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Abstract

We consider a quasilinear equation, involving the p-Laplace op-
erator, with a p-superlinear nonlinearity. We prove the existence of
a nontrivial solution, also when there is no mountain pass geometry,
without imposing a global sign condition. Techniques of Morse theory
are employed.

Keywords: p-Laplace equations; nontrivial solutions; Morse theory.

Mathematics Subject Classification 2010: 58E05, 35J65

1 Introduction

Consider the boundary value problem−∆p u = λV |u|p−2 u+ g(x, u) in Ω ,

u = 0 on ∂Ω ,
(1.1)

where Ω is a bounded open subset of Rn, n ≥ 1, ∆p u = div
(
|∇u|p−2∇u

)
is

the p-Laplacian of u, p ∈]1,∞[, λ ∈ R is a parameter, V ∈ L∞(Ω) and g is
a Carathéodory function on Ω× R satisfying the following conditions:

(g1) there exist C > 0 and

p < q <

p∗ :=
np

n− p
if p < n

∞ if p ≥ n

such that

|g(x, s)| ≤ C
(
|s|q−1 + 1

)
;

(g2) we have

g(x, s) = o(|s|p−1) as s → 0, uniformly in x ;
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(g3) there exist µ > p and R > 0 such that

0 < µG(x, s) :=

∫ s

0

g(x, t) dt ≤ s g(x, s), whenever |s| ≥ R .

In particular, g(x, 0) ≡ 0 and hence we have the trivial solution u = 0, and
we seek another.

In the case p = 2, the existence of a nontrivial solution u for (1.1) can be
obtained via the Linking Theorem (see e.g. Rabinowitz [21, Theorem 5.16]).
More precisely, let us assume, without loss of generality, that λ ≥ 0. If the
set

M =

{
u ∈ W 1,p

0 (Ω) :

∫
Ω

V |u|p dx = 1

}
is empty or if M ̸= ∅ and

λ < λ1 := min

{∫
Ω

|∇u|p dx : u ∈ M
}

,

then the existence of a nontrivial solution can be proved, without any further
assumption, by the Mountain Pass Theorem for any p > 1 (see Ambrosetti
and Rabinowitz [1] for the case p = 2 and Dinca, Jebelean and Mawhin [10]
for the case p ̸= 2). On the contrary, if M ̸= ∅ and λ ≥ λ1, the classical proof
is based on the fact that each eigenvalue λk of −∆2 induces a suitable direct
sum decomposition of W 1,2

0 (Ω). On the other hand, if p ̸= 2, such decompo-
sitions are not available. Nevertheless, a linking argument over cones, rather
than over linear subspaces, has been developed for p ̸= 2, when λ is close to
λ1 by Fan and Z. Li [12] and for any λ by Degiovanni and Lancelotti [9]. In
such a way, the mentioned result of Rabinowitz has been completely extended
to the case p ̸= 2.

When λ ≥ λ1, in all these results a global sign condition like G(x, s) ≥ 0
needs to be imposed, in order to recognize the linking geometry. However,
such an assumption can be relaxed by means of Morse theory or nonstandard
linking constructions.

When p = 2, in Benci [2, Theorem 7.14] it is show that, if a nonresonance
condition at the origin is satisfied, the existence of a nontrivial solution can
be obtained without any further assumption. On the other hand, S.J. Li and
Willem [15, Theorem 4] are able to treat the resonant case under a local sign
condition on G. Related results are also contained in J.Q. Liu and S.J. Li [14].
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The approach based on Morse theory has been extended to the case p ̸= 2
by S. Liu [16] when λ is close to λ1 and by Perera [19] when λ does not belong
to the spectrum of the p-Laplace operator.

Our purpose is to develop this approach, in order to remove any condition
on λ and require only a local sign condition on G. Our result is the following

Theorem 1.1. Let us suppose that assumptions (g1) − (g3) hold and let
V ∈ L∞(Ω). Then, for every λ ∈ R, problem (1.1) has a nontrivial solution
u ∈ W 1,p

0 (Ω) in each of the following cases:

(a) there exists δ > 0 such that G(x, s) ≥ 0 for a.e. x ∈ Ω and every s ∈ R
with |s| ≤ δ;

(b) there exists δ > 0 such that G(x, s) ≤ 0 for a.e. x ∈ Ω and every s ∈ R
with |s| ≤ δ.

This is a natural extension to the case p ̸= 2 of the mentioned result of
S.J. Li and Willem, although the argument is based there on a nonstandard
linking construction and here on Morse theory.

In the next section we recall and prove some preliminary facts, while in
section 3 we prove the main result in a more general setting. In the last
section we recover Theorem 1.1 as a particular case.

2 Preliminaries

Let Φ be a C1-functional defined on a real Banach spaceW . We denote by Bρ

and Sρ the closed ball and sphere of center 0 and radius ρ. We also denote by
H the Alexander-Spanier cohomology with Z2-coefficients (see Spanier [22]).
For a symmetric subsetX ofW \{0}, i(X) denotes its Z2-cohomological index
(see Fadell and Rabinowitz [11]). The following notion has been introduced,
in a slightly different form, by Perera, Agarwal, and O’Regan [20] and is in
turn a variant of the homological local linking of Perera [18]. It should also
be compared with the local linking of S.J. Li and Willem [15].

Definition 2.1. We say that Φ has a cohomological local splitting near 0 in
dimension k < ∞, if there are two symmetric cones W−,W+ in W and ρ > 0
such that

W− ∩W+ = {0} , i(W− \ {0}) = i(W \W+) = k (2.1)
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and Φ(u) ≤ Φ(0) for every u ∈ Bρ ∩W− ,

Φ(u) ≥ Φ(0) for every u ∈ Bρ ∩W+ .
(2.2)

As we will see, in such a case 0 must be a critical point of Φ.

Recall that the cohomological critical groups of Φ at a point u ∈ W are
defined by

Cq(Φ, u) = Hq(Φc,Φc \ {u}) , q ≥ 0 ,

where c = Φ(u) is the corresponding value and Φc is the closed sublevel set{
w ∈ W : Φ(w) ≤ c

}
(see, e.g., Chang [3] or Mawhin and Willem [17]). By

the excision property, we have

Cq(Φ, u) ≈ Hq(Φc ∩ U,Φc ∩ U \ {u})

for every neighborhood U of u. Therefore, the concept has local nature.
Moreover, it is well known that all critical groups are trivial, if u is not a
critical point of Φ (see e.g. Corvellec [5, Proposition 3.4]). Finally, the next
result shows a stability property and is a particular case of Corvellec and
Hantoute [7, Theorem 5.2] (see also Benci [2, Theorem 5.16]). The case in
whichW is a Hilbert space and Φ is of class C2 can be also found in Chang [3,
Theorem I.5.6] and in Mawhin and Willem [17, Theorem 8.8].

Theorem 2.2. Let Φt : W −→ R, t ∈ [0, 1], be a family of functionals of
class C1. Assume that there exists ρ > 0 such that each Φt satisfies the
Palais-Smale condition over Bρ and has no critical point in Bρ other than 0.
Suppose also that the map {t 7→ Φt} is continuous from [0, 1] into C1(Bρ).

Then Cq(Φt, 0) is independent of t.

The cohomological local splitting allows to give an estimate of the critical
groups, also in the absence of a direct sum decomposition.

Proposition 2.3. If Φ has a cohomological local splitting near 0 in dimension
k, then 0 is a critical point of Φ. Moreover, if 0 is an isolated critical point
of Φ, then we have Ck(Φ, 0) ̸= 0.
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This proposition is a variant of a result of Perera, Agarwal, and O’Regan
[20]. We need the following lemma from Degiovanni and Lancelotti (see [9,
Theorem 2.7] and also Cingolani and Degiovanni [4, Theorem 3.6]), which
establishes a connection between equivariant index and nonequivariant co-
homology.

Lemma 2.4. If X is a symmetric subset of W \ {0} with k = i(X) < ∞
and A is a symmetric subset of X with i(A) = k, then the homomorphism
i∗ : Hk(W,X) → Hk(W,A), induced by the inclusion i : (W,A) ⊆ (W,X), is
nontrivial.

Proof of Proposition 2.3. It is enough to prove that, if 0 does not accumulate
critical points of Φ, then Ck(Φ, 0) ̸= 0. Therefore assume, without loss of
generality, that Φ has no critical point u with 0 < ∥u∥ ≤ ρ. Let c = Φ(0).

There exists a deformation η : W × [0, 1] −→ W such that

Φ(η(u, t)) < Φ(u) if Φ′(u) ̸= 0 and t > 0 ,

η(u, t) = u otherwise ,

(see e.g. Benci [2, Theorem 5.5] or Corvellec [6]). Let 0 < r ≤ ρ be such
that η(Br × [0, r]) ⊆ Bρ. Since Br ∩ W− is contractible and Sr ∩ W− is a
deformation retract of W− \ {0}, from Lemma 2.4 and (2.1) we deduce that
the homomorphism

i∗ : Hk(W,Bρ \W+) −→ Hk(Br ∩W−, Sr ∩W−) ,

induced by the inclusion i : (Br∩W−, Sr∩W−) ⊆ (W,Bρ\W+), is nontrivial.
On the other hand, since (2.2) implies

Br∩W− ⊆ Φc∩Br , Sr∩W− ⊆ Φc∩Br\{0} , η (Φc ∩Br \ {0} , r) ⊆ Bρ\W+ ,

we may also consider the composition

Hk(W,Bρ\W+)
η(·,r)∗−→ Hk(Φc∩Br,Φ

c∩Br\{0})
j∗−→ Hk(Br∩W−, Sr∩W−)

where j : (Br ∩ W−, Sr ∩ W−) ⊆ (Φc ∩ Br,Φ
c ∩ Br \ {0}) is the inclusion.

Again (2.2) yields

η ((Sr ∩W−)× [0, r]) ⊆ Bρ \W+ ,

so that η(·, r) ◦ j is homotopic to i. Therefore j∗ ◦ η(·, r)∗ = i∗ is nontrivial,
which in turn implies that Hk(Φc ∩Br,Φ

c ∩Br \ {0}) ̸= 0.
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Now, let us recall a situation in which one can build two symmetric cones
satisfying (2.1). Let Ω be a bounded open subset of Rn, let 1 < p < ∞ and
let

V(Ω) :=


∪

r>n/p

Lr(Ω) if p ≤ n,

L1(Ω) if p > n.

Take V ∈ V(Ω) and consider the eigenvalue problem−∆p u = λV |u|p−2 u in Ω ,

u = 0 on ∂Ω .
(2.3)

We refer the reader to Cuesta [8] and Szulkin and Willem [23] for general
properties concerning (2.3).

Now, assume that
{
x ∈ Ω : V (x) > 0

}
has positive measure, denote by

F the class of symmetric subsets of

M =

{
u ∈ W 1,p

0 (Ω) :

∫
Ω

V |u|p dx = 1

}
and set

λk = inf
M∈F

i(M)≥k

sup
u∈M

∫
Ω

|∇u|p dx, k ≥ 1 . (2.4)

Then λk ↗ +∞ are eigenvalues of (2.3) and the following result holds (see
Degiovanni and Lancelotti [9, Theorem 3.2]).

Proposition 2.5. Let k ≥ 1 be such that λk < λk+1 and let

W− =

{
u ∈ W 1,p

0 (Ω) :

∫
Ω

|∇u|p dx ≤ λk

∫
Ω

V |u|p dx
}

,

W+ =

{
u ∈ W 1,p

0 (Ω) :

∫
Ω

|∇u|p dx ≥ λk+1

∫
Ω

V |u|p dx
}

.

Then W−,W+ are two symmetric cones in W 1,p
0 (Ω) satisfying (2.1).
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3 The main result

Let Ω be a bounded open subset of Rn, let 1 < p < ∞, let V ∈ V(Ω) and
let g : Ω × R −→ R be a Carathéodory function satisfying the following
assumptions:

(g1′) we have that

for every ε > 0 there exists aε ∈ V(Ω) such that

|g(x, s)| ≤ aε(x) |s|p−1 + ε |s|p∗−1, if p < n;

there exist a ∈ V(Ω), C > 0 and q > p such that

|g(x, s)| ≤ a(x)|s|p−1 + C|s|q−1, if p = n;

for every S > 0 there exists aS ∈ V(Ω) such that

|g(x, s)| ≤ aS(x)|s|p−1 whenever |s| ≤ S, if p > n;

(g2′) for a.e. x ∈ Ω, we have lim
s→0

G(x, s)

|s|p
= 0 and lim

|s|→∞

G(x, s)

|s|p
= +∞, where

G(x, s) =

∫ s

0

g(x, t) dt;

(g3′) there exist µ > p, γ0 ∈ L1(Ω) and γ1 ∈ V(Ω) such that

−γ0(x)− γ1(x)|s|p ≤ µG(x, s) ≤ sg(x, s) + γ0(x) + γ1(x)|s|p

for a.e. x ∈ Ω and every s ∈ R.

In order to study the quasilinear problem{
−∆pu = λV |u|p−2u+ g(x, u) in Ω ,

u = 0 on ∂Ω ,
(3.1)

let us define a functional Φ : W 1,p
0 (Ω) −→ R of class C1 by

Φ(u) =
1

p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

V |u|p dx−
∫
Ω

G(x, u) dx

and set ∥u∥ =
(∫

Ω
|∇u|p dx

)1/p
for every u ∈ W 1,p

0 (Ω). Recall also that,
for every γ ∈ V(Ω), the map {u 7→ γ|u|p} is weak-to-strong sequentially
continuous from W 1,p

0 (Ω) into L1(Ω).
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Lemma 3.1. The following facts hold:

(a) for every c ∈ R, we have

lim sup
∥u∥→∞
Φ(u)≤c

Φ′(u)u− pΦ(u)

∥u∥p
< 0 ;

(b) for every u ∈ W 1,p
0 (Ω) \ {0}, we have

lim
|t|→∞

Φ(tu)

|t|p
= −∞ .

Proof. (a) Let c ∈ R. By contradiction, let dk → 0 and let (uk) be a sequence
in Φc such that ∥uk∥ → ∞ and

Φ′(uk)uk − pΦ(uk) ≥ −dk∥uk∥p for every k ∈ N .

If we set vk = uk/∥uk∥, up to a subsequence (vk) is convergent to some
v ∈ W 1,p

0 (Ω) weakly and a.e. in Ω.
From (g3′) it follows that

− dk∥uk∥p ≤ Φ′(uk)uk − pΦ(uk) =

∫
Ω

(pG(x, uk)− ukg(x, uk)) dx

=

∫
Ω

(µG(x, uk)− ukg(x, uk)) dx− (µ− p)

∫
Ω

G(x, uk) dx

≤
∫
Ω

(γ0 + γ1|uk|p) dx − (µ− p)

∫
Ω

G(x, uk) dx ,

whence

(µ− p)

∫
Ω

G(x, uk) dx ≤ dk∥uk∥p +
∫
Ω

(γ0 + γ1|uk|p) dx . (3.2)

Therefore we have

lim sup
k

∫
Ω
G(x, uk) dx

∥uk∥p
< +∞ . (3.3)

On the other hand, (g3′) also yields

G(x, uk)

∥uk∥p
+

γ0
∥uk∥p

≥ −γ1|vk|p ,
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hence, by the (generalized) Fatou lemma and (3.3),∫
Ω

(
lim inf

k

G(x, uk)

∥uk∥p

)
dx ≤ lim inf

k

∫
Ω
G(x, uk) dx

∥uk∥p
< +∞ .

Since by (g2′) we have

lim
k

G(x, uk)

∥uk∥p
= lim

k

(
G(x, uk)

|uk|p
|vk|p

)
= +∞ where v ̸= 0 ,

we deduce that v = 0 a.e. in Ω.
Formula (3.2) can also be rewritten as(

µ

p
− 1

) ∫
Ω

|∇uk|p dx ≤ (µ− p)Φ(uk) + dk∥uk∥p

+

∫
Ω

γ0 dx +

∫
Ω

[(
µ

p
− 1

)
V + γ1

]
|uk|p dx ,

namely(
µ

p
− 1

)
≤ dk+(µ−p)

Φ(uk)

∥uk∥p
+

∫
Ω
γ0 dx

∥uk∥p
+

∫
Ω

[(
µ

p
− 1

)
V + γ1

]
|vk|p dx .

Going to the limit as k → ∞, we get µ
p
− 1 ≤ 0 and a contradiction follows.

(b) Since by (g3′)

G(x, tu)

|t|p
+

γ0
|t|p

≥ −γ1|u|p ,

applying as before Fatou’s lemma, the assertion follows.

Lemma 3.2. There exists a < 0 such that Φa is contractible in itself.

Proof. By (a) of Lemma 3.1, there exists b ∈ R such that

Φ′(u)u− pΦ(u) ≤ b for every u ∈ Φ0 .

In particular, there exists a < 0 such that

Φ′(u)u < 0 for every u ∈ Φa . (3.4)
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If we set, taking into account (b) of Lemma 3.1,

t(u) = min {t ≥ 1 : Φ(tu) ≤ a} ,

from (3.4) we deduce that the function {u 7→ t(u)} is continuous. Then
r(u) = t(u)u is a retraction of W 1,p

0 (Ω) \ {0} onto Φa. Since W 1,p
0 (Ω) \ {0} is

contractible in itself, the same is true for Φa.

Lemma 3.3. Assume that 0 is an isolated critical point of Φ. Then the
following facts hold:

(a) if there exists δ > 0 such that G(x, s) ≥ 0 for a.e. x ∈ Ω and every
s ∈ R with |s| ≤ δ, we have Cq(Φ, 0) ̸= 0 for

q = i

({
u ∈ W 1,p

0 (Ω) \ {0} :

∫
Ω

|∇u|p dx ≤ λ

∫
Ω

V |u|p dx
})

;

(b) if there exists δ > 0 such that G(x, s) ≤ 0 for a.e. x ∈ Ω and every
s ∈ R with |s| ≤ δ, we have Cq(Φ, 0) ̸= 0 for

q = i

({
u ∈ W 1,p

0 (Ω) :

∫
Ω

|∇u|p dx < λ

∫
Ω

V |u|p dx
})

.

Proof. By replacing (λ, V ) with (−λ,−V ) if necessary, we may assume that
λ ≥ 0. Let ϑ : R −→ [0, 1] be a C∞-function such that ϑ(s) = 0 for |s| ≤ δ/2
and ϑ(s) = 1 for |s| ≥ δ. For every t ∈ [0, 1], define

Gt(x, s) = G(x, (1− tϑ(s))s)

and Φt : W
1,p
0 (Ω) −→ R by

Φt(u) =
1

p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

V |u|p dx−
∫
Ω

Gt(x, u) dx .

From (g1′) it follows that each Φt satisfies the Palais-Smale condition over
every bounded subset of W 1,p

0 (Ω) (see also [9, Proposition 4.3]). Moreover
the map {t 7→ Φt} is continuous from [0, 1] into C1(B) for every bounded
subset B of W 1,p

0 (Ω). We claim that there exists ρ > 0 such that each
Φt has no critical point in Bρ other than 0. By contradiction, let (tj) be
a sequence in [0, 1] and (uj) a sequence convergent to 0 with Φ′

tj
(uj) = 0
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and uj ̸= 0. Then the same regularity argument of Guedda and Veron [13,
Propositions 1.2 and 1.3] shows that (uj) is convergent to 0 also in L∞(Ω).
Therefore we have Φ′(uj) = 0 eventually as j → ∞. Since 0 is an isolated
critical point of Φ, a contradiction follows. From Theorem 2.2 we deduce
that Cq(Φ, 0) ≈ Cq(Φ1, 0) for any q ≥ 0.

Observe also that∫
Ω

G1(x, u) dx = o(∥u∥p) as ∥u∥ → 0 (3.5)

(see, e.g., [9, Proposition 4.3]).
In case (a), we have G1(x, s) ≥ 0 for a.e. x ∈ Ω and every s ∈ R. If the

set
{
x ∈ Ω : V (x) > 0

}
has positive measure and λ ≥ λ1, where (λk) is the

sequence defined in (2.4), take k ≥ 1 such that λk ≤ λ < λk+1 and define
W−,W+ as in Proposition 2.5. Otherwise, let W− = {0} and W+ = W 1,p

0 (Ω).
In any case, W−,W+ are two symmetric cones in W 1,p

0 (Ω) satisfying (2.1)
and

i(W− \ {0})

= i

({
u ∈ W 1,p

0 (Ω) \ {0} :

∫
Ω

|∇u|p dx ≤ λ

∫
Ω

V |u|p dx
})

, (3.6)

∫
Ω

|∇u|p dx ≤ λ

∫
Ω

V |u|p dx ∀u ∈ W− , (3.7)

∃σ ∈]0, 1[: (1− σ)

∫
Ω

|∇u|p dx ≥ λ

∫
Ω

V |u|p dx ∀u ∈ W+ . (3.8)

From (3.7) and the sign information on G1, it follows

Φ1(u) ≤ 0 for every u ∈ W− with ∥u∥ ≤ ρ (3.9)

for any ρ > 0. On the other hand, combining (3.5) and (3.8), we get

Φ1(u) ≥ 0 for every u ∈ W+ with ∥u∥ ≤ ρ (3.10)

provided that ρ is sufficiently small. Therefore also (2.2) is satisfied and the
assertion follows from Proposition 2.3 and (3.6).

In case (b), we have G1(x, s) ≤ 0 for a.e. x ∈ Ω and every s ∈ R. If
the set

{
x ∈ Ω : V (x) > 0

}
has positive measure and λ > λ1, take now

12



k ≥ 1 such that λk < λ ≤ λk+1 and define W−,W+ as in Proposition 2.5.
Otherwise, let W− = {0} and W+ = W 1,p

0 (Ω). In any case, W−,W+ are two
symmetric cones in W 1,p

0 (Ω) satisfying (2.1) and

i(W 1,p
0 (Ω) \W+)

= i

({
u ∈ W 1,p

0 (Ω) :

∫
Ω

|∇u|p dx < λ

∫
Ω

V |u|p dx
})

, (3.11)

∃σ ∈]0, 1[: (1 + σ)

∫
Ω

|∇u|p dx ≤ λ

∫
Ω

V |u|p dx ∀u ∈ W− , (3.12)∫
Ω

|∇u|p dx ≥ λ

∫
Ω

V |u|p dx ∀u ∈ W+ . (3.13)

Combining (3.5) with (3.12), we get again (3.9) if ρ is sufficiently small. On
the other hand, from (3.13) and the sign information on G1 we deduce (3.10)
for any ρ > 0. Then (2.2) is satisfied and the assertion follows from Propo-
sition 2.3 and (3.11).

Now we can prove the main result of the section.

Theorem 3.4. Let us suppose that assumptions (g1′) − (g3′) hold and let
V ∈ V(Ω). Then, for every λ ∈ R, problem (3.1) has a nontrivial solution
u ∈ W 1,p

0 (Ω) in each of the following cases:

(a) there exists δ > 0 such that G(x, s) ≥ 0 for a.e. x ∈ Ω and every s ∈ R
with |s| ≤ δ,

(b) there exists δ > 0 such that G(x, s) ≤ 0 for a.e. x ∈ Ω and every s ∈ R
with |s| ≤ δ.

Proof. A standard argument shows that Φ satisfies the Palais-Smale com-
pactness condition (see, e.g., [9, Proposition 4.3]).

Suppose, for a contradiction, that the origin is the only critical point of Φ.
By Lemma 3.2 there exists a < 0 such that Φa is contractible in itself. On the
other hand, by the second deformation lemma (see e.g. Chang [3] or Mawhin
and Willem [17]), Φ0 is a deformation retract of W and Φa is a deformation
retract of Φ0 \ {0}, so

Cq(Φ, 0) = Hq(Φ0,Φ0 \ {0}) ≈ Hq(W,Φa) = 0 for every q ≥ 0 .

By Lemma 3.3 a contradiction follows.
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For the sake of completeness, let us state a simple extension of a result
of Perera [19], which can be proved by the same argument.

Theorem 3.5. Let us suppose that assumptions (g1′) − (g3′) hold, let V ∈
V(Ω) and let λ ≥ 0. If the set

{
x ∈ Ω : V (x) > 0

}
has positive mea-

sure, assume also that λ ̸∈ {λk : k ≥ 1}, where (λk) is the sequence defined
in (2.4).

Then problem (3.1) has a nontrivial solution u ∈ W 1,p
0 (Ω).

Thus, the extra assumption on λ is compensated by the fact that there
is no sign condition on G. Observe that the union of Theorems 3.4 and 3.5
provides a complete extension to the case p ̸= 2 of S.J. Li and Willem [15,
Theorem 4].

4 Proof of Theorem 1.1

Since V ∈ L∞(Ω), we have V ∈ V(Ω). It is also standard that assumptions
(g1)− (g3) imply (g1′)− (g3′) (see e.g. Degiovanni and Lancelotti [9]). Then
the assertion follows from Theorem 3.4.
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