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This paper deals with the derivation of macroscopic tissue models from the underlying

description delivered by a class of equations that models binary mixtures of multicellular sys-

tems by methods of the kinetic theory for active particles. Cellular interactions generate both
modi¯cation of the biological functions and proliferative and destructive events. The asymptotic

analysis deals with suitable parabolic and hyperbolic limits, and is speci¯cally focused on the

modeling of the chemotaxis phenomena.

Keywords: Living systems; kinetic theory; multicellular systems; chemotaxis; asymptotic limits;

hyperbolic limits; di®usion limits.

1. Introduction

This paper deals with the derivation of macroscopic models of biological tissues from

the underlying description that is o®ered by the kinetic theory for active particles

KTAP,13 for short, and focuses on the asymptotic limit for macroscopic models that

we have considered to be a mixture of two populations of cells. Di®erent combi-

nations of parabolic and hyperbolic scales are used, according to the dispersive or
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non-dispersive nature of the population under consideration. The methodological

approach can easily be generalized to more than two populations. Two di®erent

approaches have been considered and are supported by the assumptions that both

populations are involved in some (linear or nonlinear) di®usion processes or, in a

di®erent context, that the dynamics of at least one of the populations is dominated by

the hyperbolic behavior, where di®usion does not have any, even negative, role on

preserving singular structures or patterns.

Our analysis is quite general, in the sense that it could be applied to di®erent

species, but for some aspects can be considered as a good example of the interactions

of a population with a chemical attractant: chemotaxis. As is well known, chemotaxis

consists of the characteristic, movement or, orientation of a population (bacteria, cell

or other single or multicellular organisms) along a chemical concentration gradient

either towards or away from the chemical stimulus (signals). Typical examples are

bacteria swimming to ¯nd food, the movement of sperm towards the egg during

fertilization, migration of lymphocytes, and cancer metastasis.1,33,34,57 A wide lit-

erature on the biological basis of the chemotaxis in di®erent contexts has been

documented in review paper.42

Let us brie°y comment on some issues involved in modeling chemotaxis

phenomena that are at present being discussed in the scienti¯c community and on

which this paper tries to o®er some insight:

(1) Several papers have been proposed in the literature based on suitable hy-

pothesis on the static or dynamic nature of the chemical signal. In our opinion,

stationary models (usually called parabolic�elliptic Keller�Segel models19,32) for the

chemical population only seem to be justi¯ed from a mathematical point of view and

provide a kind of hydrodynamical approach to these phenomena. The time-spatial

model detects chemoattractant waves coming from a particular direction going

towards, and interacting with the population, which is in continuous movement. It

should be noted that this mechanism might not reach a static gradient. On the other

hand, if we are dealing with an isolated system, the propagation of the chemical

substances could reasonably be represented by a di®usion process which would

induce a parabolic (di®usion) scale in our kinetic approach. However, a di®erent

choice of the model (such as hyperbolic or nonlinear parabolic) as well as a more

re¯ned choice of scale can be considered in a more complex scenario.

(2) Depending on the type of organism, on their ability to move (which is, for

example, di®erent in a bacteria or in a cell) and on the interaction with the multiple

protein molecule signals that they could detect, some small °uctuations might appear

in the trajectory of the population towards the path de¯ned by the chemoattractants.

It is also of interest to point out that, in many of the approaches that describe the

transport of a population, it is not clear how the trajectory of the population is

explicitly captured in the model, in correlation with the signal pathway. This

transport term is usually assumed linear in the concentration gradient of chemoat-

tractants and is denoted by S, i.e. of type divxðnrxSÞ, where n is the density of the
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population and x the space variable.19,20,32 However, this approach is not optimal in

the optimal transportation sense and, accordingly, it is only valid for very small

values of jrxSj, which is not the general case.

(3) Another aspect involved in modeling these phenomena, which is also of great

interest in relation to the previous point, is to obtain an answer to the following

question: Does the population (cells or bacteria) move by (linear) di®usion?

Although linear di®usion (terms of heat or Fokker�Planck type) usually has

in¯nite speed of propagation, it has been taken as a prototype to describe the

movement of biological populations. However, in some cases, linear di®usion con-

tributes with an excess of di®usion that destroys the dynamics of the systems and it

has a crucial aspect of the phenomena in chemotaxis pattern formation. It does not

seem reasonable to think that this kind of population can move in a Gaussian

manner, while experiments23,31 have proved that, on the contrary, the propagation is

made by fronts and singularities that are certainly far from that of linear di®usion

models. Because of this evidence, this modeling of the dynamics has been assumed,

but with some doubts, by the scienti¯c community, which has tried to use alternative

mechanisms, such as the hyperbolic Cattaneo approach,25 which was ¯nally proved

to violate the second principle of thermodynamics.56 Recently, di®erent ideas have

appeared in order to understand more clearly the population propagation, based

mainly on nonlinear di®usion or on hyperbolic models that allow front propagations,

periodic solutions, breathing modes, singularities, and so on to be transported

and preserved. One of the approaches consists in changing the classical di®usion

term �n by a power law di®usion of a porous medium or nonlinear mean ¯eld

Fokker�Planck28�30 type divxðnm rxnÞ. However, in this case the velocity at which

the system propagates the structures (fronts, patterns or singularities) of the popu-

lation is not an intrinsic property of the population; it actually depends on the initial

conditions. Many of the properties of the classical porous media equation are involved

in this new approach.58

Another point of view consists in modifying the model by introducing a nonlinear

limited °ux of the type

divx n
rxnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ � 2

c2 jrxnj2
q

0
B@

1
CA

instead of linear di®usion, � being the kinematic viscosity and c the maximum speed

of propagation. The motivation behind this approach was ¯rst given by Rosenau54,55

and then derived by Brenier20 by means of a Monge�Kantorovich mass transport

theory. The introduction of this type of term can also be motivated by the

assumption that particles do not move (di®use) arbitrarily in the space but, on the

contrary, through some privileged curves such as the border of cells. The analysis

of systems with limited °ux4�8 as well as some extensions to biological context

(transport of morphogens) has been recently explored.2 This °ux limited argument
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shows that the non-physical di®usion is eliminated and the population moves with a

¯nite speed of propagation, c, which is one of the intrinsic characteristics. As a

consequence, the system behaves more as a hyperbolic system than the usual linear

di®usive (Fokker�Planck) system and we obtain the preservation during the time

evolution of the dynamical structures: propagation fronts, biological responses or

stable patterns. It is also possible, in the same term, to combine the °ux limited with

a porous media type term,3

divx nm rxnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ � 2

c 2 jrxnj2
q

0
B@

1
CA;

where new phenomena can be modeled. The idea of replacing the di®usion e®ects

with a purely hyperbolic model for the cells or bacteria while keeping the parabolic

process for the chemoattractant, will also be analyzed later.

In order to anticipate some of our ¯nal results, let us here introduce the following

macroscopic model for the density and chemoattractant. This model collects two of

the innovating improved terms, with respect to the classical Keller�Segel model, and

consists of the choice of a limited °ux and of the optimal transport of the population n

according to the chemical signal S

@tn ¼ divx Dn

nrxnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ D 2

n

c 2 jrxnj2
q � n�

rxSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrxSj2

p
0
B@

1
CAþH2ðn;SÞ;

@tS ¼ divxðDS � rxSÞ þH1ðn;SÞ;

8>>><
>>>:

ð1:1Þ

where Hiðn;SÞ, i ¼ 1; 2 describes the interactions between the populations and the

remaining parameters and functions are related to the inner properties of the species,

as will be explained later. It should be pointed out that both modi¯cations are

motivated by optimal transportation criteria20 that are essential from a qualitative

point of view, for instance, for the propagation of singular fronts.

The aim of this paper is to deduce, from basic principles, macroscopic models

generated by the interaction of several populations for which chemotaxis is a par-

ticular situation. The improvements and new issues involved in modeling these

phenomena are motivated by the optimal transportation criteria which is important

to incorporate qualitative properties of the system under consideration. The idea is to

start with microscopic models deduced from the kinetic theory and then derive

macroscopic models at parabolic�parabolic and/or hyperbolic�parabolic scales. To

this aim, KTAP methods deal with large systems of interacting entities (cells),

according to the following main principles:

(i) The microscopic state of the interacting cells, called active particles, is charac-

terized not only by position and velocity, but also by an additional microscopic

state, called activity, which represents the biological functions expressed at a

cellular level.
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(ii) Microscopic interactions not only modify the microscopic state, but may also

generate proliferative and/or destructive phenomena.

Focusing on the mathematical models of multicellular systems derived according

to the KTAP method, the book18 and the survey14 report on the application of the

theory to model complex systems in biology, while di®erent models in life sciences are

presented in the survey.13

The dynamics of the overall system is described by an evolution equation for the

distribution function over the microscopic state of the particles (cells, bacteria,

morphogens,…). Asymptotic methods amount to expanding the distribution func-

tion in terms of a small dimensionless parameter related to the intermolecular dis-

tances (the space-scale dimensionless parameter), which is equivalent to the

connections between the biological constants. The limit is singular and the conver-

gence properties can be proved under suitable technical assumptions. In the previous

papers, biological systems were considered in which the interactions do not follow

classical mechanical rules, and biological activity may play a relevant role in deter-

mining the dynamics.

An example that motivates the role of the activation variables can be found in the

study and modeling the cellular growth. One of the approaches adopted in the lit-

erature to model cellular growth consists in adapting the experimental results to the

growth of a radial ball in a linear heat equation. However, where is biology in this

approach? External agents, such as insulin, are involved in the activation of bio-

logical variables, which trigger the pathway of the TOR protein, which in turn plays

a central role in cellular growth. Therefore, modeling on the basis of ¯rst principles, as

far as possible, could contribute to incorporate the correct biological inputs in the

macroscopic context. This is a crucial aspect in our approach to the modeling of living

systems, where the active particles that compose their matter have the ability to

subtract mass, information or energy from the environment for their own bene¯t,

including proliferative and/or destructive events. Proliferation is in fact generally

obtained using the energy of other living entities which are destroyed.

In recent years, the analysis of the applicability of this procedure to di®erent

systems has reached an important stage of development in the so-called parabolic and

hyperbolic limits or equivalently low and high ¯eld limits. The parabolic (low ¯eld)

limit of kinetic equations leads to a drift�di®usion type system (or reaction�
di®usion system) in which the di®usion processes dominate the behavior of the sol-

utions. The specialized literature o®ers a number of recent contributions concerning

various limits for parabolic di®usive models of the mathematical kinetic theory.38,53

When dealing with cell interactions, the authors do not believe that the di®usive

(parabolic) limit is the most appropriate approach, while di®usion seems to be more

correct for the case of the concurrence of a chemical process or in a surrounding °uid

with a precise viscosity. On the other hand, in the hyperbolic (high ¯eld) limit the

in°uence of the di®usion terms is of lower (or equal) order of magnitude compared

with other convective or interaction terms and the aim is to derive hyperbolic
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macroscopic models.21,36,37 Therefore, di®erent macroscopic models are obtained in

agreement with di®erent scaling assumptions, see Ref. 52.

The same methodological approach has been developed over the last decade to

derive macroscopic equations from the underlying microscopic models for multi-

cellular systems derived from the methods of the generalized kinetic theory. Although

the literature on this topic is not as vast as that of classical particles, several inter-

esting contributions10�12,26,27,35,43,48,50 have been developed after the pioneering

paper by Othmer, Dunbar and Alt.49

This paper is organized as follows. Section 2 deals with the description of the class

of equations of the KTAP method that describe multicellular systems where inter-

actions modify the biological functions expressed by cells, and proliferative or

destructive events. Section 3 deals with the de¯nition of parabolic scalings derived

from the asymptotic analysis in the limit of the macroscopic equation. Section 4 deals

with mixed parabolic and hyperbolic scaling, again focusing on the derivation of

macroscopic biological phenomena. Various examples are reported in both Secs. 3

and 4.

2. A General Mathematical Framework

Let us consider a physical system constituted by a large number of cells that interact

in the environment of a vertebrate. The physical variable used to describe the state of

each cell, calledmicroscopic state, is denoted by the variable ft;x;v;ug, where fx;vg
is the mechanical microscopic state, identi¯ed by position and velocity, and u 2
Du � R is the biological function expressed by each population regarded as a

module,41 and t is the time.

Speci¯cally, let us consider a binary mixture, where the statistical collective

description is encoded in the statistical distribution functions fi ¼ fiðt;x;v;uÞ, for
i ¼ 1; 2, which is called generalized distribution function. Weighted moments pro-

vide, under suitable integrability properties, the calculation of macroscopic variables.

Modeling the evolution of the distribution function can be obtained by the KTAP

method. In detail, the evolution of f ¼ ðf1; f2Þ can be modeled for a system of two

populations, as follows:

ð@t þ v � rxÞf1 ¼ �1L1ðf1Þ þ �1G1½f; f� þ �1I 1½f; f�;
ð@t þ v � rxÞf2 ¼ �2L2ðf2Þ þ �2G2½f; f� þ �2I 2½f; f�;

�
ð2:1Þ

where

. The operator LiðfiÞ that models the dynamics of biological organisms by a

velocity-jump process is de¯ned as follows:

LiðfÞ ¼
Z
V

½Tiðv;v�Þfðt;x;v�;uÞ � Tiðv�;vÞfðt;x;v;uÞ�dv�;

for i ¼ 1; 2, where Tiðv;v�Þ is the probability kernel over the new velocity v 2 V ,

assuming that the previous velocity was v�. This corresponds to the assumption
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that any individual of the population chooses any direction with bounded velocity.

Speci¯cally, the set of possible velocities is denoted by V, where V � R3; moreover,

it is assumed thatV is bounded and spherically symmetric (i.e. v 2 V ) �v 2 V ).

The operators Ti may depend on f1 and f2; moreover, �1 and �2 represent the

interaction rates of the mechanical interactions.

. �1 and �2 denote the biological interaction rates related to interactions that modify

the biological state of the individuals for each population.

. The operators Gi are de¯ned as follows:

Gi½f; f�ðt;x;v;uÞ ¼
X2
j¼1

Gij½f; f�ðt;x;v;uÞ;

where

Gij ¼
Z
�

wijðx;x�ÞBijðu� ! uju�;u�Þfiðt;x;v;u�Þfjðt;x�;v;u�Þdx� du�du�

� fiðt;x;v;uÞ
Z
�

wijðx;x�Þfjðt;x�;v;u�Þdx�du�;

and � ¼ Du �Du � � and � ¼ Du � �, where � is the spatial interaction domain.

The operators Gij describe the gain–loss balance of individuals (cells, chemoat-

tractants, molecules, etc.) in state u, in each population, due to conservative

encounters, namely those which modify the biological state without generating

proliferation or destruction phenomena. The kernel Bij models the transition

probability density of the individual with state u� into the individual with state u,

after interaction with the individual with state u�, wijðx;x�Þ is a normalized (with

respect to space integration over �) weight function that accounts for the distance

and distribution that weakens the intensity of the interaction.

. I i corresponds to proliferative/destructive interactions (in the absence of pro-

liferation, due to genetic mutations into a population di®erent from that of the

interacting individuals). This operator is de¯ned as follows:

I i½f; f�ðt;x;v;uÞ ¼
X2
j¼1

I ij½f; f�ðt;x;v;uÞ;

where

I ijðf; fÞ ¼ fiðt;x;v;uÞ
Z
�

wijðx;x�Þpijðu;u�Þfjðt;x�;v;u�Þdx�du�:

Remark 2.1. The distribution function fiðt;x;v;uÞ refers to the test individual,

while interactions occur between pairs of a test and a ¯eld individual fjðt;x�;v;u�Þ
that generate proliferative or destructive outputs; and between a candidate fjðt;x;
v;u�Þ and ¯eld individual with mutation of the state of the candidate individual into

the state of the test individual.15
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Remark 2.2. The above modeling approach is based on the assumption that

interactions occur, and are weighted, within the action domain � of the test

individual. In particular, the term Bijðu� ! uju�;u�Þ has the structure of a

probability density with respect to the output u for any input variable.

Remark 2.3. The assumption that the microscopic state u is a scalar variable can be

technically related to the theory of modules by Hartwell.41 It has been proposed in

Ref. 15 that modules are identi¯ed by the biological functions they express, which

corresponds to refer the collective behavior of the population to one biological

function only. Accordingly, the denomination of functional subsystems has been

proposed.

3. The Parabolic{Parabolic Limit: Linear Turning Operators

In this section di®erent possibilities, which could appear when dealing with parabolic

hydrodynamical limits for both populations, are introduced. These limits depend on

the scaling choice for the biological constants. First the basis of the kinetic approach

to this microscopic model is given; then, based on the identi¯cation in the limit of the

moments of the solutions, the di®erent limit cases can be deduced. Finally, several

examples motivated in the choice of the transport and interactions operators

involved in our general kinetic model are reported.

3.1. The kinetic model

The purpose of this section is to derive macroscopic models (as for example those of

chemotaxis) from the kinetic model (2.1). These macroscopic equations can be

obtained in the regime �1 � �2 and also in the regime where the biological parameters

are small with respect to mechanical ones. After a dimensionless of the system is

obtained, see Ref. 12, a small parameter " can be chosen such that

�1 ¼
1

"p
; �2 ¼

1

"
; p 	 1

and

�1 ¼ �2 ¼ "q; �1 ¼ "r1 ; �2 ¼ "r2 ;

where q 	 1; and r1; r2 are non-negative constants.

Then, the model (2.1) can be written in the following form:

ð"@t þ v � rxÞf "
1 ¼ 1

"p
L1ðf "

1Þ þ "qG1½f "; f "� þ "qþr1I1½f "; f "�;

ð"@t þ v � rxÞf "
2 ¼ 1

"
L2½f "

1 �ðf "
2Þ þ "qG2½f "; f "� þ "qþr2I2½f "; f "�;

8>><
>>: ð3:1Þ

where we assume that the turning operator L2½f1� can be written as follows:

L2½f1�ðgÞ ¼ L0
2ðgÞ þ "L1

2½f1�ðgÞ; ð3:2Þ
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and where L i
2 for i ¼ 0; 1 are given by

L i
2ðgÞ ¼

Z
V

½T i
2gðt;x;v�;uÞ � T i

2
�
gðt;x;v;uÞ�dv�; ð3:3Þ

where T i
2
� ¼ T i

2ðv�;vÞ.
The dependence on f1 of the operator L2½f1� stems from L1

2. We assume that L0
2 is

independent of f1. A nonlinear choice leading to limited °ux operators will be

introduced in the last section of this paper.

Let us ¯rst state some assumptions on the turning operator Li ði ¼ 1; 2Þ.
Assumption H.3.1. We assume that the turning operators L1 and L2 satisfyZ

V

L1ðgÞdv ¼
Z
V

L0
2ðgÞdv ¼

Z
V

L1
2½f1�ðgÞdv ¼ 0: ð3:4Þ

Some de¯nitions and assumptions are necessary to develop the asymptotic anal-

ysis leading to the derivation of macroscopic models. In the following, the integral

with respect to the variable v will be denoted by h�i.
Assumption H.3.2. There exists a bounded velocity distribution MiðvÞ > 0, i ¼
1; 2 independent of t;x, such that the detailed balance

T1ðv;v�ÞM1ðv�Þ ¼ T1ðv�;vÞM1ðvÞ
and

T 0
2 ðv;v�ÞM2ðv�Þ ¼ T 0

2 ðv�;vÞM2ðvÞ
holds. Moreover, the °ow produced by these equilibrium distributions vanishes, and

Mi are normalized, i.e. hvMiðvÞi ¼ 0 and hMiðvÞi ¼ 1.

Also, the kernels T1ðv;v�Þ and T 0
2 ðv;v�Þ are bounded, and there exists a constant

�i > 0, i ¼ 1; 2, such that

T1ðv;v�Þ 	 �1M1ðvÞ; T 0
2 ðv;v�Þ 	 �2M2ðvÞ;

for all ðv;v�Þ 2 V � V , x 2 � and t > 0.

Let L1 ¼ L1 and L2 ¼ L0
2. Assumption H.3.2 yields the proof of the following

lemma (see Ref. 9):

Lemma 3.1. Suppose that Assumptions H.3.1 and H.3.2 hold. Then, the following

properties of the operators L1 and L2 hold:

(i) For f 2 L2, the equation LiðgÞ ¼ f, i ¼ 1; 2, has a unique solution g 2 L2ðV ; dvMi
Þ,

which satis¯es

hgi ¼
Z
V

gðvÞdv ¼ 0 if and only if hfi ¼
Z
V

fðvÞdv ¼ 0:

(ii) The operator Li is self-adjoint in the space L2ðV ; dvMi
Þ.
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(iii) The equation LiðgÞ ¼ vMiðvÞ, i ¼ 1; 2, has a unique solution that we call �iðvÞ.
(iv) The kernel of Li is NðLiÞ ¼ vectðMiðvÞÞ, i ¼ 1; 2.

We will ¯rst derive the general form of the velocity of the ¯rst population in terms

of the operator L1
2½f1�, without a detailed speci¯cation as to how it depends on the

other population, and thereby we will derive the equation at the macroscopic level

from the model at the microscopic scale.

3.2. The hydrodynamic limit

The limit " ! 0 is formally developed, in this subsection, for (3.1). The resulting

macroscopic model depends on the properties of the turning operators. The strategy

to derive the macroscopic model consists of the following steps:

Step 1. Multiplying the ¯rst equation of (3.1) by "p and letting " go to zero, yields

L1ðf 0
1 Þ ¼ 0. Therefore, one deduces, by Lemma 3.1(iv) that there exists a function S,

independent of v, such that

f 0
1 ðt;x;v;uÞ ¼ Sðt;x;uÞM1ðvÞ: ð3:5Þ

By multiplying the second equation of (3.1) by ", using (3.2), and letting " go to zero,

yields L0
2ðf 0

2 Þ ¼ 0. Moreover, analogous reasonings yield

f 0
2 ðt;x;v;uÞ ¼ nðt;x;uÞM2ðvÞ: ð3:6Þ

Step 2. Integration of the ¯rst and second equations in (3.1) over v and using (3.4)

yields:

@thf "
1i þ

1

"
hv � rxf

"
1i ¼ "q�1hG1½f "; f "�i þ "qþr1�1hI1½f "; f "�i ð3:7Þ

and

@thf "
2i þ

1

"
hv � rxf

"
2i ¼ "q�1hG2½f "; f "�i þ "qþr2�1hI2½f "; f "�i: ð3:8Þ

The asymptotic limit of 1
" hv � rxf

"
i i, i ¼ 1; 2, needs to be estimated to recover the

limit in (3.7) and (3.8). Moreover, let us consider the identity

1

"
v � rxf

"
ih i ¼ divx

MiðvÞvf "
i

"MiðvÞ
� �

¼ divx
1

"
�iðvÞLiðf "

i Þ
1

MiðvÞ
� �

; i ¼ 1; 2;

where functions �i are given by Lemma 3.1; and using the identities

1

"
L1ðf "

1Þ ¼ "p@tf
"
1 þ "p�1v � rxf

"
1 � "p�1þqG1½f "; f "� � "qþr1þp�1I 1½f "; f "�

and

1

"
L0

2ðf "
2Þ ¼ "@tf

"
2 þ v � rxf

"
2 � L1

2½f "
1 �ðf "

2Þ � "qG2½f "; f "� � "qþr2I2½f "; f "�
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and the properties that L0
2 and L1 are self-adjoint operators, one deduces that

1

"
v � rxf

"
1h i ! divx �1ðv � rxÞSh i; if p ¼ 1; or 0 if p > 1;

and

1

"
hv � rxf

"
2i ! divxh�2ðv � rxnÞi � divx

�2
M2ðvÞ

L1
2½M1S�ðM2nÞ

� �
:

The asymptotic quadratic terms of (3.7) and (3.8) converge, for i ¼ 1; 2, to the

following functionals:

Giðn;SÞðt;x;uÞ ¼ Gi

M1S

M2n

� �
;

M1S

M2n

� �� �� �

and

Iiðn;SÞðt;x;uÞ ¼ I i

M1S

M2n

� �
;

M1S

M2n

� �� �� �
:

Therefore, we can derive macroscopic models by taking limits in (3.7) and (3.8).

Some assumptions on the kernels T1ðv;v�Þ, T 0
2 ðv;v�Þ and T 1

2 ½f1� are needed to

develop the convergence analysis leading to the derivation of macroscopic models.

Assumption H.3.3. There exists Ci, i ¼ 1; 2; 3 independent of t;x, and v such that:

T1ðv;v�Þ � C1M1ðvÞ; T 0
2 ðv;v�Þ � C2M2ðvÞ; jT 1

2 ½f1� j � C3jf1j:
To pass to the limit it is su±cient to assume pointwise convergence together with

a global Lm bound of f "
i (see Ref. 12 for details). This result can be stated as follows.

Theorem 3.1. Let f "
i ðt;x;v;uÞ be a sequence of solutions to the scaled kinetic

system (3.1), which veri¯es Assumptions H.3.1�H.3.3 such that f "
i converges a.e. in

½0;1Þ � �� V �Du to a function f 0
i as " goes to zero and

sup
t	0

Z
�

Z
V

Z
Du

jf "
i ðt;x;v;uÞjmdu dv dx � C < 1 ð3:9Þ

for some positive constants C > 0 and m > 2. Moreover, it is assumed that the

probability kernels Bij are bounded functions and that the weight functions wij and pij
have ¯nite integrals. It follows that the asymptotic limits f 0

i have the form (3.5)�(3.6)

where n, S are the weak solutions of the following equation (that depends on the values

of p, q, r1 and r2)

@tS � �p;1 divxðDS � rxSÞ ¼ �q;1G1ðn;SÞ þ �q;1�r1;0I1ðn;SÞ;
@tnþ divxðn�ðSÞ �Dn � rxnÞ ¼ �q;1G2ðn;SÞ þ �q;1�r2;0I2ðn;SÞ;

where �a;b stands for the Kronecker delta and Dn;DS and �(S) are given by

DS ¼ �
Z
V

v
 �1ðvÞdv; Dn ¼ �
Z
V

v
 �2ðvÞdv ð3:10Þ
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and

�ðSÞ ¼ �
Z
V

�2ðvÞ
M2ðvÞ

L1
2½M1S�ðM2ÞðvÞdv: ð3:11Þ

Remark 3.1. The matrices Dn and DS are symmetric and positive de¯nite

according to a standard result in the theory of di®usion limits (see Ref. 9 for a proof).

Remark 3.2. In general Dn and DS are not isotropic (there are not scalar factor of

the identity matrix). An example where the tensors Dn and DS are isotropic will be

given in Sec. 3.3.1.

The approach we have developed is quite general. Some more speci¯c examples are

now given.

3.3. Examples for linear turning kernels

Speci¯c models for turning kernels and compute explicit formulas for the macroscopic

transport coe±cients are analyzed in this subsection.

3.3.1. Example I : A general model for kernels with relaxation in time

Let us ¯rst consider the following task for the probability kernels:

T1ðv;v�Þ ¼ �1M1ðvÞ; T 0
2 ðv;v�Þ ¼ �2M2ðvÞ; �1; �2 > 0:

Consequently, the leading turning operators L1 and L0
2 become relaxation operators:

L1ðgÞ ¼ ��1ðg� hgiM1Þ; L0
2ðgÞ ¼ ��2ðg� hgiM2Þ:

In particular, �1 and �2 are given by

�1ðvÞ ¼ � 1

�1

vM1ðvÞ; �2ðvÞ ¼ � 1

�2

vM2ðvÞ:

Moreover

�ðSÞ ¼ 1

�2

Z
V

vL1
2½M1S�ðM2ÞðvÞdv; ð3:12Þ

while the di®usion tensors Dn and DS are given by

DS ¼ 1

�1

Z
V

v
 vM1ðvÞdv; Dn ¼ 1

�2

Z
V

v
 vM2ðvÞdv:

If rotational invariance of the equilibrium distribution, namely Mi ¼ MiðjvjÞ is

assumed, the isotropic tensors Dn and DS are given by:

DS ¼ 1

3�1

Z
V

jvj2M1ðvÞdv
� �

I; Dn ¼ 1

3�2

Z
V

jvj2M2ðvÞdv
� �

I:
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3.3.2. Some fundamentals of chemotaxis

The mathematical study of chemotaxis started with the work of Patlak51 and was

boosted by the papers of Keller and Segel, where they introduced a model to study

the aggregation of Dictyostelium discoideum due to an attractive chemical sub-

stance44 and made some further comments and studies.45,46 We refer to Ref. 47 for a

review about the ¯rst years of research on the Keller�Segel model.

Their original model consists in an advection-di®usion system of two coupled

parabolic equations:

@tn ¼ divxðDnrxn� �nrxSÞ þHðn;SÞ;
@tS ¼ DS�S þKðn;SÞ;

(
ð3:13Þ

where n ¼ nðt;xÞ is the cell density at position x and time t, and S ¼ Sðt;xÞ is

the density of the chemoattractant. The positive-de¯nite terms DS and Dn are the

di®usivity of the chemoattractant and of the cells, respectively, while � 	 0 is the

chemotactic sensitivity. As we will see later, in a more general framework in which

di®usions are not isotropic, DS and Dn could be positive-de¯nite matrices.

We will examine several forms for the dependence of the kernel on S and its

gradient, some of which lead to the classical systems such as the Keller�Segel che-

motaxis model. Our approach gives the derivation of the evolution equation (linear

Fokker�Planck) for S, while nonlinear cases will be analyzed at the end of the paper.

Let us brie°y comment on the main aspects of model (3.13) in order to clearly

understand its derivation from a microscopic approach and how to improve or in-

corporate some new fundamental aspects of chemotaxis:

. It is reasonable, in a preliminary approach, assuming that the chemical population

undergoes a linear di®usion process; in general the substance S does not only di®use

in the substrate, but it can also be produced by bacteria themselves.

. The role of the functions Hðn;SÞ and Kðn;SÞ in (3.13) consists in modeling the

interaction between both quantities. For example, the Slime Mold Amoebae pro-

duce themselves the chemoattractant when it is lacking nourishment.

. It is not completely clear how the term divxð�nrxSÞ induces per se the optimal

movement of the cells towards the pathway determined by the chemoattractant.

Then, in our opinion, this term could be modi¯ed in a fashion that the °ux density

of particles is optimized along the trajectory induced by the chemoattractant,

namely by minimizing the functionalZ
�n dS ¼

Z
�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrxSj2

q
dx

with respect to S, where dS is the measure of the curve de¯ned by S. This approach

provides an alternative term in the corresponding Euler–Lagrange equation of type

divx �n
rxSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jrxSj2
p

 !
: ð3:14Þ
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Of course this term coincides with divxð�nrxSÞ when jrxSj is very small. How-

ever, if jrxSj � 0, comparing this scale with the remaining scales of the problem is

necessary.

. As we mentioned in the Introduction, it does not seem realistic to think that cells or

bacteria move simply by (linear Fokker–Planck) di®usion, divxðDnrxnÞ. Other

possibilities to modify this approach based on incorporating real phenomena

related with cell or bacteria motion (cilium activation or elasticity properties of the

membrane, among others) can be considered. For instance, considering a nonlinear

limited °ux that allows a richer and more realistic dynamics: ¯nite speed of

propagation c, preservation of fronts in the evolution, or formation of biological

patterns. This is represented by terms of the type

divx Dnn
rxnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ D 2
n

c 2 jrxnj2
q

0
B@

1
CA:

We investigate, in the following examples, how the classical chemotaxis equations

(3.13), which describe the population-level response to external chemical signals, can

be obtained from the microscopic description delivered by model (2.1), as well as some

more precise approaches to the several phenomena described in the previous items.

3.3.3. Example II : Classical Keller�Segel type models

The relaxation kernels presented in Sec. 3.3.1, together with the choice

T 1
2 ½f1� ¼ Kf1

M1

ðv;v�Þ � rx

f1
M1

;

where Kf1
M1

ðv;v�Þ is a vector-valued function, leads to the model

L1
2½M1S�ðM2Þ ¼ hðv;SÞ � rxS;

where

hðv;SÞ ¼
Z
V

ðKSðv;v�ÞM2ðv�Þ �KSðv�;vÞM2ðvÞÞdv�:

Finally, the function �ðSÞ in (3.12) is given by

�ðSÞ ¼ �ðSÞ � rxS;

where the chemotactic sensitivity �ðSÞ is given by the matrix

�ðSÞ ¼ 1

�2

Z
V

v
 hðv;SÞdv: ð3:15Þ

Therefore, the drift term divxðn�ðSÞÞ that appears in the macroscopic case stated

by Theorem 3.1 becomes:

divxðn�ðSÞÞ ¼ divxðn�ðSÞ � rxSÞ;
which gives a Keller�Segel type model (3.13) in the case p ¼ 1 of Theorem 3.1.
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3.3.4. Example III: Optimal drift following the chemoattractant

If we combine the relaxation kernels presented in Sec. 3.3.1 with the following choice

for T 1
2 :

T 1
2 ½f1� ¼ Kf1

M1

ðv;v�Þ �
rx

f1
M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jrx
f1
M1

j2
q ; ð3:16Þ

then, the drift term divxðn�ðSÞÞ that appears in the macroscopic cases de¯ned in

Theorem 3.1 becomes

divxðn�ðSÞÞ ¼ divx n�ðSÞ � rxSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrxSj2

p
 !

;

where the chemotactic sensitivity �ðSÞ is given by the matrix (3.15), and, in general,

is not constant. This corresponds to the optimal drift term (3.14) presented in

Sec. 3.3.2 as a modi¯cation of the Keller�Segel model (3.13).

The model deduced in Sec. 3.3.3 could be a reasonable simpli¯cation of this one

when jrxSj � 0, but it is not, in general, a good simpli¯cation since the trajectories

can develop, for example, spiral patterns.

Similar type of turning operators, addressed to ¯nd a °ux limited Keller�Segel

model as a parabolic limit of a kinetic description, can also be found in Ref. 22. In that

paper the authors introduce a °ux-limited operator of type rxS=jrxSj with a

multiplicative factor in terms of the time derivative of S trying to model the

microscopic features that stem from the response of a bacterium to a change in the

environment.

Constructing turning operator, that lead to deduce nonlinear °ux-limited terms as

they were described in the Introduction, requires a di®erent approach. Some non-

linear turning operators, obtained from ¯rst principles of the °ux-limited system, are

deduced in the last section for the hyperbolic�parabolic limit, according to an

appropriate choice of the operator L2. This choice depends of both populations on the

drift�di®usion type models analyzed in this section.

4. Binary Mixtures and Mixed Scalings: Flux-Limited Systems

Let us now consider again the class of equations derived in Sec. 2, which acts as a

fundamental paradigm for the derivation of various models of interest in biology and

life sciences as documented in the book18 and in papers.16,17,15

The asymptotic analysis developed in the preceding section was based on the

assumption of the parabolic scaling (3.1) for both populations. The limit gives rise to

a system of coupled equations which includes a di®usion term for both populations.

Assuming that the second population (cells or bacteria in the example of chemotaxis)

has no di®usive behavior, the derivation of macroscopic equations requires hyperbolic

scaling for this population. Bearing this in mind, let us now consider system (2.1)
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with a parabolic scaling for the ¯rst population, but with a hyperbolic one for the

second one:

ð"@t þ v � rxÞf "
1 ¼ 1

"p
L1ðf "

1Þ þ "qG1½f "; f "� þ "qþr1I 1½f "; f "�; ð4:1Þ

"ð@t þ v � rxÞf "
2 ¼ L2½f "

1 �ðf "
2Þ þ "qG2½f "; f "� þ "qþr2I 2½f "; f "�; ð4:2Þ

where p; q 	 1, r1; r2 	 0, and " is a small parameter that is allowed to tend to zero.

We refer to Ref. 12 for more details about the hyperbolic scaling.

4.1. The parabolic limit for the ¯rst specie

The limit " ! 0 of (4.1) is analyzed in this subsection, as in Sec. 3.2. Macroscopic

models are obtained depending on the turning operator L1.

Considering that the scaling for the ¯rst Eq. (4.1), that corresponds to the

chemical substance, is exactly that of Sec. 3.1, the hypothesis on L1 and the passage

to the limit follow the same guidelines. This approach yields:

@tS ¼ �p;1 divxðDS � rxSÞ þ �q;1 G1

M1S

f 0
2

� �
;

M1S

f 0
2

� �� �� �

þ �q;1; �r1;0 I1

M1S

f 0
2

� �
;

M1S

f 0
2

� �� �� �
;

where �a;b stands for the Kronecker delta and f 0
2 will be given by the limit of f "

2 , to be

determined.

Actually, some di®erent \hyperbolic" hypotheses on the operator L2½f "
1 � are

required to establish the behavior of the second specie and its macroscopical limit. In

fact, we have di®erent ways to proceed depending on the expected result. In the next

subsections we will see how di®erent hypotheses produce di®erent descriptions of the

macroscopic behavior.

4.2. Parabolic�hyperbolic description: Integral coupling

We assume that the turning operator L2½f "
1 � is decomposed as in (3.2) and veri¯es

(3.3), meanwhile condition (3.4) and Assumption H.3.2 are replaced by the following

hyperbolic assumptions (see Ref. 12 for more details).

Assumption H.4.1. The turning operator L2½f "
1 � ¼ L0

2 þ "L1
2½f "

1 � satis¯esZ
V

L0
2ðgÞdv ¼

Z
V

L1
2½f1�ðgÞdv ¼ 0; ð4:3Þ

Z
V

vL0
2ðgÞdv ¼ 0: ð4:4Þ
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Assumption H.4.2. For any n 2 ½0;þ1Þ and U 2 Rn, there exists a unique

function Mn;U 2 L1ðV ; ð1þ jvjÞdvÞ such that

L0
2ðMn;UÞ ¼ 0;

Z
V

Mn;U ðvÞdv ¼ n;

Z
V

vMn;U ðvÞdv ¼ nU : ð4:5Þ

Then, we let " go to zero in Eq. (4.2). This yields L0
2ðf 0

2 Þ ¼ 0. Therefore, as a

consequence, there exist n 	 0 and U 2 Rn (depending on ðt;x;uÞ), namely the

macroscopic density and velocity associated to function f 0
2 , such that f 0

2 ¼ Mn;U .

The next step consists in determining the macroscopic dynamics for n and U and

the coupling with the macroscopic density S. To do that, we integrate (4.2) over v

and use (4.3) to obtain

@thf "
2i þ hv � rxf

"
2i ¼ "q�1hG2½f "; f "�i þ "q�1þr2hI2½f "; f "�i:

By letting " ! 0, we ¯nd that the function n satis¯es the following conservation law

@n

@t
þ divxðnUÞ ¼ �q;1hG2½f 0; f 0�i þ �q;1�r2;0hI 2½f 0; f 0�i

at the equilibrium, where

f 0 ¼ ðM1ðvÞS;Mn;U Þ: ð4:6Þ
In the same way, multiplying (4.2) by v, integrating over v, and using (4.4) yields

@thvf "
2i þDivxhv
 vf "

2i ¼ hvL1
2½f "

1 �ðf "
2Þi

þ "q�1hvG2½f "; f "�i þ "q�1þr2hvI 2½f "; f "�i:
Letting again " ! 0, the limit equation for the momentum is rapidly obtained:

@ðnUÞ
@t

þDivðnU 
 U þ PÞ ¼ hvL1
2½M2S�ðMn;UÞi

þ �q;1hvG2½f 0; f 0�i þ �q;1�r2;0hvI2½f 0; f 0�i;
where f 0 is de¯ned by (4.6) and the pressure tensor is, as usual, given by

P ¼
Z
V

ðv� UÞ 
 ðv� UÞMn;Udv: ð4:7Þ

Therefore, the model at the macroscopic scale is obtained as follows:

@tS ¼ �p;1 divxðDS � rxSÞ þ �q;1hG1½f 0; f 0�i þ �q;1�r1;0hI1½f 0; f 0�i;
@tnþ divxðnUÞ ¼ �q;1hG2½f 0; f 0�i þ �q;1�r2;0hI 2½f 0; f 0�i;
@tðnUÞ þDivðnU 
 U þ PÞ

¼ hvL1
2½M1 S�ðMn;U Þi þ �q;1hvG2½f 0; f 0�i þ �q;1�r2;0hvI2½f 0; f 0�i:

8>>>>><
>>>>>:

ð4:8Þ

This result can be summarized in the following theorem.

Theorem 4.1. Let f "
i ðt;x;v;uÞ be a sequence of solutions to the scaled kinetic

system (4.1)�(4.2) with L1 verifying Assumptions H.3.1�H.3.3 and L2 verifying
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Assumptions H.4.1 and H.4.2. Assume that f "
i veri¯es (3.9) and converges a.e. in

½0;1Þ � �� V �Du to a function f 0
i as " goes to zero. Moreover, it is assumed that

the probability kernels Bij are bounded functions and that the weight functions wij and

pij have ¯nite integrals. Then, the asymptotic limit is given by (4.6) where S, n and U

are the weak solutions of (4.7)�(4.8).

Remark 4.1. Note that the in°uence of the population S on the velocity U is given

by an integral source term. Moreover, even if we take L1
2 ¼ 0, the other integral terms

give an analogous coupling once q ¼ 1.

Remark 4.2. Note that system (4.8) is not closed in general. Some examples where

system (4.8) is closed are as follows.

4.3. Examples from parabolic�hyperbolic coupling

Let us anticipate here the following macroscopic models, which is a particular case of

the next general result.

4.3.1. Recovering Cattaneo system

The linear Cattaneo system has the following form:

@tnþ divxðnUÞ ¼ 0;

	@tðnUÞ þ drxn ¼ �nU :

�
ð4:9Þ

The linear Cattaneo system (4.9) can be seen as a generalization of a correlated

random walk.39 Therefore, nðt;xÞ is the population density and nðt;xÞUðt;xÞ is the
population °ux. The constant d and the time constant 	 are positive. The Cattaneo

law, namely the second equation in (4.9), was introduced by Cattaneo25 to describe

heat transport with ¯nite speed. This property justi¯ed the extensive use in biology of

the Cattaneo model until Rubin56 proved that the system violates the second prin-

ciple of the thermodynamics.

Let us now de¯ne the operators L0
2ðfÞ and T 1

2 in the kinetic formulation leading

through the parabolic�hyperbolic limit to the Cattaneo system. Consider the case

where the set for velocity is the sphere of radius r > 0, V ¼ r Sd�1. Let us take a

kernel T 0
2 ðv;v�Þ in the form T 0

2 ðv;v�Þ ¼ 
þ � v � v�, so that the operator L0
2ðfÞ can

be computed as follows:

L0
2ðfÞ ¼ 
jV j n

jV j 1þ �



v � U

� �
� fðvÞ

� �
: ð4:10Þ

Then L0
2ðfÞ, with �r2 ¼ 
n veri¯es Assumptions H.4.1 and H.4.2 for a function

Mn;UðvÞ given by

Mn;U ðvÞ ¼
n

jV j 1þ �



v � U

� �
¼ n

jV j 1þ d

r2
v � U

� �
ð4:11Þ
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and L0
2ðfÞ is the relaxation operator

L0
2ðfÞ ¼ 
jV jðMn;U ðvÞ � fðvÞÞ: ð4:12Þ

Then, the pressure tensor P de¯ned in (4.7) associated with Mn;U ðvÞ is given by

P ¼ r2

d
nI� nU 
 U :

Let us now take ¯rst a kernel T 1
2 ðv;v�Þ independent of f1
T 1
2 ðv;v�Þ ¼ �1

jV j ð4:13Þ

such that the operator L1
2ðfÞ satis¯es (4.3) and can be computed as follows:

L1
2½f1�ðf2Þ ¼ �1

n

jV j � f2

� �
ð4:14Þ

and Z
V

vL1
2½M2S�ðMn;UÞdv ¼ ��1nU : ð4:15Þ

Therefore the macroscopic model (4.8) becomes

@tS ¼ �p;1 divxðDS � rxSÞ þG�;qðS;nÞ;
@tnþ divxðnUÞ ¼ H�;q½S;n;nU �;

@tðnUÞ þ r2

d
rxn ¼ ��1nU þK�;q½S;n;nU �;

8>>><
>>>:

where

G�;qðS;nÞ ¼ �q;1 ðhM1ðvÞ2iG11

S

n

� �
;

S

n

� �� �
þ 1

jV j G12

S

n

� �
;

S

n

� �� �� 	

þ �q;1�r1;0 hM1ðvÞ2iI11

S

n

� �
;

S

n

� �� �
þ 1

jV j I 12

S

n

� �
;

S

n

� �� �� 	
and

H�;qðS;n;nUÞ ¼ �q;1
jV j G21

S

n

� �
;

S

n

� �� �
þGðnÞ þ d

r2
GðnUÞ

� �

þ �q;1�r2;0
jV j I 21

S

n

� �
;

S

n

� �� �
þ IðnÞ þ d

r2
IðnUÞ

� �
;

K�;qðS;n;nUÞ ¼ �q;1
jV j G21

S

hv
 vM1ðvÞi � nU
� �

;
S

hv
 vM1ðvÞi � nU
� �� ��

þKðn;nUÞ þKðnU ;nÞ
	

þ �q;1�r2;0
jV j

d

r2
I21

S

hv
 vM1ðvÞi � nU
� �

;
S

hv
 vM1ðvÞi � nU
� �� ��

þP ðn;nUÞ
	
;
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where for any scalar or vector function h, the functions I and G are given by

GðhÞ ¼ G22

:

h


 �
;

:

h


 �h i
; IðhÞ ¼ I 22

:

h


 �
;

:

h


 �h i
;

and the vector functions K(h, g) and P(h, g) are given by

Kðh; gÞ ¼
Z
�

w22ðx;x�ÞB22ðu� ! uju�;u�Þhðt;x;v;u�Þgðt;x�;v;u�Þdx�du�du�

� gðt;x;v;uÞ
Z
�

w22ðx;x�Þhðt;x�;v;u�Þdx�du�;

P ðh; gÞ ¼ gðt;x;v;uÞ
Z
�

w22ðx;x�Þp22ðu;u�Þhðt;x;v;u�Þdx�du�

þhðt;x;v;uÞ
Z
�

w22ðx;x�Þp22ðu;u�Þgðt;x;v;u�Þdx�du�

for any vector or scalar function h and g.

Hence, the nonlinear Cattaneo system coupled with the concentration equation

for S which has been studied qualitatively in Refs. 25 and 40 has been obtained, while

for q > 1 the linear Cattaneo system (4.9) is deduced.

4.3.2. A Cattaneo model for chemosensitive movement

Chemotaxis, in the case of bacteria, can signi¯cantly change their movement in

response to external stimuli. Hence, we modify the turning operator to derive a model

for chemosensitive movement. The turning operator should depend on the velocity v,

on the concentration of the external signal S, and on its gradient rxS.

Let us consider the model de¯ned by (4.10) for L0
2ðfÞ, and let us modify the choice

of T 1
2 with respect to the previous example by using:

T 1
2 ½f �

1� ¼
1

jV j �1 �
d

r2
v � � 1

jV j
f �
1

M1

� �� �� �
; ð4:16Þ

where �1 is a real number and � is a vector function.

Therefore, the operator L1
2ðfÞ, can be computed as follows:

L1
2½f "

1 �ðf "
2Þ ¼ �1

n"

jV j � f "
2

� �
� d

r2
n"U "

jV j � vf "
2

� �
� � 1

jV j
f �
1

M1

� �� �
;

where n" and U " depend on f "
2 and are given by

n" ¼
Z
V

f "
2ðvÞ dv; n"U " ¼

Z
V

vf "
2ðvÞdv:

It is easy to check that L1
2½f "

1 �ðf "
2Þ satis¯es (4.3) and that the coupling term in

(4.8) can be written as follows:Z
V

vL1
2½M1S�ðMn;UÞdv ¼ lim

"!0

Z
V

vL1
2½f "

1 �ðf "
2Þdv ¼ ��1nU þ n�ðSÞ:
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Therefore, for �ðSÞ ¼ �2rxS, one again derives the corresponding Cattaneo system

for chemosensitive movement with density control, coupled with the concentration

equation for S

@tS ¼ �p;1 divxðDS � rxSÞ þG�;qðS;nÞ;
@tnþ divxðnUÞ ¼ H�;q½S;n;nU �;

@tðnUÞ þ r2

d
rxn ¼ ��1nU þ �2nrxS þK�;q½S;n;nU �:

8>>>><
>>>>:

A more realistic dependance on S can be taken into account by choosing

� ¼ �ðn;SÞ. This is not possible with the choice of the kernel (4.16).

4.3.3. Nonlinear operator L1
2½f "

1 �ðf "
2 Þ for chemosensitive movement

Let us introduce a nonlinear turning operator, which depends nonlinearly on f. For

instance, when only macroscopic quantities computed from the distribution function

f are taken into account, a possible choice is the following:

L1
2½f �

1�ðf �
2Þ ¼

Z
V

H v;v�;U �;
f �
1

M1

� �� �
rx

1

jV j
f �
1

M1

� �
f �
2ðv�Þdv�;

and assume that

H v;v�;U �;
f �
1

M1

� �� �
¼ �

1

jV j
f �
1

M1

� �� �
vhðvÞ

with Z
V

hðvÞdv ¼ 1;

Z
V

vhðvÞdv ¼ 0;

Z
V

v
 vhðvÞdv ¼ �I: ð4:17Þ

Therefore L1
2½f �

1�ðf �
2Þ is computed as follows:

L1
2½f �

1�ðf �
2Þ ¼ �

1

jV j
f �
1

M1

� �� �
vhðvÞrx

1

jV j
f �
1

M1

� �� �
n�

which satis¯es (4.3) andZ
V

vL1
2½M1S�ðMn;U Þdv ¼ lim

"!0

Z
V

vL1
2½f "

1 �ðf "
2Þdv ¼ �n�ðSÞrxðSÞ;

which is an example of nonlinear integral coupling in (4.8).

The dependence on n" in the kernel H can be introduced, however it makes the

operator nonlinear and requires a more detailed analysis. This kind of nonlinearity

will be developed in the last example of the paper.

4.4. Pressureless hyperbolic description: Direct drift coupling

In this section we try to obtain a model that in the limit preserves a drift term for the

second population produced by the concentration gradient of the other population
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(for example in chemical substance), but eliminating the di®usion e®ects. Instead of

Assumptions H.4.1 and H.4.2, the following assumptions on the hyperbolic scaling

are needed:

Assumption H.4.3. Assume that the turning operator L2½f "
1 � satis¯esZ

V

L2½f "
1 �ðgÞdv ¼ 0; ð4:18Þ

Z
V

vL2½f "
1 �ðgÞdv ¼ Const: hgi� 1

jV j
f "
1

M1

� �� �
� hvgi

� �
: ð4:19Þ

Remark 4.3. Actually, Assumption (4.19) have to be veri¯ed only after passing to

the limit. A more explicit description of the kernel L2 is not needed. Some speci¯c

examples are reported in the next subsection.

Now we proceed as in the previous sections. Letting " go to zero in Eq. (4.2) yields

L2½f 0
1 �ðf 0

2 Þ ¼ 0; therefore f 0
2 must be in the kernel of L2½f 0

1 �. Then, we de¯ne n :¼
hf 0

2 i the limiting density of the second population and j :¼ hvf 0
2 i its current. We

integrate (4.2) over v and use (4.18) to obtain the evolution equation of n:

@thf "
2i þ hv � rxf

"
2i ¼ "q�1hG2½f "; f "�i þ "q�1þr2hI 2½f "; f "�i:

Moreover, letting again " ! 0 yields:

@n

@t
þ divxðjÞ ¼ �q;1hG2½f 0; f 0�i þ �q;1�r2;0hI2½f 0; f 0�i; ð4:20Þ

where f 0 ¼ ðM1ðvÞS; f 0
2 Þ. Here the main di®erence between Secs. 4.2 and 4.3 is

de¯ned. Now, instead of deriving the evolution of j by adding a solvability condition

(4.4), it can be explicitly obtained as a function of S. To do that we multiply (4.2) by

v and integrate over v. This approach yields:

hvL2½f "
1 �ðf "

2Þi ¼ "@thvf "
2i þ "Divxhv
 vf "

2i � "qhvG2½f "; f "�i
�"qþr2hvI2½f "; f "�i:

Therefore, the term hvL2½f "
1 �ðf "

2Þi is of order Oð"Þ þOð"qÞ and then goes to zero.

This fact combined with (4.19) produces

j ¼ lim
"!0

vf "
2h i ¼ lim

"!0
f "
2h i� 1

jV j
f "
1

M1

� �� �� �
¼ n�ðSÞ: ð4:21Þ

Inserting this expression into (4.20) ¯nally yields

@tS � �p;1 divxðDS � rxSÞ ¼ �q;1 G1½f 0; f 0�h i þ �q;1�r1;0 I1½f 0; f 0�h i;
@tnþ divxðn�ðSÞÞ ¼ �q;1 G2½f 0; f 0�h i þ �q;1�r2;0 I2½f 0; f 0�h i:

(
ð4:22Þ

Therefore, the following theorem can be stated.

Theorem 4.2. Let f "
i ðt;x;v;uÞ be a sequence of solutions to the scaled kinetic

system (4.1)�(4.2) with L1 verifying Assumptions H.3.1�H.3.3 and L2 verifying
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Assumption H.4.3. Assume that f "
i veri¯es the uniform bound (3.9) and converges a.e.

in ½0;1Þ � �� V �Du to some function f 0
i as " goes to 0. Moreover, it is assumed

that the probability kernels Bij are bounded functions and that the weight functions

wij and pij have ¯nite integrals. Then, the asymptotic limit veri¯es f 0
1 ¼ M1S and

L2½M1S�ðf 0
2 Þ ¼ 0, where S and n ¼ hf 0

2 i are the weak solutions of (4.22).

4.5. Pressureless hyperbolic examples

4.5.1. A direct drift coupling

Let us show that a model whose limit preserves a drift term for the second population

produced by the concentration gradient of the other population can be given.

Speci¯cally, an example which satis¯es Assumption H.4.3 is given. Let V � Rd be a

bounded domain. Consider the nonlinear turning operator given by

L2½f �
1�ðf �

2Þ ¼
Z
V

K v;v�;
f �
1

M1

� �� �
f �
2ðvHÞ dv� ð4:23Þ

with

K v;v�;
f �
1

M1

� �� �
¼ �

1

jV j
f �
1

M1

� �� �
vhðvÞ � v�vhðvÞ;

where h satis¯es (4.17). Therefore L2½f "
1 �ðf "

2Þ is computed as follows:

L2½f "
1 �ðf "

2Þ ¼ �
1

jV j
f �
1

M1

� �� �
vhðvÞn" � vhðvÞj";

where j" :¼ hvf "
2i is the current associated to the second population. Then,

L2½f "
1 �ðf "

2Þ satis¯es Assumption H.4.2 and

0 ¼ lim
"!0

Z
V

vL2½f "
1 �ðf "

2Þdv ¼ � n�ðSÞ � vf 0
2

� � �
:

Here, again for an appropriate choice of �ðSÞ, the drift term divxðn�ðSÞÞ appearing
in the macroscopic system (4.22), can become the chemotactic sensitivity term of the

Keller�Segel model (3.13). The next example introduces a kind of dependence on n"

in the kernel K.

4.5.2. Towards nonlinear di®usion: A °ux-limited model for chemotaxis

Let us brie°y discuss how to modify the linear di®usion in order to incorporate

optimal criteria for the population transport. To get an idea let us consider the very

naive example of the heat equation for the evolution of a density of individuals in a

population,

@tn ¼ ��n: ð4:24Þ
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We can rewrite (4.24) as follows:

@tn ¼ divx nrx lnnð Þ ¼ divxðnvÞ; ð4:25Þ

where v ¼ rx lnn is a microscopic velocity associated with individuals.

The heat equation, written as in (4.25), takes the form of a transport kinetic

equation, in which the usual parabolic scale ðht;h2xÞ can be viewed as an implicit

double (through the velocity) hyperbolic scale ðht;hxÞ. The velocity v is determined,

again in a naive way, by both the Fisher entropy of the system, F ðnÞ ¼ n lnn, and

the density n,

v ¼ rx

F ðnÞ
n

� �
: ð4:26Þ

We consider modifying the form of the °ux in (4.25), a new microscopic velocity,

which is the above local velocity (4.26) averaged with respect to the line element

associated with the motion of the particle. The velocity (4.26) (in the hyperbolic

scale) is taken as the new unit to measure displacements, so that the new velocity is

rv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jvj2

p
. In this way the velocity can be considered as a measure of the relative

entropy in terms of the particle concentration. We thus arrive at a °ux limited

equation,

@tn ¼ � divx
nrxnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ � 2

c 2 jrxnj2
q

0
B@

1
CA; ð4:27Þ

where � and c are parameters to be ¯xed; in particular, c represents the maximum

macroscopic speed of propagation allowed.

The model was ¯rst deduced by Rosenau55 from di®erent points of view and then

derived by Brenier20 by means of a Monge�Kantorovich mass transport theory as a

gradient °ow of the Boltzmann entropyZ
R 3

ðlnðnðxÞÞ � 1ÞnðxÞdx

for the metrics corresponding to the cost function

kðzÞ ¼ c2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jzj2

c2

r !
; if jzj � c;

þ1; if jzj > c:

8><
>:

In order to incorporate this kind of terms in the framework of our kinetic approach

(2.1), and to obtain a macroscopic model for limited °ux (1.1), we need to specify a

nonlinear version of the operator L2½f "
1 �ðf "

2Þ given by (4.23), by introducing a

dependence on n� ¼ hf �
2i. We proceed with an iterative argument which requires with

assuming that the kinetic system admits a solution.
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We develop this discussion at a formal level. Let k 2 N and n "
k a given function.

Then we de¯ne a sequence of operators

L2;kþ1½f �
1�ðf �

2Þ ¼
Z
V

K v;v�;n �
k;

f �
1

M1

� �� �
f �
2ðvHÞdv�; ð4:28Þ

where

K v;v�;n "
k;

f "
1

M1

� �� �
¼ � n "

k;
1

jV j
f "
1

M1

� �� �
vhðvÞ � v�vhðvÞ

and

� n "
k;

1

jV j
f "
1

M1

� �� �
¼ �

rxn
"
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n "
k

� �
2 þ � 2

c 2 jrxn
"
kj2

q

��
1

jV j
f "
1

M1

� �� � rx
1
jV j

f "
1

M1

D E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rx

1
jV j

f "
1

M1

D E��� ���2
r :

The way by which the operator L2;k is constructed implies that the hypothesis

of Assumption H.4.2 holds. Denote by f �
2;kþ1 the solution of the kinetic system

(4.1)�(4.2) associated to the above operator (4.28) and n "
kþ1 ¼ hf �

2;kþ1i. By an

appropriate choice of the remainder of the operators involved in the linearized kinetic

system (4.1)�(4.2), the existence of solutions can be guaranteed for every k by taking

the initial condition as n "
k¼0 in order to initialize the sequence. The convergence of the

sequence ff �
2;kgk to a function f �

2, at least weakly in measure, can then be established.

In this procedure for the sake of simplicity we have omitted the reference to the k-

index for the other population f �
1.

Denote by L2½f "
1 �ðf "

2Þ the limit as k ! 1 of the set fL2;kgk which satis¯es

Assumption H.4.3. Thus L2½f "
1 �ðf "

2Þ is ¯nally de¯ned by

K v;v�;n";
f "
1

M1

� �� �
¼ � n";

1

jV j
f "
1

M1

� �� �
vhðvÞ � v�vhðvÞ:

Moreover, reasoning analogously to previous Sec. 4.5.1, we conclude that the

limiting nonlinear current, instead on (4.21), is given by

j ¼ hvf 0
2 i ¼ n�ðn;SÞ;

with

�ðn;SÞ ¼ �
rxnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ � 2

c 2 jrxnj2
q � �ðSÞ rxSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jrxSj2
p :
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Then, we can formally deduce that the limiting system veri¯ed by the macroscopic

limiting quantities is (4.22) with �ðSÞ replaced by �ðn;SÞ, i.e.
@tS ¼ �p;1rxðDS � rxSÞ þH1½n;S�;

@tn ¼ divx �
nrxnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ � 2

c 2 jrxnj2
q � n�

rxSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrx Sj2

p
0
B@

1
CAþH1½n;S�;

8>>>><
>>>>:

ð4:29Þ

with

H1½n;S� ¼ �q;1hG1½f 0; f 0�i þ �q;1�r1;0hI 1½f 0; f 0�i;
H2½n;S� ¼ �q;1hG2½f 0; f 0�i þ �q;1�r2;0hI 2½f 0; f 0�i;

where f 0 ¼ ðM1S; f
0
2 Þ. Then, (4.29) corresponds to the limited °ux Keller�Segel

model with optimal transport of the population n with respect to the chemical signal

S, (1.1). The qualitative analysis of model (4.29) will be given in Ref. 24.
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