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An array of resistively and capacitively shunted Josephson junctions with nonsinusoidal
current-phase relation is considered for modeling the transition in high-Tc superconductors. The
emergence of higher harmonics, besides the simple sinusoid Ic sin �, is expected for dominant
d-wave symmetry of the Cooper pairs, random distribution of potential drops, dirty grains, or
nonstationary conditions. We show that additional cosine and sine terms act, respectively, by
modulating the global resistance and by changing the Josephson coupling of the mixed
superconductive-normal states. First, the approach is applied to simulate the transition in disordered
granular superconductors with the weak-links characterized by nonsinusoidal current-phase relation.
In granular superconductors, the emergence of higher-order harmonics affects the slope of the
transition. Then, arrays of intrinsic Josephson junctions, naturally formed by the CuO2 planes in
cuprates, are considered. The critical temperature suppression, observed at values of hole doping
close to p=1 /8, is investigated. Such suppression, related to the sign change and modulation of the
Josephson coupling across the array, is quantified in terms of the intensities of the first and second
sinusoids of the current-phase relation. Applications are envisaged for the design and control of
quantum devices based on stacks of intrinsic Josephson junctions. © 2010 American Institute of
Physics. �doi:10.1063/1.3525984�

I. INTRODUCTION

Arrays of Josephson junctions are under intensive inves-
tigation for potential implementation as quantum bits and for
modeling several phenomena in superconductive films.1–11 In
particular, the resistive transition has been described by
means of resistively and capacitively shunted Josephson
junctions arrays �RCSJ�.12–16 In the conventional RCSJ
model, the Josephson current is the simple sinusoid IS���
= Ic sin �, where Ic is the critical current and �=�2−�1 the
phase difference of the superconductor order parameters
�1 exp�i�1� and �2 exp�i�2�. Sign and magnitude of Ic are
affected by the gap function symmetry and relative orienta-
tion of the superconductor electrodes. For conventional
phase-coherent pairing with s-wave symmetry and �1=�2

=�, the critical current is given by the Ambegaokar–Baratoff
expression Ic=��2 /2eRo tanh�� /2kT�, with Ro the normal-
state resistance.17 For unconventional high-Tc superconduct-
ors, the internal structure of Cooper pairs most likely agrees
with predominant d-wave symmetry that might originate de-
viations in the superconductive and normal branches of the
current-voltage characteristics. Moreover, ferromagnetic im-
purities, grain boundaries, interfaces, vortex cores, impurities
and far-from equilibrium conditions may cause the onset of
higher harmonics.18–40 The current-phase relation is given
by:

IS��� � �
−�

+�

�1 − 2f�E��Im�IE����dE , �1�

with f�E� the electron energy distribution and Im�IE���� the
spectral current, which depend on material, geometry and
nonequilibrium conditions. Equation �1� can be written as an
n-order Fourier series41–43

IS��� = �
n�1

�Ĩn sin�n�� + J̃n cos�n��� . �2�

When the sum is restricted to n=1, Ĩn sin�n�� reduces to the

familiar sinusoidal Josephson current Ic sin �. J̃n cos�n�� is
the quasiparticle-pair-interference current, vanishing when
the pair-symmetry is not broken. For s-wave superconduct-

ors and n=1, Ĩn shows a logarithmic divergence at V

=2� /e, whereas J̃n is zero for V	2� /e with a discontinuity
at V=2� /e both in normal �0� and ferromagnetic ���
junctions.37,44–47 It has been established that higher harmon-
ics are important in cuprates. At the same time, nonmono-
tonic temperature dependence of Josephson current also ap-
pears in d-wave system.23,43,48,49 For unconventional
superconductors with prevalent d-wave pairing, the harmonic
sin 2� is critically enhanced by the presence of midgap An-
dreev resonant state50,51 and can even dominate over sin �,
as found in.22,23,52–54 Deviations from the sinusoidal shape
can be more easily observed at temperatures below Tc be-
cause, in general, these effects are of the second order. None-
theless, in the vicinity of Tc, they have been observed in
normal-metal weak-links, as a consequence of the depairing
either by proximity effect by supercurrent or in long junc-
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tions or in nonequilibrium conditions.41 Spin-singlet/spin-
triplet superconductor55,56 and superconductor/ferromagnet
hybrid structures have triggered considerable interest in re-
cent years for their potential spintronics applications as they
allow for tuning the critical current via the electron spin. If
the metal between conventional superconductors is magnetic,
the symmetry is broken and the current takes the more gen-
eral form: Is= I0 sin��+�0�. The phase-shift �0 is propor-
tional to the magnetic moment perpendicular to the potential
of the spin-orbit coupling.57–60

In this work, a model of the superconductive-resistive
transition based on a network of resistively and capacitively
shunted nonsinusoidal Josephson junctions is considered.
Such a network could be relevant when the overall and con-
curring effects of above described phenomena should be
taken into account. The ultimate scope being the consistent
description of several experimental evidences, that cannot be
accounted for by the simple sinusoidal coupling. The appro-
priateness of the resistively-capacitively picture in the pres-
ence of the nonsinusoidal current-phase relies on the occur-
rence of the macroscopic quantum tunneling in high-Tc

materials with d-wave symmetry, whose experimental evi-
dence has been reported only very recently.61–63

Arrays of weak-links in polycrystalline superconductors
and intrinsic Josephson junctions in cuprates are considered
as prominent examples.

In polycrystalline superconductors in the vicinity of the
transition, nonequilibrium effects make the relevant proper-
ties of the weak-links spatially and temporally dependent on
the external drive.16,29–33 Hence, when a polycrystalline su-
perconductor undergoes the transition, the onset of higher
harmonics may occur according to the local voltage, geom-
etry and chemistry of the grains. The pair-interference cur-

rent J̃n cos�n�� emerges when the pair-symmetry is broken
and comes into play when the junctions are partly dissipa-

tive. Therefore, the role of J̃n cos�n�� may become relevant
in the mixed state close to Tc, for current I� Ic and voltage
0	V	Vc.

Intrinsic Josephson junctions are naturally formed in cu-
prates and correspond to pairs of CuO2 planes, separated by
insulating layers. Such arrays have become attractive for
quantum computation.61,62 Higher harmonics alter the profile
of the tilted washboard potential and, thus, the sequence of
tunneling and dissipation processes determining the quantum
device operation. Furthermore, arrays of intrinsic Josephson
junctions biased in the resistive state where the Josephson
current oscillates are being deployed as terahertz
emitters.64,65 Upon decreasing the bias from the fully resis-
tive state, the emission power increases as the Josephson
frequency resonates with the cavity. With further voltage de-
creasing, some junctions may fall into the superconducting
state, thus increasing voltage on the other junctions and, ul-
timately, switching off the radiation. Fine tuning and control
of such intertwined oscillating-dissipative processes is cru-
cial for the correct operation of the emitter.

The critical temperature anomalies, observed when the
p-doping of the CuO2 planes is varied, are quantified. Such
anomalies have been related to the emergence of a striped

high-Tc phase, with spatially modulated superconducting or-
der, depending on the doping level p. An effective higher-
order Josephson coupling varying as a cosine function of
twice the difference of the superconducting phases on adja-
cent planes has been demonstrated. Several concomitant evi-
dences of antiphase ordering in cuprates, besides the strong
suppression of Tc, have been reported.66–70 The Tc suppres-
sion will be modeled by using the nonsinusoidal Josephson
junctions with the ratio of the second to first harmonics de-
pending on the doping level p. We remark that an array of
junctions with simple sinusoidal current-phase, while cor-
rectly describes homogeneous low-Tc superconductors char-
acterized by uniform positive Josephson coupling, seems
quite inadequate for the complex phenomenology of strongly
correlated high-Tc cuprates.

II. NONSINUSOIDAL RCSJ MODEL

A two-dimensional array of Josephson junctions is
sketched in Fig. 1�a�. The bias current Ib is injected to the left
electrode and collected from the right electrode. Circles rep-
resent superconducting grains connected by weak-links
�crosses�. According to the RCSJ model, the current Iij flow-
ing through each junction is:

Iij = Cij
dVij

dt
+

Vij

R
+ IS,ij��ij� + 
IL,ij . �3�

where Cij and Rij are the shunt capacitance and resistance
between grains i and j, IS,ij��ij� is the Josephson current,

IL,ij is the Langevin fluctuation source. The voltage drop
across the junction is given by:

Vij = Vi − Vj =
�

2e

d�ij

dt
, �4�

with �ij the phase difference of the order parameters in the
grains i and j. In the usual RCSJ model, IS,ij��ij� is a simple
sinusoid, whereas in the present work the nonsinusoidal form
given by Eq. �2� is considered. Therefore, the current Iij

flowing through each junction connecting the grains i and j
writes as:

FIG. 1. �Color online� �a� Two-dimensional Josephson junction array repre-
senting a granular superconductor. Circles represent superconducting grains.
Crosses represent weak-links between grains. The bias current Ib is injected
to the left electrode and collected from the right electrode. �b� Equivalent
circuit of the weak-link between the grains i and j. The linear resistor Rij,
the linear capacitor Cij, the nonlinear inductor Ln,ij and memristor Mn,ij are
connected in parallel. The current Iij flows from grain i to grain j. Vij is the
voltage drop across the weak-link.
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Iij = Cij
dVij

dt
+

Vij

Rij
+ �

n�1
�Ĩn,ij sin�n�ij� + J̃n,ij cos�n�ij��

+ 
IL,ij . �5�

Iij is given by the sum of the following contributions: the
charging current through the shunt capacitance Cij, the
Ohmic current through the shunt resistance Rij, the n Joseph-

son current sources Ĩn,ij sin�n�ij� and J̃n,ij cos�n�ij� and the
Langevin current.

It is worth noting that for n=1, Ĩ1,ij sin �ij is the familiar
sinusoidal Josephson current Ic,ij sin �ij, whereas

J̃1,ij cos�n�ij� with J̃1,ij �Vij /Rij corresponds to the voltage
Vij times a phase-dependent conductance term
1 /Rij cos��ij�.

17,44–46 Therefore, Eq. �5� can be rewritten as:

Iij = Cij
�

2e

d�ij

dt
+

1

Rij

�

2e

d�ij

dt
cos �ij + Ic,ij sin �ij + 
IL,ij ,

�6�

where Eq. �4� has been used. The second term on the right
hand side of Eq. �6� is commonly called the interference
current.

The equivalent circuit of a junction obeying Eq. �5� is
shown in Fig. 1�b�. It corresponds to the parallel of a linear
capacitor Cij, a linear resistor Rij, a parallel of n inductors

Ln,ij �related to the Ĩn,ij sin�n�ij� terms� and a parallel of n

memristors Mn,ij related to the J̃n,ij cos�n�ij� terms �we use
the notation memristor after71�.

Equation �5� can be written more compactly as:

Iij = Cij
dVij

dt
+

Vij

R
+ �

n�1
Ic,n,ij sin�n�ij + �o,n,ij� + 
IL,ij ,

�7�

with:

Ic,n,ij = 	Ĩn,ij
2 + J̃n,ij

2 , �8�

and:

�o,n,ij = arctan
 J̃n,ij

Ĩn,ij

� . �9�

Conventional Josephson junctions are usually classified
in terms of the Stewart–McCumber parameter �c=RC /J

with RC=RC and J=�o /2�IcRo, as overdamped ��c�1�,
general ��c�1� and underdamped ��c�1�. For the nonsinu-
soidal junction described by Eq. �7�, the definition of the
Stewart–McCumber parameter can be generalized as fol-
lows:

�c
� =

RC

J
� , �10�

with

J
� =

�o

2��nIc,n,ijRo
. �11�

Equation �7� can be numerically solved for an arbitrary
number n of harmonics. Nonetheless, we will restrict our
discussion to the following two cases relevant for the appli-
cations:

IS,ij��ij� = Ĩ1,ij sin��ij� + J̃1,ij cos��ij� , �12�

and

IS,ij��ij� = Ĩ1,ij sin��ij� + Ĩ2,ij sin�2�ij� . �13�

The scheme of the current-voltage characteristics of an un-
derdamped ��c

��1� Josephson junction obtained by solving
Eq. �7� is shown in Fig. 2. In particular, Fig. 2�a� refers to the
simple sinusoid, Fig. 2�b� refers to IS,ij��ij� given by Eq. �12�
and Fig. 2�c� refers to IS,ij��ij� given by Eq. �13�. The inter-
mediate states are characterized by voltage drops in the range
0	Vij 	Vc,ij and current Iij = Ic,n,ij. Upon current �voltage�
decrease starting from the normal state, the behavior is al-
ways resistive, implying that the system reaches the super-
conductive ground state without exploring the intermediate
states. For overdamped junctions ��c

��1�, the intermediate
states are characterized by voltage drop and current, respec-
tively, in the range 0	Vij 	2Vc,ij and Ic,n,ij 	 Iij

	 Ic,n,ij�2Vc,ij�. Upon increasing and decreasing the external
drive, the current-voltage behavior is the same, hence no
hysteresis is observed. In the general case ��c

�1�, the I
−V curve is partly hysteretic. Upon increasing the external
drive, the intermediate states are characterized by a voltage

FIG. 2. �Color online� Josephson junction characteristics of a weak-link with current-phase relation �a� IS���= Ic sin���; �b� IS���= Ĩ1 sin���+ J̃1 cos��� with

Ĩ1=1 mA and J̃1=0.5 mA; �c� IS���= Ĩ1 sin���+ Ĩ2 sin�2�� with Ĩ1=1 mA and Ĩ2=0.5 mA. The generalized Stewart–McCumber parameter is �c
�=45.
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drop in the range 0	Vij 	Vc,ij and current equal to Ic,n,ij. As
the external drive decreases, the backward current lies
slightly below the forward current. It is worthy of remarks
that the capacitive effect is reduced with the nonsinusoidal
current phase relation in comparison to the simple sinusoidal
case.

As a final remark, we note that since the simulations are
addressed at modeling the zero-frequency �time-asymptotic�
response of a macroscopic array, the Langevin term does not
affect the results and thus in the simulations the term 
IL,ij

can be set to zero. Nonetheless, we stress that the term 
IL,ij

has profound conceptual implications related to the micro-
scopic random dissipation/tunneling events and the onset of
decoherence according to the Caldeira–Leggett picture. The
term 
IL,ij plays a major role in the evaluation of current
noise power spectra shape and amplitude.1

A. Resistive transition in granular superconductors

The resistive transition is modeled by using a disordered
network of weak-links with nonsinusoidal current-phase re-
lation. The network is routinely solved by a system of Kirch-
hoff equations by using Eqs. �2� and �7� in the temperature
range just below Tc. The network is biased by constant cur-
rent Ib. The following conditions will be used for the simu-
lation:

�1� The superconductive ground state of each weak link is
characterized by current Iij 	min�Ic,n,ij�= Ic,min and Vij

=0. The symmetry is not broken, thus J̃n,ij vanishes. The
conductance of the weak-links in the superconductive
state is taken G�e2 /���−1�, i.e., G is much greater than
the quantum conductance e2 /�. This condition guaran-
tees the existence of the superconductive ground state.

�2� The intermediate states correspond to the coexistence of
superconducting and normal domains. According to the
two-fluid model, unpaired electrons coexist with paired
electrons in the region of temperature close to Tc, re-
spectively, with densities:

nN�T� = no
 T

Tc
�4

, �14�

nS�T� =
no

2
�1 − 
 T

Tc
�4� , �15�

where no is the total density of normal electrons. The
fraction nS of superelectrons is characterized by critical

current Ic,n,ij = Ĩn,ij. Conversely, the fraction nN of normal

electrons has a finite value of J̃n,ij and, thus, from Eq.
�7�, is characterized by critical current Ic,n,ij

=	Ĩn,ij
2 + J̃n,ij

2 . The condition Ĩn,ij 	 Iij 	
	Ĩn,ij

2 + J̃n,ij
2 holds

in the intermediate state. The conductance of the weak-
links in the intermediate states varies between G and
Go=1 /Ro, as a function of temperature, according to the
relative fraction of super to normal electrons.

�3� The normal state is achieved when the voltage Vij across

the junction exceeds Vcij
. The conductance of the weak-

links is Go=1 /Ro. The current Iij flowing through each

weak-link satisfies: Iij �
	Ĩn,ij

2 + J̃n,ij
2 .

The superconductor-insulator transition is simulated by
solving the system of Kirchhoff equations at varying tem-

perature. The critical currents Ĩn,ij and J̃n,ij are assumed to
vary on temperature according to the linearized equations

Ĩn,ij = Ĩo,n,ij�1−T /Tc�� and J̃n,ij = J̃o,n,ij�1−T /Tc��, where Ĩo,n,ij

and J̃o,n,ij are the lowest temperature values of Ĩn,ij and J̃n,ij

and the exponent � is about 2 for high-Tc superconductors.
Hence, the critical current Ic,n,ij depends on temperature ac-
cording to Ic,n,ij = Ico,n,ij�1−T /Tc��, with Ico,n,ij

=	Ĩo,n,ij
2 + J̃o,n,ij

2 . In order to take into account the disorder of

the array, Ĩn,ij and J̃n,ij are taken as random variables, distrib-

uted according to Gaussian functions with mean values Ĩo,n

and J̃o,n and standard deviations �Ĩo,n=�J̃o,n.
By effect of the temperature increase and consequent

reduction in the critical current, the weak-link with the low-
est value of the critical current Ic,n,ij = Ic,min switches to the
intermediate state and, then, becomes resistive when Vij

�Vc. The resistive transition of the first weak-link has the
effect to set the value of the voltage drop across the other
weak-links in the same layer. The result is the formation of a
layer of weak-links either in the resistive or in the interme-
diate state. As temperature further increases, the critical cur-
rent Ic,n,ij further decreases. More and more weak-links
gradually switch from the superconductive to the intermedi-

ate state and then to the resistive state. The term J̃n,ij acts by
increasing the critical current value of the weak-link in the
intermediate state in the layers undergoing the transition. It is
worthy to remark that the increase in critical current is rela-
tive to the fraction of normal electrons in the mixed states.

The onset of J̃n,ij cos�n�ij� is indeed triggered by the elemen-
tary resistive transition of the weak-link with the lowest criti-
cal current, since it is related to the partly broken pair-
symmetry of the weak-links in the intermediate state. It has
no effect on the links in the superconductive state, neither on
those in the fully resistive state.

Figure 3 shows the curves of the resistive transitions
obtained with the current-phase relation IS,ij��ij�
= Ĩ1,ij sin��ij�+ Ĩ2,ij sin�2�ij� for a two-dimensional 30�30
network. The curves correspond to different values of the

term Ĩ2,ij. The values of the critical currents are Ĩ1,ij =1 mA

and Ĩ2,ij ranging from 0 to 1 mA. The standard deviation of
the critical currents is �Ico,n=0.3 mA. The effect due to

Ĩ2,ij sin�2�ij� corresponds to a shift in the transition toward
higher or lower temperature depending on amplitude. As op-

posed to J̃n,ij cos�n�ij�, the term Ĩ2,ij sin�2�ij� acts on the
Josephson coupling and thus its effect is higher at the begin-
ning of the transition and decreases as the fraction nS of
superelectrons decreases.

Figure 4 shows the curves of the resistive transitions

obtained with current-phase relation IS,ij��ij�= Ĩ1,ij sin��ij�
+ J̃1,ij cos��ij� for a two-dimensional 30�30 network. The
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curves correspond to different values of the term J̃1,ij. The

values of the critical currents are Ĩ1,ij =1 mA and J̃1,ij rang-
ing from 0 to 1 mA. The standard deviation of the critical
currents is �Io,n=0.3 mA. Initially, the weak-links are in the
superconductive state, thus the network resistance is negli-
gible. As temperature increases, the weak-link with the low-
est critical current switches to the intermediate state and then
to the resistive state with the consequent onset of the term

J̃n,ij cos�n�ij� and redistribution of the currents. One can no-
tice that the curves overlap at the beginning of the transition,
whereas become more separated when T→Tc, implying that

the effect of the term J̃n,ij cos�n�ij� is more relevant as the
transition approaches its end. The amplification of the

J̃n,ij cos�n�ij� effect, as the resistance increases, means that

J̃n,ij acts as modulation of the resistance. The modulation

effect due to J̃n,ij can be noted at the level of each elementary
transition step. Figures 4�b� and 4�c� show the zoom of the
resistance steps corresponding, respectively, to the beginning
and to the end of the transition curves in Fig. 4�a�. One can
notice that the microscopic deviations from the staircase pro-
file obtained with the simple sinusoidal current-phase rela-
tion increase as the global network resistance increases in

agreement with the modulating action of the term J̃n,ij.

B. Critical temperature anomaly in cuprates

In the previous section, the approach has been applied to
a granular superconductor where the disorder of the material
is taken into account by using a suitable probability distribu-
tion function of a relevant parameter. In particular, the prob-
ability distribution function is a Gaussian with the variance �
accounting for the randomness of the critical currents Ic over
the array. In this section, the approach is implemented to
model perfectly ordered single crystals. In the absence of
localized and extended defects, the relevant parameters of
the arrays of Josephson junction are expected to be determin-
istic and thus a probability distribution function is not nec-
essary, i.e., �=0.

Specifically, the proposed method will be applied to the
intrinsically formed arrays of Josephson junction in single
crystal of layered cuprates. The reported simulations are
mainly addressed to describe the occurrence of a �-phase
shift within the CuO2 planes in accordance with the anti-
phase ordering model put forward by Berg et al.70 to account
for many anomalies exhibited by cuprates. The existence of
an anti-phase ordering has been experimentally confirmed in
Refs. 66–69. The approach presented in this work is particu-
larly suitable to simulate the array of intrinsic Josephson
junctions with unconventional current voltage characteristics
and the onset of � phase. Thus, the goal is a phenomenologi-
cal description of the model70 and the corresponding simula-
tion of the experimental results presented in Refs. 66–69. In
particular, the predictions are compared with the experimen-
tal data concerning the Tc suppression observed in cuprates
at varying levels of doping. The doping p, i.e., the number of
holes per copper atom in the CuO2 planes, is a key quantity
determining the main properties of high-Tc superconductors,
whose typical structure is shown in Fig. 5. A parabolic rela-
tionship between superconducting transition temperature Tc

and doping p has been envisaged:

1 −
Tc

Tc,max
= 82.6�p − 0.16�2. �16�

This relation is inaccurate for certain values of the doping
and a very pronounced Tc suppression �as shown in Fig. 6�
has been reported in many cuprates.66–69 Such a universal
suppression of Tc has been ascribed to the tendency of charge
stripe formation, with spatially modulated superconducting
order and phase.70 Evidence of stripe order in cuprates is
provided by the enhancement of the anisotropy of resistivity
with temperature. The charge dynamics is those of a super-
conductor in plane at high temperature but the behavior is
that of a poor metal in the orthogonal direction. At low tem-

FIG. 3. �Color online� Resistive transition of a two-dimensional network

with current-phase relation of the form IS,ij��ij�= Ĩ1,ij sin��ij�
+ Ĩ2,ij sin�2�ij�. The average value of the critical current Ĩ1,ij is 1 mA. The

curves correspond to different average values of the critical current Ĩ2,ij,

namely Ĩ2,ij =0 mA, Ĩ2,ij =0.5 mA, Ĩ2,ij =0.75 mA, and Ĩ2,ij =1 mA. The
normal resistance Ro is 1 � equal for all the junctions.

FIG. 4. �Color online� Resistive transition of a two-dimensional network

with current-phase relation of the form IS,ij��ij�= Ĩ1,ij sin��ij�+ J̃1,ij cos��ij�.
The average value of the critical current Ĩ1,ij is 1 mA. The curves correspond

to different average values of the critical current J̃1,ij, namely, J̃1,ij =0 mA,

J̃1,ij =0.5 mA, J̃1,ij =0.75 mA, and J̃1,ij =1 mA. The normal resistance Ro is
1 � equal for all the junctions. Panels �b� and �c� show the details of the
beginning and the end of the transition.
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perature, the effective Josephson coupling is always positive
yielding the homogeneous low-Tc superconducting phase,
while the striped superconducting phase is found at relatively
higher temperature. The scheme describing such phenom-
enon is given by alternating stripes of superconductor and
insulator, forming an array of Josephson junctions. For a
d-wave superconductor at high temperature, with a strong
crystal field coupling which locks the lobes of the pair-wave
function along the crystallographic axis, the order parameter
may change sign under rotation across the planes. The over-
all result is an effective higher order Josephson coupling de-
pending on the cosine of twice the difference of the super-

conducting phases on neighboring planes and the dominance
of a negative sin�2�� component in the current-phase
relation.70

Such an array of Josephson junctions, with spatially
modulated Josephson coupling, exhibiting anomalous trans-
port and thermodynamics, could not be accounted for by the
resistively and capacitively shunted model with simple sinu-
soidal current-phase relation. Therefore, in the present work,
a simulation based on arrays of nonsinusoidal Josephson
junctions is put forward. The scope is the estimation of the
critical current components yielding the parabolic depen-
dence of Tc and the suppression observed at doping values
close to p=1 /8. The different doping level of the CuO2

planes is taken into account by varying the critical current,
which is related to the number of Cooper pairs in the super-
conductive phase and thus enhanced/suppressed by the hole
doping. Specifically, the variation in the negative component

Ĩ2,ij sin�2�ij� dominating over the simple sinusoid is taken
into account as the origin of the suppression of the critical
temperature. As already stated, the simulations refer to a per-
fect crystal lattice instead of a granular superconductor, thus
the array is perfectly ordered and � is negligible ��=0�.
Hence, one can expect that the superconductivity is easily
suppressed by current perpendicular to the superconducting
layers while current flowing parallel to the layers would not
destroy the superconducting state of the crystal. In the fol-
lowing, two sets of simulations are performed.

First, the transition is simulated to obtain the ideal para-
bolic dependence given by Eq. �16�. The differential Eq. �12�
is solved for nonsinusoidal junctions with Ĩ1,ij and Ĩ2,ij com-
ponents. The I-V characteristics of the single junctions is
obtained and then implemented to simulate the transition of
the whole array as described in the previous sections. The
transition curve allows one to deduce the critical temperature

by using the relation Ĩn,ij = Ĩo,n,ij�1−T /Tc��, where the expo-
nent � is taken equal to 2. In the present work, the critical
currents have been varied in the range 0.1–10 mA corre-
sponding to doping level p varying between 0.05 and 0.18
and critical temperature varying between 0–95 K according
to the data of Refs. 66–69. The critical temperatures and
currents obtained from the simulation are shown in Figs. 7�a�
and 7�b� �blue squares�.

Then, the transition is simulated to obtain the suppres-
sion of Tc with respect to the parabolic dependence. The
suppression of Tc is obtained by a decrease in I2,ij as a func-
tion of the doping level for values ranging from p=0.08 to
p=0.17. The critical temperatures and currents obtained from
the simulations are shown in Figs. 7�a� and 7�b� �magenta
circles�.

In the inset of Fig. 7�b� the ratio � of the second har-
monics for the ideal parabola and the real curve with sup-
pression, is plotted. The maximum temperature suppression
corresponds to a value of the ratio close to 3.5.

III. CONCLUSIONS

The nonsinusoidal current-phase relation has been con-
sidered in the resistively shunted Josephson junction model
for describing the superconductive transition. By solving a

FIG. 5. �Color online� Arrays of intrinsic Josephson junctions are naturally
formed in cuprates by the CuO2 planes separated by layers of insulating
atoms. The hole doping p of the CuO2 planes affects transport and thermo-
dynamic properties of cuprates. Several transport anomalies have been ob-
served around p=1 /8 that cannot be explained in the framework of a con-
ventional picture of the intrinsic Josephson junctions and have been ascribed
to the antiphase ordering across the planes �Refs. 51–57�. The modulation of
the phase can be taken into account by using the proposed array of resis-
tively and capacitively nonsinusoidal Josephson junctions.

FIG. 6. �Color online� Critical temperature Tc as a function of the hole
doping p. The ideal parabolic relation is plotted as a reference �solid line�.
Circles are experimental data obtained on YBCO samples with varying dop-
ing level of the CuO2 planes �Ref. 66�. The suppression of Tc in the range of
doping between 0.08 and 0.17 can be observed.
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system of Kirchhoff equations for the array of nonsinusoidal
Josephson junctions, it is found that additional cosine and
sine terms modify the transition curves by changing resis-
tance and Josephson coupling in the framework of the two-
fluid model of superconductivity. Higher harmonics, besides
the simple sinusoid Ic sin �, might arise in the vicinity of the
transition because of the nonstationary conditions and the
random distribution of potential drops and impurities in
granular superconductors. The approach has been imple-
mented for characterizing the critical temperature suppres-
sion observed in cuprates. In particular, our focus is on the
anomalies experimentally observed in cuprates that need to
go beyond the simple sinusoidal picture arising from a con-
stant positive Josephson coupling valid for low-Tc supercon-
ductors. The specific example of the Tc suppression at doping
level p=1 /8 is described in terms of the ratio of the second

to first sinusoidal components of the current-phase relation.
The naturally formed networks of Josephson junctions, due
to insulating layers sandwiched between CuO2 planes, are
strongly affected by the presence of higher-order terms in the
current phase relation. Further applications of the present
approach can be envisaged to account for the complex phe-
nomenology of high-Tc materials forming arrays of nonsinu-
soidal Josephson junctions and its implications in novel
quantum devices.
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