POLITECNICO DI TORINO
Repository ISTITUZIONALE

Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting

Original

Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting / Degiovanni, M.; Lancelotti,
Sergio; Perera, K.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. -
12:3(2010), pp. 475-486. [10.1142/S0219199710003890]

Availability:
This version is available at: 11583/2380847 since:

Publisher:
World Scientific Publishing

Published
DOI:10.1142/S0219199710003890

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

09 April 2024



Nontrivial Solutions of p-Superlinear
p-Laplacian Problems via a
Cohomological Local Splitting

Marco Degiovanni
Dipartimento di Matematica e Fisica
Universita Cattolica del Sacro Cuore
Via dei Musei 41, 25121 Brescia, Italy

m.degiovanni@dmf.unicatt.it

Sergio Lancelotti
Dipartimento di Matematica
Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy
sergio.lancelotti@polito.it

Kanishka Perera
Department of Mathematical Sciences
Florida Institute of Technology
150 West University Blvd, Melbourne, FL 32901, USA
kperera@fit. edu

Author’s version
Published in: Communications in Contemporary Mathematics 12 (2010), 475-486
Doi: 10.1142/50219199710003890



Abstract

We consider a quasilinear equation, involving the p-Laplace op-
erator, with a p-superlinear nonlinearity. We prove the existence of
a nontrivial solution, also when there is no mountain pass geometry,
without imposing a global sign condition. Techniques of Morse theory
are employed.
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1 Introduction
Consider the boundary value problem

~Apu= AV |uf?u+ g(z,u) inQ,

(1.1)
u=0 on 0f2,

where € is a bounded open subset of R", n > 1, A, u = div (|Vu\p_2 Vu) is
the p-Laplacian of u, p €]1,00[, A € R is a parameter, V € L*(2) and g is
a Carathéodory function on €2 x R satisfying the following conditions:

(g1) there exist C' > 0 and

p<q< nep
such that

g(z,s)| < C(|s]*" +1) ;

(92) we have

g(x,s) = o(|s[P"!) as s — 0, uniformly in z;



(93) there exist ;1 > p and R > 0 such that

0<uG(z,s) = / g(z,t)dt < sg(x,s), whenever |s| > R.
0

In particular, g(z,0) = 0 and hence we have the trivial solution v = 0, and
we seek another.

In the case p = 2, the existence of a nontrivial solution u for (1.1) can be
obtained via the Linking Theorem (see e.g. Rabinowitz [21, Theorem 5.16]).
More precisely, let us assume, without loss of generality, that A > 0. If the
set

M= {UE Wy (Q) : /V|u|pda:: 1}
Q
is empty or if M # () and

A< ) ::min{/ \VulP dz - ue./\/l},
Q

then the existence of a nontrivial solution can be proved, without any further
assumption, by the Mountain Pass Theorem for any p > 1 (see Ambrosetti
and Rabinowitz [1] for the case p = 2 and Dinca, Jebelean and Mawhin [10]
for the case p # 2). On the contrary, if M # () and A > Ay, the classical proof
is based on the fact that each eigenvalue A\, of —A, induces a suitable direct
sum decomposition of VVO1 2(Q) On the other hand, if p # 2, such decompo-
sitions are not available. Nevertheless, a linking argument over cones, rather
than over linear subspaces, has been developed for p # 2, when A is close to
A1 by Fan and Z. Li [12] and for any A by Degiovanni and Lancelotti [9]. In
such a way, the mentioned result of Rabinowitz has been completely extended
to the case p # 2.

When A > Ay, in all these results a global sign condition like G(z,s) > 0
needs to be imposed, in order to recognize the linking geometry. However,
such an assumption can be relaxed by means of Morse theory or nonstandard
linking constructions.

When p = 2, in Benci [2, Theorem 7.14] it is show that, if a nonresonance
condition at the origin is satisfied, the existence of a nontrivial solution can
be obtained without any further assumption. On the other hand, S.J. Li and
Willem [15, Theorem 4] are able to treat the resonant case under a local sign
condition on G. Related results are also contained in J.Q. Liu and S.J. Li [14].
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The approach based on Morse theory has been extended to the case p # 2
by S. Liu [16] when A is close to A; and by Perera [19] when A does not belong
to the spectrum of the p-Laplace operator.

Our purpose is to develop this approach, in order to remove any condition
on A and require only a local sign condition on G. Our result is the following

Theorem 1.1. Let us suppose that assumptions (gl) — (g3) hold and let
Ve L*(Q). Then, for every X\ € R, problem (1.1) has a nontrivial solution
u € Wol’p(Q) in each of the following cases:

(a) there exists 6 > 0 such that G(x,s) > 0 for a.e. x € Q and every s € R
with |s| < 6;

(b) there exists 6 > 0 such that G(x,s) <0 for a.e. x € Q and every s € R
with |s] < 6.

This is a natural extension to the case p # 2 of the mentioned result of
S.J. Li and Willem, although the argument is based there on a nonstandard
linking construction and here on Morse theory.

In the next section we recall and prove some preliminary facts, while in
section 3 we prove the main result in a more general setting. In the last
section we recover Theorem 1.1 as a particular case.

2 Preliminaries

Let @ be a C''-functional defined on a real Banach space W. We denote by B,
and S, the closed ball and sphere of center 0 and radius p. We also denote by
H the Alexander-Spanier cohomology with Zs-coefficients (see Spanier [22]).
For a symmetric subset X of W\ {0}, i(X) denotes its Zy-cohomological index
(see Fadell and Rabinowitz [11]). The following notion has been introduced,
in a slightly different form, by Perera, Agarwal, and O’Regan [20] and is in
turn a variant of the homological local linking of Perera [18]. It should also
be compared with the local linking of S.J. Li and Willem [15].

Definition 2.1. We say that ® has a cohomological local splitting near 0 in
dimension k < oo, if there are two symmetric cones W_, W, in W and p > 0
such that

WonWwy ={0}, AW\ {0}) =i(WA\W,) =k (2.1)
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and

P(u) < (0) foreveryue B,NW_,
(2.2)
P(u) > ®(0) for every u € B,NW, .

As we will see, in such a case 0 must be a critical point of ®.

Recall that the cohomological critical groups of ® at a point u € W are
defined by

CU (P, u) = HY(D, @\ {u}), ¢=0,

where ¢ = ®(u) is the corresponding value and @€ is the closed sublevel set
{weW:d(w) < c} (see, e.g., Chang [3] or Mawhin and Willem [17]). By
the excision property, we have

CU®, u) ~ HIO N U, &N U\ {u})

for every neighborhood U of w. Therefore, the concept has local nature.
Moreover, it is well known that all critical groups are trivial, if u is not a
critical point of ® (see e.g. Corvellec [5, Proposition 3.4]). Finally, the next
result shows a stability property and is a particular case of Corvellec and
Hantoute [7, Theorem 5.2] (see also Benci [2, Theorem 5.16]). The case in
which W is a Hilbert space and @ is of class C? can be also found in Chang |3,
Theorem 1.5.6] and in Mawhin and Willem [17, Theorem 8.8].

Theorem 2.2. Let &, : W — R, t € [0,1], be a family of functionals of

class C'.  Assume that there exists p > 0 such that each ®; satisfies the

Palais-Smale condition over B, and has no critical point in B, other than 0.

Suppose also that the map {t — ®;} is continuous from [0,1] into C*(B,).
Then C9(P,0) is independent of t.

The cohomological local splitting allows to give an estimate of the critical
groups, also in the absence of a direct sum decomposition.

Proposition 2.3. If & has a cohomological local splitting near 0 in dimension
k, then 0 is a critical point of ®. Moreover, if 0 is an isolated critical point
of ®, then we have C*(®,0) # 0.



This proposition is a variant of a result of Perera, Agarwal, and O’Regan
[20]. We need the following lemma from Degiovanni and Lancelotti (see [9,
Theorem 2.7] and also Cingolani and Degiovanni [4, Theorem 3.6]), which
establishes a connection between equivariant index and nonequivariant co-
homology.

Lemma 2.4. If X is a symmetric subset of W \ {0} with k = i(X) < o0
and A is a symmetric subset of X with i(A) = k, then the homomorphism
it HFY(W, X)) — H¥(W, A), induced by the inclusion i : (W, A) C (W, X), is

nontrivial.

Proof of Proposition 2.3. 1t is enough to prove that, if 0 does not accumulate

critical points of ®, then C*(®,0) # 0. Therefore assume, without loss of

generality, that ® has no critical point u with 0 < ||u]| < p. Let ¢ = ®(0).
There exists a deformation n : W x [0, 1] — W such that

D (n(u,t)) < ®(u) if ®(u)#0andt >0,

n(u,t) =u otherwise,

(see e.g. Benci [2, Theorem 5.5] or Corvellec [6]). Let 0 < r < p be such
that n(B, x [0,7]) € B,. Since B, N W_ is contractible and S, N W_ is a
deformation retract of W_ \ {0}, from Lemma 2.4 and (2.1) we deduce that
the homomorphism

i* . HY(W,B,\ W) — H*(B,nW_,S, nW_),

induced by the inclusion ¢ : (B,NW_, S,NW_) C (W, B,\ W), is nontrivial.
On the other hand, since (2.2) implies

B,NW_ C ®‘NB,, S,nW_ C &‘nB,\{0} , n(®°N B, \{0},r) C B,\W,,
we may also consider the composition
HHW, B\W,) " B @°n B,, 3N B,\ {0}) L HY(B,NW_,S,nIW_)

where j : (B, NW_,S, NW_) C (‘N B,,®°N B, \ {0}) is the inclusion.
Again (2.2) yields

n (S W) x[0,7]) € B, \ W,

so that n(-,7) o j is homotopic to i. Therefore j* o n(-,7)* = i* is nontrivial,
which in turn implies that H*(®° N B,, ®*N B, \ {0}) # 0. O
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Now, let us recall a situation in which one can build two symmetric cones
satisfying (2.1). Let €2 be a bounded open subset of R, let 1 < p < oo and
let

U @ if p<n,
V(Q) = r>n/p
LY(Q) if p > n.

Take V' € V(Q2) and consider the eigenvalue problem

~Apu=AV|uf?u in Q,
(2.3)
u=20 on 0f).

We refer the reader to Cuesta [8] and Szulkin and Willem [23] for general
properties concerning (2.3).

Now, assume that {:c eQ: V(ix) > 0} has positive measure, denote by
F the class of symmetric subsets of

M:{UEW(}”’(Q): /V\u|pdx:1}
0

and set
A\p = inf Pdy, k>1. 2.4
p = inf Sgﬂg/ﬂlvw z, k> (2.4)
i(M)>k

Then A\,  +oo are eigenvalues of (2.3) and the following result holds (see
Degiovanni and Lancelotti [9, Theorem 3.2]).

Proposition 2.5. Let k > 1 be such that A\, < A\ky1 and let
W_ = {u e WyP(Q) / |VulP do < )\k/ V |ul? d:c} ,
Q Q
W, — {u € WH(Q) / IVl dz > AM/ Vfuf? dx} |
Q Q

Then W_, W, are two symmetric cones in Wy P (Q) satisfying (2.1).



3 The main result

Let Q be a bounded open subset of R”, let 1 < p < oo, let V € V(Q) and
let g : 2 x R — R be a Carathéodory function satisfying the following
assumptions:

(g1") we have that

for every € > 0 there exists a. € V(Q2) such that

lg(z, 8)| < ac(z)|s|P~t +e s, if p < n;
there exist a € V(§2), C' > 0 and ¢ > p such that
l9(x, s)| < al@)[sP~! + Cls|", if p=mn;
for every S > 0 there exists ag € V(2) such that
lg(z,s)| < as(x)|s[P~! whenever |s| < S, if p > n;
(g2') for a.e. x € Q, we have lim G|(Sx|;s) =0 and \sl|iinoo G|(Sx|,ps) = +00, where

Gas) = [ glo.0)ae
0
(g3') there exist u > p, 70 € L'(Q) and v, € V(Q) such that

—0(x) = n(@)[s]” < pG(z,5) < sg(z,s) +y0(x) + 7 (x)]s”
for a.e. x € 2 and every s € R.
In order to study the quasilinear problem
{ —Apu = NV |ulP~2u + g(z,u) in Q,

3.1
u=>0 on 0f), (3.1)

let us define a functional ® : W, (Q) — R of class C* by

<I>(u):1/|Vu|Pdgg—é /V|u|pd:13—/G(a:,u)dw
P Ja P Ja Q

and set |[ull = ([, [Vul? dac)l/p for every u € W,"?(€). Recall also that,
for every v € V(Q), the map {u+— y|ulP} is weak-to-strong sequentially
continuous from W, (Q) into L'(Q).



Lemma 3.1. The following facts hold:

(a) for every ¢ € R, we have

/ J—
lim sup '(uu = p@(u)

ul|—o00 [P
P(u)<c

< 0;

(b) for every u € WyP(Q) \ {0}, we have
d(tu)

lt| o0 [E]P

Proof. (a) Let ¢ € R. By contradiction, let d, — 0 and let (uy) be a sequence
in ®¢ such that ||ug|| — oo and

O (up)up — p®(ug) > —di||lugl]|?  for every k € N.

If we set vy, = wug/||ux|, up to a subsequence (vy) is convergent to some
v € WyP(Q) weakly and a.e. in €.
From (g3’) it follows that

— dp|lug|l” < @' (up)ur, — p P(uy) /Q (pG(x,ug) — upg(z,ux)) do
~ [ G w) — g w)) da = (=) [ Glow) do
< [ Gosntu) de = (e=p) | Glau)da.

whence

=p) [ Glaw)ds < dfulr+ [ GosnluP)de. (32
Therefore we have

hmksup Jo @ Hikﬁt: < 400. (3.3)

On the other hand, (¢3') also yields

G(%Uk) Yo
ul? [Jus ||p -

—1vel”,



hence, by the (generalized) Fatou lemma and (3.3),
G d
/ <lim inf M) dr < liminf M < 400.
o \ ko [lullP k [k [P

Since by (¢2') we have
G(z, ug) — lim <G(m,uk)
CRAN (T

we deduce that v =0 a.e. in (.
Formula (3.2) can also be rewritten as

lim
koo fJugllP

|vk|p) = 400 where v # 0,

(ﬁ _ 1) 19 e < (0= 2t + el
Q

p
K P
+/70d96+/ K——l)VﬂL%] |ukl? de
Q o L\P
namely

(3—1) < dy+(pn—p) q)<uk)+f“%dx+/g [(H—l) V+%} vk | da .

p k][ [ ]|” p

Going to the limit as k — oo, we get % — 1 <0 and a contradiction follows.
(b) Since by (g3')

G(z,tu) 7o
) Y > . P
e =
applying as before Fatou’s lemma, the assertion follows. O

Lemma 3.2. There exists a < 0 such that ®* is contractible in itself.

Proof. By (a) of Lemma 3.1, there exists b € R such that
O (uw)u—p®(u) <b  for every u € ®°.
In particular, there exists a < 0 such that

P (u)u <0  for every u € 9. (3.4)

10



If we set, taking into account (b) of Lemma 3.1,
t(u) =min{t > 1: ®(tu) <a},

from (3.4) we deduce that the function {u+ t(u)} is continuous. Then
r(u) = t(u)u is a retraction of Wy () \ {0} onto ®*. Since W, 7(Q)\ {0} is
contractible in itself, the same is true for ®¢. n

Lemma 3.3. Assume that 0 is an isolated critical point of ®. Then the
following facts hold:

(a) if there exists § > 0 such that G(x,s) > 0 for a.e. x € Q and every
s € R with |s| <6, we have CU(P,0) # 0 for

(b) if there exists 6 > 0 such that G(z,s) < 0 for a.e. © €  and every
s € R with |s| <0, we have C9(P,0) # 0 for

q:i({uEWOI’p(Q): /|Vu|pdx</\/V]u|pdx}> :
Q Q

Proof. By replacing (A, V') with (=X, —V') if necessary, we may assume that
A>0. Let 9 : R — [0, 1] be a C*°-function such that 9(s) = 0 for |s| < 6/2
and J(s) = 1 for |s| > §. For every t € [0, 1], define

Gi(z,s) = G(x, (1 — td(s))s)

and @, : W,"(Q) — R by

1 A
@t(u):5/QIVu]pdx—§ /QV|u\pdx—/QGt(x,u)dx.

From (g1’) it follows that each ®, satisfies the Palais-Smale condition over
every bounded subset of W,”(Q) (see also [9, Proposition 4.3]). Moreover
the map {t — ®;} is continuous from [0, 1] into C*(B) for every bounded
subset B of WyP(Q). We claim that there exists p > 0 such that each
®, has no critical point in B, other than 0. By contradiction, let (¢;) be
a sequence in [0, 1] and (u;) a sequence convergent to 0 with @} (u;) = 0
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and u; # 0. Then the same regularity argument of Guedda and Veron [13,
Propositions 1.2 and 1.3] shows that (u;) is convergent to 0 also in L*>(€2).
Therefore we have ®'(u;) = 0 eventually as j — oo. Since 0 is an isolated
critical point of ¢, a contradiction follows. From Theorem 2.2 we deduce
that C9(®,0) ~ C%(®P4,0) for any ¢ > 0.

Observe also that

/QGl(x,u) dz = o(|[ull”) as [ul| = 0 (3.5)

(see, e.g., |9, Proposition 4.3]).

In case (a), we have Gi(x,s) > 0 for a.e. x €  and every s € R. If the
set {z € Q: V(x) > 0} has positive measure and A > i, where () is the
sequence defined in (2.4), take k > 1 such that Ay < A < A\gy; and define
W_, W, as in Proposition 2.5. Otherwise, let W_ = {0} and W, = W, "(Q).
In any case, W_, W, are two symmetric cones in W,"(Q) satisfying (2.1)
and

i(W-\ {0})
y ({ue W)\ {0} - /Q]Vu|pdx§ )\/QV|u|pdx}) (3.6)

/ YVl de < A/ ViePde  YueWw. (3.7)
Q Q

G €0, 1): (1— o) /Q YVl dz > A/va de YueW,. (38)
From (3.7) and the sign information on Gy, it follows
®y(u) <0 for every w € W_ with |Jul] < p (3.9)
for any p > 0. On the other hand, combining (3.5) and (3.8), we get
®y(u) >0 for every w € W, with |Jul] < p (3.10)

provided that p is sufficiently small. Therefore also (2.2) is satisfied and the
assertion follows from Proposition 2.3 and (3.6).

In case (b), we have Gi(z,s) < 0 for a.e. z € 2 and every s € R. If
the set {x € Q:V(x) > 0} has positive measure and A > Ay, take now
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k > 1 such that A\, < A < A\gyq1 and define W_, W, as in Proposition 2.5.
Otherwise, let W_ = {0} and W, = W,*(Q). In any case, W_, W, are two
symmetric cones in W, () satisfying (2.1) and

i(Wo () \ W)
:i({ueWOl’p(Q): /Q\vu\f’dx< )\/QV]u\pdx}> . (3.11)

do €]0,1[: (1 + 0)/ |Vul|P do < )x/ ViulPde  YueW_, (3.12)
0 0

/ |Vul|P do > )\/ ViulPde  Yu e W, . (3.13)
0 0

Combining (3.5) with (3.12), we get again (3.9) if p is sufficiently small. On
the other hand, from (3.13) and the sign information on Gy we deduce (3.10)
for any p > 0. Then (2.2) is satisfied and the assertion follows from Propo-
sition 2.3 and (3.11). O

Now we can prove the main result of the section.

Theorem 3.4. Let us suppose that assumptions (g1’) — (¢g3') hold and let
V € V(Q). Then, for every A € R, problem (3.1) has a nontrivial solution
u € WyP(Q) in each of the following cases:

(a) there exists & > 0 such that G(x,s) > 0 for a.e. x € Q and every s € R
with |s| <6,

(b) there exists 6 > 0 such that G(x,s) <0 for a.e. x € Q and every s € R
with |s] < 6.

Proof. A standard argument shows that ® satisfies the Palais-Smale com-
pactness condition (see, e.g., [9, Proposition 4.3]).

Suppose, for a contradiction, that the origin is the only critical point of ®.
By Lemma 3.2 there exists a < 0 such that ®¢ is contractible in itself. On the
other hand, by the second deformation lemma (see e.g. Chang [3] or Mawhin
and Willem [17]), ®" is a deformation retract of W and @ is a deformation
retract of ®°\ {0}, so

CU®,0) = HY(®°,®°\ {0}) ~ HY(W,®d*) =0  for every ¢ > 0.

By Lemma 3.3 a contradiction follows. O
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For the sake of completeness, let us state a simple extension of a result
of Perera [19], which can be proved by the same argument.

Theorem 3.5. Let us suppose that assumptions (g1') — (g3') hold, let V €
V(Q) and let X > 0. If the set {x € Q : V(z) > 0} has positive mea-
sure, assume also that X\ & {\r : k > 1}, where (\;) is the sequence defined
in (2.4).

Then problem (3.1) has a nontrivial solution u € Wy ().

Thus, the extra assumption on A is compensated by the fact that there
is no sign condition on G. Observe that the union of Theorems 3.4 and 3.5
provides a complete extension to the case p # 2 of S.J. Li and Willem [15,
Theorem 4].

4 Proof of Theorem 1.1

Since V' € L>®(Q2), we have V € V(Q). It is also standard that assumptions
(g1) —(¢3) imply (g1") — (¢g3') (see e.g. Degiovanni and Lancelotti [9]). Then
the assertion follows from Theorem 3.4.
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