As for an autonomous system
one of the FE is always equal to zero, we assume m1 = 0;
furthermore, the discussion in [11] shows that there are
n 2 m Floquet exponents mk = −1, that we number as
k ¼ m + 1, . . . , n. The two sets of vector functions u and v
satisfy the generalised biorthogonality conditions

V T(t)C(t)U (t) = Im 0
0 0

[ ]
(5)

where

V (t) = v1(t), . . . , vm(t), vm+1(t), . . . , vn(t)
[ ]

(6)

U(t) = u1(t), . . . , um(t), um+1(t), . . . , un(t)
[ ]

(7)

and Im is the m-dimensional identity matrix.
According to the theory in [2, 7], phase noise is fully

characterised by the perturbation projection vector (PPV)
v1(t) through the constant

c = 1

T

∫T

0

vT
1 (t)B(xS)BT(xS)v1(t) dt (8)

while the orbital and phase-orbit correlation components of
the spectrum depend on the other eigenvalues mk and
(direct and adjoint, respectively) eigenvectors uk(t) and
vk (t). We shall extend the term PPV to all the adjoint
eigenvectors vk (t), because they provide the projection
versors along the Floquet decomposition of the oscillator
orbit.

Once the limit cycle is known, the most common approach
to the numerical evaluation of the FEs and of the u and v sets
is based on the time-domain determination of the monodromy
matrix for the direct and adjoint systems, respectively, (see
[12, Chapter 10] and [6, 11, 13]), which is difficult and
quite time consuming. The main problem is related to the
exponential dependence in (4) which is growing with time
since, for a stable oscillator, Re{mk} ≤ 0 for k . 1. This
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 1, pp. 46–51
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amplifies the accumulated discretisation error unless special
integration techniques are exploited (see also the discussion
in [12, Chapter 10]). On the other hand, in [14] numerical
techniques are presented for the efficient time- and
frequency-domain determination of the k ¼ 1 PPV only,
based on the exploitation of an augmented version of the
Jacobian matrices involved in the LPTV system definition.
Notice that such matrices are also very often used for the
determination of the limit cycle xS(t).

3 Frequency-domain algorithm

Here we present a novel numerical technique for frequency-
domain determination of the entire v set, based on the HB
method. This approach, founded on the methodology
presented in [15, 16], allows us to estimate the frequency
representation of the vk vectors as the result of an
eigenvalue problem, exploiting the same matrices already
used in the Newton’s solution of the HB system leading to
the limit cycle calculation. Notice that the u set can be
determined, in a quite similar way, by means of the
algorithm discussed in [15].

In order to introduce the frequency-domain determination
of the v vector set, let us substitute into (3) the general form
of the solution w(t) = exp(−mk t)vk (t), obtaining

−mkCT(t)vk(t) + CT(t)v̇k (t) + AT(t)vk(t) = 0 (9)

where v̇ denotes the time derivative.
The HB technique requires sampling the T-periodic

functions in (2N + 1) time samples tj distributed within an
interval of width T. Each vector function x(t) [ Rn is
therefore transformed into a n(2N + 1) vector x̂ built
collecting the time samples x̂i = [xi(t1) . . . xi(t2N+1)]T for
each component xi(t)

x̂T = [x̂T
1 , . . . , x̂T

n ] (10)

A similar procedure is carried out on matrices: let Xi, j(t) be
the (i, j)th element of matrix X (t) [ Rn×n. The sampled
version of the element is a diagonal matrix built with the
time samples of Xi, j(t): X̂ i, j = diag{Xi, j(t1) . . .Xi, j(t2N+1)},
whereas time sampling of the entire matrix leads to the
n(2N + 1) × n(2N + 1) matrix built of diagonal blocks

X̂ =
X̂ 1,1 . . . X̂1,n

..

. . .
. ..

.

X̂ n,1 . . . X̂n,n

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (11)

According to [10], the HB formulation amounts to represent
each time-sampled function with the corresponding
harmonic (Fourier) amplitudes

xi(t) = xi,c0 +
∑N

h=1

[xi,ch cos(hv0t) + xi,sh sin(hv0t)] (12)

where v0 = 2pf0. The relationship between the time samples
47
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and the harmonic amplitudes is given by the DFT operator

G−1 =
1 gc

1,1 gs
1,1 . . . gc

1,N gs
1,N

..

. ..
. ..

. . .
. ..

. ..
.

1 gc
2N+1,1 gs

2N+1,1 . . . gc
2N+1,N gs

2N+1,N

⎡
⎢⎣

⎤
⎥⎦

(13)

where

gc
p,q = cos(qv0tp) gs

p,q = sin(qv0tp) (14)

Collecting the harmonic amplitudes into x̃i = [xi,c0, xi,c1,
xi,s1, . . . , xi,cN , xi,sN ]T, one finds

x̂i = G−1x̃i⇐⇒x̃i = G x̂i (15)

To generalise (15) to vector functions, we define the block-
diagonal linear operator Gn = diag{G, . . . , G } built of n
copies of G, so that

x̂ = G−1
n x̃⇐⇒x̃ = Gnx̂ (16)

The last operator needed is the representation in the HB basis of
time derivation. The harmonic amplitudes of the scalar
function ẋi(t) are easily derived as [15]

˜̇xi = G ˆ̇xi = v0Vx̃i (17)

where

V =

0 0 0 0 0 . . . 0 0
0 0 1 0 0 . . . 0 0
0 −1 0 0 0 . . . 0 0
0 0 0 0 2 . . . 0 0
0 0 0 −2 0 . . . 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 0 0 . . . 0 N
0 0 0 0 0 . . . −N 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

Again, the extension to the case of a vector function requires
to define the block-diagonal derivation operator Vn =
diag{V, . . . , V} built of n copies of V

˜̇x = v0Vnx̃ (19)

Time-discretisation of (9) leads to

− mkĈ
T
v̂k + Ĉ

T ˆ̇vk + Â
T
v̂k = 0 (20)

where, according to (11)

X̂
T =

X̂
T
1,1 . . . X̂

T
n,1

..

. . .
. ..

.

X̂
T
1,n . . . X̂

T
n,n

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ =

X̂1,1 . . . X̂ n,1

..

. . .
. ..

.

X̂1,n . . . X̂ n,n

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (21)

since the building blocks are diagonal. Multiplying (20) from
the left by Gn and using (16), (19) leads to the frequency-
domain representation of the equation defining the FE and
48
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the eigenvectors vk (t)

−mkC̃Tṽk + v0C̃TVnṽk + ÃTṽk = 0 (22)

where

C̃T = GnĈ
T
G−1

n ÃT = GnÂ
T
G−1

n (23)

Therefore the vk set is made of the eigenvectors of the
generalised eigenvalue problem

[v0C̃TVn + ÃT]ṽk = mkC̃Tṽk (24)

Notice that matrices C̃T and ÃT defined in (23) are simply a
permutation of matrices C̃ = GnĈG−1

n and Ã = GnÂG −1
n

used for the direct eigenvectors calculation [15],
respectively, since from (21)

X̃T = GnX̂
T
G−1

n =
X̃ 1,1 . . . X̃ n,1

..

. . .
. ..

.

X̃1,n . . . X̃ n,n

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (25)

Accordingly, (24) involves the same block components
already exploited in the HB system solution leading to the
determination of xS(t), at least if Newton’s method is
employed.

The full solution of the generalised eigenvalue problem
(24) yields n(2N + 1) eigenvalues, distributed in the
complex plane in ‘vertical’ lines characterised by the same
(apart from numerical errors) real part: according to the
discussion in [15], numerical precision considerations allow
one to choose the values nearer to the real axis as the best
representation of the actual n FEs. This means that
the relevant generalised eigenvalues are those located in a
strip of the complex plane defined by the condition
−v0/2 ≤ Im{mk} ≤ v0/2, and therefore specialised
algorithms for their determination as those discussed in [17]
can be exploited. With respect to the numerical method
proposed in [14], (24) has two advantages: all the
eigenvectors can be calculated, thus making possible the
characterisation of the orbital deviation besides phase noise,
and no augmented Jacobian should be built. On the other
hand, the algorithm in [14] directly evaluates the PPV, thus
avoiding the numerical issues corresponding to the correct
choice of v̂1 whenever there are several eigenvalues near to
zero. Nevertheless, the burden required by this choice is not
overly significant, because use can be made of the
biorthogonality relations (5) (see also [11, 14]): m1 is
chosen by picking up the eigenvalue that better satisfies the
condition

vT
1 (t)C(t)u1(t) = vT

1 (t)C(t)ẋS(t) = 1 (26)

as u1(t) = ẋS(t) [2].
An HB-based procedure for the estimation of the FEs and

of the direct Floquet eigenvectors was also proposed in [18],
where the numerical procedure involves some matrix
manipulations that might, in critical cases, reduce the
numerical accuracy of the FEs (see Section 4.1). On the
other hand, we make use of the Jacobian matrix in direct
and permuted form.
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 1, pp. 46–51
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4 Examples

We consider here two examples of application of the
algorithm described in Section 3. In both cases, we make
use of the estimation of the relative error of the limit cycle,
Floquet eigenvectors and Floquet exponents defining the
relative errors as follows (1 ≤ k ≤ n denotes the number of
FEs included in the estimation of the relative error, ji
denotes the ith FE included in the error calculation)

exS
= ‖xS(N ) − xS‖

‖xS‖
(27)

ev,k = max
i=1,...,k

‖vji
(N ) − vji

‖
‖vji

‖ (28)

em,k =
max

i=1,...,k
|mji

(N ) − mji
|

max
i=1,...,k

|mji
| (29)

where x denotes the ‘exact’ value of x, estimated as the
solution of the HB method for large N, and ‖.‖ is the L2
norm in Rn. The choice in (29) is because of the fact that
the maximu accuracy for an eigenvalue is related to the
radius r of the spectrum of the matrix, that is, to the largest
(in magnitude) eigenvalue, and to the number d of digits
used for its representation (see [13, 19]), by

e = r× 10−d (30)

Notice that em,1 reduces to the absolute value of m1 when we
consider the error associated to the nominally zero FE only.

4.1 Tow–Thomas oscillator

The first example is the Tow–Thomas oscillator presented in
[18] and shown in Fig. 1. This example was chosen to allow
for a comparison of the present approach with [18], where an
algorithm for the frequency-domain evaluation of the Floquet
eigenvalues and direct eigenvectors was also presented. The
operational amplifiers are ideal and represented by nullors,
while the inverter is approximated by the input–output
relation vout = tanh(−avin), where a is a parameter
representing the slope of the transition. The circuit has
n ¼ 3 and m ¼ 2, and therefore one of the FE is 21. To
allow for a comparison with [18], we consider an HB
simulation with 32 harmonics plus DC, and we set
a ¼ 23. The resulting oscillation frequency is

Fig. 1 Circuit of Tow–Thomas oscillator discussed in [18]

Operational amplifiers are ideal and realised as nullors, while R1 ¼ 3 kV,
C ¼ 20 nF. The input–output relation of the inverter is approximated
through a tanh function
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 1, pp. 46–51
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f0 = 7.91723 kHz, with the two Floquet exponents

m1 = 8.9389851968458 × 10−11 ≃ 0 (31)

m2 = −7737.1409649406 (32)

Notice that, with the same number of harmonics, m2 is in
excellent agreement with [18], whereas our estimate of m1
is five orders of magnitude lower.

This accuracy improvement is confirmed by an analysis of
the error associated to the calculation of the limit cycle and
of the corresponding Floquet eigenvalues and adjoint
eigenvectors (em,1 and ev,1), shown in Figs. 2 and 3 as a
function of the number of harmonics used in the simulation.
The ‘exact’ value was here estimated as the solution of the
HB method for N ¼ 101. The results clearly show that with
our method the minimum error in the determination of the
Floquet eigenvalues is obtained for a comparatively low
number of harmonics, that is, N ≃ 30.

Fig. 2 Relative error for the determination of the limit cycle and of
the Floquet adjoint eigenvector, and absolute error for the Floquet
eigenvalue m1 of the Tow–Thomas oscillator as a function of the
number of harmonics in the HB simulation

Fig. 3 Relative error for the determination of the limit cycle, of the
Floquet adjoint eigenvector, and of the Floquet eigenvalue m2 of the
Tow–Thomas oscillator as a function of the number of harmonics in
the HB simulation
49
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4.2 Colpitts oscillator

The second example is the Colpitts oscillator in Fig. 4.
The bipolar transistor is described by the simplified model

iB = IS[evB/VT − 1] iC = bFiB (33)

where IS = 8.8 × 10−14 A, VT = 26 mV and bF = 100. The
circuit parameters are: VCC = 15 V, R1 = 28.6 kV, R2 =
1.4 kV, RC = 50V, C1 = 20 nF, C2 = 1 nF, CS = 1mF and
L ¼ 83.556 mH. The circuit has m ¼ n ¼ 4, and has been
simulated with the HB technique. Using 120 harmonics
plus DC, the oscillation frequency is f0 = 424.405 kHz and
the solution is shown in Fig. 5.

Exploiting the algorith in Section 3, we calculated the four
Floquet eigenvalues of the limit cycle

m1 = −2.11347673135426 × 10−3 ≃ 0 (34)

m2 = −1.37828290506221 (35)

m3 = −1.62162555328646 × 105 (36)

m4 = −2.09408355672130 × 107 (37)

and the correspondig Floquet eigenvector sets u and v. As all
the eigenvalues (apart from m1 which is chosen, besides being
the smallest in magnitude, because the associated eigenvectors
better satisfy the biorthogonality condition (26)) exhibit
negative real part, the limit cycle is stable. A 3D section in
the state space of the normalised adjoint eigenvectors is
shown in Fig. 6, using (5) as normalisation conditions.

Fig. 4 Circuit of the Colpitts oscillator

Fig. 5 3D section of the state-space limit cycle for the Colpitts
oscillator
50
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We show in Fig. 7 a representation of the N dependence of
the relative error of the limit cycle (exS

), Floquet eigenvectors
(ev,4) and Floquet exponents (em,4) estimation where the
‘exact’ values are calculated as the solution of the HB
method for N ¼ 161.

The error analysis of both examples clearly shows that the
truncation error is an exponentially decreasing function of N,
thus suggesting that the HB technique is well suited for the
accurate calculation of all of the Floquet quantities. This
should be compared to the fact that, at least for the limit
cycle determination, time-domain algorithms, such as the
shooting technique, exhibit a truncation error which
decreases polynomially with the number of time samples
used to represent the cycle [12].

Using the Floquet eigenvalues and eigenvectors discussed
above, we calculated the full noise spectrum of the circuit
assuming as a noise source the shot noise generators of the
bipolar transistor and exploiting the technique presented in
[7, 8]. The result is shown in Fig. 8 as a function of the
absolute frequency. The phase noise contribution is
dominant near to the limit cycle harmonics, whereas the
orbital contribution is important far from q f0 (q integer).
Notice that the orbital noise is responsible of the non-
symmetric spectrum shape between the cycle harmonics (as

Fig. 6 3D section of the state-space adjoint eigenvectors v for the
Colpitts oscillator

Fig. 7 Relative error in the limit cycle, Floquet adjoint
eigenvectors and Floquet eigenvalues determination as a function
of the number of harmonics included in the HB simulation for the
Colpitts oscillator
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 1, pp. 46–51
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found also in [20]), and its frequency dependence is not
Lorentzian around the harmonics because of the
superposition of several Lorentzian terms. Furthermore, the
correlation between phase and orbital fluctuations is, at least
for this example, negliglible.

The asymmetry provided by the orbital noise is even more
evident observing the upper and lower sidebands around the
fundamental, shown in Fig. 9. Also the correlation

Fig. 8 Collector current noise spectrum of the Colpitts oscillator
as a function of the absolute frequency for the Colpitts oscillator

Fig. 9 Upper (above) and lower (below) sideband frequency
dependence of the collector current noise spectrum of the Colpitts
oscillator around the fundamental frequency f0
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 1, pp. 46–51
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contribution is neither Lorentzian in shape, nor symmetric
with respect to f0.

5 Conclusions

We presented a novel algorithm for the numerical calculation
of the Floquet adjoint eigenvectors based on the HB
technique, and therefore readily implementable in most
CAD tools for RF/microwave analysis and design. The
numerical technique exploits the Jacobian matrices already
used in the Newton cycle typically used to solve the HB
problem, and makes available the quantities necessary for
the estimation of the oscillator orbital fluctuations and of
their correlation with phase noise.
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