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Including orbital fluctuations in the noise
spectrum of autonomous circuits

fabio l. traversa
1

and fabrizio bonani
2

We discuss the impact of orbital fluctuations on the noise spectrum of a free-running oscillator, exploiting a rigorous non-
linear perturbative analysis based on the Floquet theory, and providing evidence of its relevance for high-Q oscillators.
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I . I N T R O D U C T I O N

Noise analysis in oscillators, despite its long history dating
back to the 1930s [1–4], still receives a large interest, from
both theoretical and practical standpoints, because of the
inherent complexity of fluctuation analysis in autonomous
systems, and of the significant impact of oscillator noise per-
formance on communication receivers [5].

The widely accepted theory decomposes oscillator noise
into time-reference fluctuations, which in analog applications
are expressed in terms of phase noise, and into variations of
the amplitude of the circuit working point: these give rise
to the so-called amplitude or orbital noise contribution.
Although the dominant component near to the oscillator fre-
quency f0 (and to its harmonics kf0, k integer) is phase noise,
orbital fluctuations become the stronger contribution at large
offset frequencies, and therefore in the presence of a strong
adjacent channel they contribute to impair the dynamic
range of the receiver [5].

The link between oscillator fluctuations and the circuit
noise sources can be studied in several ways, with different
degrees of complexity and, in turn, of accuracy. The two
extrema are the purely linear perturbative analysis, and the
full nonlinear treatment based on the derivation of a nonlinear
partial differential equation having as unknown the prob-
ability density of the fluctuating state variables (i.e., the
Fokker–Planck equation associated to the noisy oscillator
dynamic equations). While the latter is of course a rigorous
technique, its implementation is in general unpractical since
very rarely a fully numerical integration can be avoided. On
the other hand, in the linear perturbative approach the
circuit variables are expressed as the sum of the noiseless
oscillator value and of the noise-induced perturbation.
Fluctuations are assumed of small amplitude, and the circuit
is transformed into a linear time-varying system through
linearization. This technique has been proved to provide an

unphysical phase noise spectrum divergence for frequencies
very close to the harmonics of the oscillating frequency, i.e.,
for vanishingly null offset (or sideband) frequency. Despite
this limitation, however concentrated very near to f0, linear
perturbation is the most valuable tool in the hands of the
circuit designer, at least for a first-order design, since quite
often it allows for a fully analytical treatment.

The divergence issue has been overcome by the nonlinear
perturbative analysis proposed in [6], where only the phase
noise component was considered. We have recently extended
this treatment by deriving a consistent statistical characteriz-
ation of the entire correlation matrix, i.e., by considering
not only the phase noise but rather including orbital fluctu-
ations and their correlation with phase noise as well [7]. We
discuss here some results of the application of this approach
to a couple of examples, showing the effects of orbital noise
and the impact of the oscillator Q factor on its magnitude.

I I . A G L I M P S E O N T H E M O D E L I N G
A P P R O A C H

We assume that the oscillator is a lumped circuit represented
by the autonomous ordinary differential equation:

dx
dt

− f(x) = 0, (1)

where x(t) is the circuit state vector of size n. Let us
consider the non-trivial periodic solution (limit cycle, of
period T ¼ 1/f0) xS(t) for (1). We perturb (1) by adding the
set j(t) of white Gaussian noise sources, so that z(t) satisfies

dz
dt

− f(z) = B(z)j(t). (2)

The solution-dependent matrix B(z) takes into account the
possible modulation of the noise generators.

The nonlinear perturbation theory in [6] is based on
assuming for z(t) the following decomposition:

z(t) = xS(t + a(t)) + y(t), (3)
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where a(t) is a stochastic process responsible for the oscillator
phase noise, while y(t) corresponds to the orbital fluctuations
(amplitude noise). The autocorrelation matrix of the noisy
oscillator solution is therefore given by

Rz,z(t, t) = E{z(t)z†(t + t)}

= RxS ,xS (t, t) + RxS ,y(t, t) + Ry,xS (t, t)

+ Ry,y(t, t), (4)

where E{.} is the ensemble average operator and † denotes the
complex conjugate and transpose operation. The first term
RxS,xS (t, t) describes phase noise [6].

Notice that the decomposition in (3) was already proposed
in [8]: although both [8] and [6] make use of the Floquet
theory to develop their analysis, the advantage in the treat-
ment of [6] is in the choice of the projection operator
chosen to decompose phase and amplitude fluctuations.
Kaertner projects the equation along the tangent vector
ẋS (t) = u1(t), where u1(t) is the (direct) Floquet eigenvector
associated to the null Floquet exponent m1 ¼ 0 always
present when the linear system obtained by linearizing (1)
around the steady-state solution xS(t) is studied [6, 9]. On
the other hand, the derivation in [6] shows that a(t) satisfies
a nonlinear stochastic equation, derived by projecting the full
equation along the Floquet adjoint eigenvector v1(t) associ-
ated to m1. This decouples a(t) from orbital noise, thus allow-
ing for a separated treatment of the two components.

The proof provided in [7] shows that including orbital fluc-
tuations using the same projection system as in [6], even the
total noisy output z(t) is, at least asympotically with the obser-
vation time t, a stationary stochastic process (this result was
obtained in [6] with reference to phase noise only, i.e., by
setting y(t) ¼ 0). This means that, in the frequency domain,
a stationary total spectrum can be defined as

Sz,z(v) = SxS ,xS (v) + Scorr(v) + Sy,y(v), (5)

where the partial spectra are the Fourier transforms of the
asymptotic values of the correlation functions RxS

,xS
, RxS

,y +
Ry,xS

and Ry,y, respectively.
Because of the decoupling of the a(t) equation from y(t),

the phase noise contribution SxS
,xS

(v) still is given by the
same expression derived in [6]. On the other hand, the
second and third term in (5) depend on the remaining n 2

1 Floquet exponents and direct and adjoint eigenvectors
associated to the oscillator limit cycle. Closed-form
expressions were mathematically derived [7], and reported
in [10]. We repeat them here for the sake of self-consistency:

SxS ,xS (v) =
∑

h

X̃h X̃
†
h

h2v2
0c

J
2
h(v)

(6)
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(7)

Sy,y(v) =
∑n

l=2

∑
h,j

(C†
lhj +Clhj) 1

2h2v2
0c−Re{ml}

[ ]
D

2
lhj(v)

{

+
i(C†

lhj −Clhj)(v+ jv0 + Im{ml})

D2
lhj(v)

}
, (8)

where i is the imaginary unit, v0 is the angular frequency of
oscillation and X̃h is the hth harmonic amplitude of the
(exponential) Fourier representation of xS(t). The other
coefficients are (here BT denotes the transpose of B) as
follows:

c = 1
T

∫T

0
vT

1 BBT v1 dt, (9)

J
2
h(v) = 1

2h2v2
0c

[ ]2 + [v+ hv0]2 , (10)

D2
lhj(v) = 1

2h2v2
0c−Re{ml}

[ ]2 + [v+ jv0 + Im{ml}]2 , (11)

Clhj =
∑n

l′=2

∑
j′

Ũl′ j′ L̃
T
l′h−j′

L̃
∗
lh−j

Ũ
†
lj

i(j− j′)v0 −ml′ −m∗
l

, (12)

Dlhj = X̃h Ṽ
T
10
L̃

∗
lh−j

Ũ
†
lj

ihv0

−m∗
l − i(h− j)v0

. (13)

Fig. 1. Circuit of the InGaP/GaAs HBT oscillator in [15].
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In the previous expressions Ṽ10 is the DC harmonic com-
ponent of v1(t)TB(t), and Ũlj and L̃

T
lk

are the Fourier coeffi-
cients of ul(t) and v1

T(t)B(t), respectively.
Accordingly, the full noise spectrum evaluation is

straightforward once two deterministic analyses are
performed:

1. the oscillator working point xS(t) is calculated in the time
or frequency domain, along with the oscillation frequency;

2. the oscillator equations are linearized around the limit
cycle xS(t), and the corresponding linear system is analyzed
according to the Floquet theory estimating all the n Floquet
exponents ml, and all the associated direct ul(t) and adjoint
vl(t) Floquet eigenvectors (l ¼ 1, . . .,n). This evaluation can
be, for instance, carried out in the frequency domain with
the algorithms in [9, 11].

I I I . R E S U L T S A N D D I S C U S S I O N

We consider here two examples of application: the HBT
oscillator discussed in [10] and the Tow-Thomas oscillator
studied in [6, 12, 13]. All simulations are carried out exploit-
ing a simulation code written in the MATLAB environment
[14].

A) HBT-based oscillator
The first example is the negative-resistance oscillator shown in
Fig. 1 [15]. The active device is an InGaP/GaAs HBT rep-
resented by the Gummel-Poon model described in [15],
made of a static model complemented by the nonlinear capa-
citances connected between the base and emitter, and the base
and collector. The emitter of the circuit exhibits a negative
resistance and the rest of the circuit was designed to set up
oscillations at 5 GHz. The circuit was simulated in the fre-
quency domain with the harmonic balance (HB) technique
including 30 harmonics plus DC. The calculated total
emitter current noise spectrum and its components according
to (5) are shown in Fig. 2 as a function of the absolute fre-
quency. We found that the correlation spectrum is negligible,
while orbital noise becomes the dominant term for frequen-
cies away from the harmonics. The circuit is represented by

Fig. 2. Total emitter current noise spectrum of the InGaP/GaAs HBT oscillator as a function of the absolute frequency (from [10]).

Fig. 3. Partial contributions to the orbital emitter current noise spectrum of
the InGaP/GaAs HBT oscillator (from [10]).

Table 1. Floquet’s exponents for the HBT oscillator.

Exponent Value [s21]

m1 0
m2 21.27 × 109

m3 22.50 × 109 + i1.94 × 109

m4 22.50 × 109 2 i1.94 × 109

m5 21.14 × 1010

m6 24.71 × 1011

including orbital fluctuations in the noise spectrum of autonomous circuits 13



a differential algebraic equation system made of nine scalar
equations: according to [16], there are three infinite Floquet
exponents and six Floquet exponents with the finite values
listed in Table 1: apart from m1, all exponents have negative
real part thus implying that the oscillator is stable.

According to the expressions in [7, 10], the partial contri-
butions to the orbital noise spectrum due to the five non-null
Floquet exponents are reported in Fig. 3. The dominant con-
tribution is due to the exponent with the smallest real part, in

qualitative agreement with the fact that the lth Floquet eigen-
value contribution to Sy,y(v) is proportional to 1/ml [10].
Notice, however, that the second largest component is due
to m5, thus pointing out that the magnitude of the Floquet
exponents is not the only contribution to be taken into
account to assess the relative importance of amplitude noise.

Figs 4 and 5 show, respectively, the sideband representation
of the noise spectrum around the fundamental and the second
harmonic component: the orbital contributions result into

Fig. 4. Upper and lower sideband total emitter current noise spectrum of the InGaP/GaAs HBT oscillator around the fundamental (from [10]).

Fig. 5. Upper and lower sideband total emitter current noise spectrum of the InGaP/GaAs HBT oscillator around the second harmonic (from [10]).
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asymmetries in the spectrum around the oscillator harmonics,
as also found in [17].

B) Tow-Thomas oscillator
The second example is the Tow-Thomas oscillator presented
in [6, 12, 13] and shown in Fig. 6. The operational amplifiers
are ideal, noiseless and represented by nullors, while the inver-
ter is approximated by the input–output relation vout ¼

tanh(2avin), where a is a parameter representing the slope
of the transition. This circuit was chosen since it can be
shown to be equivalent [6] to a parallel RLC circuit with a
Q factor corresponding to the Q coefficient in Fig. 6: this
allows for a simple modulation of the Q value to study its
impact on orbital noise. The output variable chosen for
noise estimation is voltage vout.

The oscillator has two state variables, therefore only two
Floquet exponents m1 ¼ 0 and m2 are present. The circuit
was simulated with HB including 50 harmonics plus DC,
assuming a ¼ 23 and considering as noise sources only
the thermal noise in the resistances. The resulting oscillation
frequency is f0 ¼ 7.9172 kHz, while the Q-dependence of m2

(a real, negative number as expected for a stable oscillator) is
presented in Fig. 7: as discussed in [16], a high-Q oscillator is
characterized by at least a second Floquet exponent near to
zero, which in turn should result into a larger amplitude
noise component.

This is confirmed by Figs 8–10, which report the
Q-dependence of the phase and orbital noise spectra at an
offset frequency of 1, 10 and 100Hz from f0, respectively.
As expected, the amplitude noise is steadily increasing with

Fig. 6. Circuit of the Tow-Thomas oscillator. We used R ¼ 1 kV
and C ¼ 20 nF.

Fig. 7. Floquet exponent m2 for the Tow-Thomas oscillator as a function of the
Q factor of the equivalent RLC circuit.

Fig. 8. Q-dependence of the phase and amplitude noise spectra at 1 Hz offset
frequency from f0 for the Tow-Thomas oscillator.

Fig. 9. Q-dependence of the phase and amplitude noise spectra at 10 Hz offset
frequency from f0 for the Tow-Thomas oscillator.

Fig. 10. Q-dependence of the phase and amplitude noise spectra at 100 Hz
offset frequency from f0 for the Tow-Thomas oscillator.
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Q, reaching a maximum value equal to the corresponding
phase noise spectrum. The absolute frequency dependence
of the orbital noise spectrum using Q as a parameter is pre-
sented in Fig. 11, again confirming the impact of Q on the
magnitude of amplitude noise. Notice also that in this
circuit the correlation between phase and orbital fluctuations
is negligible, as shown in Fig. 12, where the total output
voltage noise spectrum and its partial components are
shown for Q ¼ 1000 as a function of the absolute frequency.

Spectrum peaks are present at f0 and 3f0 only, as found also in
[6, 12].

Finally, we show the offset frequency dependence of the
relevant noise contributions around the fundamental and
third harmonics in Figs 13 and 14, respectively. For this
oscillator, although the noise spectrum is practically sym-
metric around the fundamental, an asymmetry appears
around the third harmonics, again due to the orbital noise
contribution.

Fig. 11. Orbital noise spectrum of the Tow-Thomas oscillator as a function of the absolute frequency for three values of Q.

Fig. 12. Total noise spectrum of the Tow-Thomas oscillator as a function of the absolute frequency for Q ¼ 1000.
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V I . C O N C L U S I O N

Based on the rigorous extension of the nonlinear perturbative
approach to oscillator noise analysis proposed in [6], we dis-
cussed the effects of orbital noise on the fluctuation spectrum
of autonomous circuits. We have provided two examples of
application, showing that amplitude noise, the dominant fluc-
tuation component sufficiently far away from the oscillation
frequency, might be responsible for spectrum asymmetries
around the oscillation frequency harmonics. Furthermore,

we have provided evidence that orbital noise actually
becomes more significant for high-Q oscillators, since its mag-
nitude is, at least for the second-order oscillator considered in
this study, an increasing function of the Q factor.
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