
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

FPGA based remote code integrity verification of programs in distributed embedded systems / Basile, Cataldo; DI
CARLO, Stefano; Scionti, A.. - In: IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS. PART C,
APPLICATIONS AND REVIEWS. - ISSN 1094-6977. - STAMPA. - 42:2(2012), pp. 187-200.
[10.1109/TSMCC.2011.2106493]

Original

FPGA based remote code integrity verification of programs in distributed embedded systems

Publisher:

Published
DOI:10.1109/TSMCC.2011.2106493

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2380488 since: 2016-09-16T17:49:27Z

IEEE

1

FPGA based remote code integrity verification of
programs in distributed embedded systems

Cataldo Basile, Member, IEEE, Stefano Di Carlo, Member, IEEE, and Alberto Scionti,

Abstract—The explosive growth of networked embedded sys-
tems makes ubiquitous and pervasive computing a reality. How-
ever, there are still a number of new challenges to its widespread
adoption that include scalability, availability, and, especially,
security of software. Among the different challenges in software
security, the problem of remote code integrity verification is still
waiting for efficient solutions. This paper proposes the use of
reconfigurable computing to build a consistent architecture for
generating attestations (proofs) of code integrity for an executing
program, and for delivering them to the designated verification
entity. Remote dynamic update of reconfigurable devices is
also exploited to increase the complexity of mounting attacks
in a real-word environment. The proposed solution perfectly
fits embedded devices that are nowadays commonly equipped
with reconfigurable hardware components exploited for solving
different computational problems.

Index Terms—Software protection, embedded systems, recon-
figurable computing, dynamic update.

I. INTRODUCTION

The steady proliferation of embedded systems from low-
end to high-end devices has created demand for increased
scalability, availability, integrity, and security of embedded
software [1]. In particular, the ubiquitous use of critical
embedded network applications makes security issues a serious
concern. The common assumptions that embedded software
does not represent not the prime target for tampering and
fraud activities, or that tampering may produce a limited or
negligible impact on the overall business do not hold any more
[2].

The continuous improvement of cryptographic algorithms
already provides a robust base to secure network communica-
tions. However, this offers only a partial protection as long as
the communicating end-points still suffer from security issues.
An increasing number of applications is therefore demanding
for remote verification of software. Authorized entities must be
able to verify if programs running on remote untrusted devices
have been tampered with by malicious users.

Remote verification of programs includes verification of
both the executed code and the execution state. This paper
concentrates on the first of these two challenges referred to
as the remote code integrity verification problem. Attacks that
corrupt the functionality of the program by altering the sole
execution state (e.g., program’s variables) are out of the scope
of this work. Protection mechanisms addressing these threats
such as the one proposed in [3] may however gain advantages

C. Basile, S. Di Carlo, and A. Scionti are with the Department of Control
and Computer Engineering of Politecnico di Torino, Corso Duca degli Abruzzi
24 -10129 Torino, Italy. E-mail: {firstname.lastname}@polito.it.

This work was supported by the European Commission through the IST
Programme under Contract IST-021186 RE-TRUST

when code integrity has been properly established. Detecting
modifications of the executed code does not necessarily imply
a successful attack but, represents the evidence of a suspicious
anomaly.

This paper exploits reconfigurable computing to build a
secure architecture for the generation and the delivery of
remote code integrity attestations (proofs) of an executing
program. Reconfigurable computing creates a distinction be-
tween physical and logical hardware resorting to devices
embedding Field Programmable Gate Arrays (FPGA). Since
FPGAs provide a useful balance among performances, rapid
time to market and flexibility, they have become the primary
source of computation in many critical embedded applications
[4]. In fact, in 2005 alone, an estimated 80,000 different
commercial FPGA design projects have been initiated [5].

This paper introduces some important contributions. It pro-
poses the use of FPGAs as a core of trust to securely compute
code integrity attestations based on memory checksums and
proposes a secure protocol do deliver them to a designated
verification entity. The use of FPGAs in the attestation process
is a key element to defeat a wide range of software integrity
attacks as better detailed in section V. Existing techniques such
as bitstream encryption and hardware obfuscation are applied
to secure logical hardware components devoted to the software
protection [6], [7]. Coupled with these techniques, the paper
introduces an extended reconfigurable computing architecture
allowing secure dynamic and continuos remote update of the
hardware mapped into the FPGA. Dynamic update of logical
hardware components reduces the time window to perform an
attack and the time frame in which a successful attack remains
in action, thus limiting the possibility of massive spreading
of tampered applications. Reconfigurable computing coupled
with dynamic hardware updates opens up a range of new
opportunities for distributed embedded systems, including the
possibility of achieving adaptability, functionality extension,
and security [8]. It is worth mentioning here that the proposed
solution does not provide a provable software security schema.
The goal of this paper is a protection mechanism able to turn
attacks based on programs’ code modifications "exceedingly
difficult to replicate in a real-world environment". The contri-
butions of this paper are the result of three years of research
on software protection techniques in the framework of the
european project RE-TRUST (Remote EnTrusting by RUn-
time Software auThentication) [9] coupled with the expertise
of the authors in the development of FPGA based self-
reconfigurable systems for safety-critical applications [10],
[11].

The paper is organized as follows: section II overviews
related works on software protection while section III intro-

2

duces the target scenario. Section IV details the protection
schema whose security is analyzed V. Section VI evaluate the
proposed method on a selected test-case and finally section
VII summarizes the main contributions of the paper.

II. RELATED WORKS

Software protection against tampering is not a new topic in
the scientific community. Basically, software-based approaches
are divided into local and remote solutions.

Local techniques build tamper proof methods directly into
the program. Once deployed, the program is under full control
of the attacker, and the protection solely relies on the strength
of its implementation.

Among local techniques obfuscation [12] attempts to pre-
vent reverse engineering by making it hard to understand the
behavior of a program through static or dynamic analysis.
Obfuscation is a widely studied topic. Collberg et al. [12]
and Wang et al. [13] presented classes of transformations to
confuse the control flow analysis of a program. Dalla Preda
et al. [14] propose a formal framework for code obfuscation
analysis based on abstract interpretation and program seman-
tics. Theoretical works on white box computation [15], or
layout randomization [16], [17] can also be mentioned in this
field. However, negative theoretical results limit the possibility
of building perfect obfuscators even for common classes of
programs [18].

Integrity checking achieves tamper-proofing by means of
tamper-detection to identify program’s modifications, and
tamper-response to take actions when tampering is detected.
Tamper-detection is usually based on check-summing tech-
niques [19], [20], [12]. One of the main drawbacks of these
methods is that they have been proven vulnerable to memory
copy attacks [21]. Solutions to this attack include insertion of
a large number of guards [22], computation of a fingerprint of
the application code on the basis of its actual execution [23], or
even the use self-modifying code techniques [24]. Control-flow
integrity checking is also a promising technique to monitor
the integrity of the execution of an application [25]. However,
these approaches do not scale properly in real software setups.
Moreover, even if strong local tamper-detection is achieved,
dealing with tamper-response is still a challenge [26]. In fact,
once an anomaly is discovered the use of the program must
be interdicted. However, the code devoted to reactions can be
easily identified and defeated.

Remote verification can overcome some of the drawbacks
of local techniques. Time measuring is commonly exploited
to detect attacks. It assumes that modification of the program
inevitably increases its the execution time. Genuinity [27]
explores the problem of detecting software running into a
remote simulated hardware environment. SWATT [28] per-
forms attestation on embedded devices with a simple CPU
architecture. It uses a software verification function built in
such a way that any attempt to tamper with it increases the
computation time. Similarly, [29] compares the time required
to run specific functions whose execution time is optimal, with
a pre-computed execution time. Freshness is provided by a
random challenge. The main problem of these approaches is

that they rely on a trustworthy information about the hard-
ware running the target application. This assumption is very
strong and, even if satisfied, is vulnerable to proxy attacks.
Moreover, to allow time accuracy, the system must stop all its
activities during the measurement phase, thus making run-time
verification impossible.

Whenever pure software solutions fail, trusted hardware
modules can be exploited. Several solutions based on the
Trusted Platform Module (TPM) [30], [2], [31], [32] have been
proposed. Intel also has an initiative for the development of a
secure platform [33]. The main drawback is that these hard-
ware components cannot be replaced in case of design errors
or unforeseen security threats. Moreover, they are not widely
installed on all types of platforms (e.g., embedded devices)
and cannot be easily plugged in as external components.

Solutions based on hardware monitors have been also pro-
posed. Wolff et al. [34] presents a vault architecture for embed-
ded systems to prevent the insertion of software corruptions,
while Arora et. al [35] proposes a systematic methodology to
design application-specific hardware monitors for any given
embedded program. However, proposed approaches mainly
rely on modifications of the embedded processor architecture.
These changes are usually out of the user’s ability. Moreover,
protections are application-specific and difficult to generalize
for a wide class of applications. Finally, they mainly targets
sources in which the attacker is an external entity with limited
control on the system. This scenario is somehow restrictive
with respect to the one addressed in this paper.

Software protection devices (dongles) can be also mentioned
here. A dongle can increase the level of security of a software
since they are controlled and protected by the security solu-
tion provider [36]. However, dongles are mainly applied to
software licensing and copy protection. Commercial attempts
to implement monitoring techniques into USB dongles with
computation capability do exist (Gemalto UpTeqTM). However,
monitoring is limited by the reduced access to the main system
resources provided by the USB key.

Recently, reconfigurable hardware is increasingly gaining
attention for the development of security applications [37],
[38]. However, the main use of these devices concerns the
implementation of security primitives such as encryption/de-
cryption cores rather than focusing on software protection
against tampering.

III. REMOTE CODE INTEGRITY VERIFICATION PRINCIPLES

Two actors play in the remote code integrity verification
problem:
• the defender: an entity with business, legal or regulatory

interest of protecting the integrity of a program P exe-
cuted in a remote untrusted embedded system, and

• the attacker: an entity aimed at modifying the behavior of
P against the defender’s will by means of modifications
of its executed code.

Our solution can be formulated around the architecture
proposed in Fig. 1 that includes three main components: the
untrusted host (U), the trusted host (T) and a network
connection (e.g., the Internet or a local/corporate network).

3

U

Hardware domain

FPGA

NETWORK

HM

P
HMM

ATTACKER
DEFENDER

Software domain

MEMORY

bin(P)DMA

T

V

S
Operating systemFPGADriver

Fig. 1. Remote code integrity verification reference architecture: the untrusted
host runs the target program under the full control of the attacker, while the
trusted host verifies its integrity. The FPGA provides a core of trust in the
untrusted environment of U .

U is a microprocessor based embedded device where P is
executed under full control of the attacker. From the hardware
standpoint (hardware domain of Fig. 1) the key requirement
is the availability of a reconfigurable hardware block (FPGA).
The FPGA can be either embedded into a complex System-
on-Chip (SoC) or plugged through a standard socket (e.g.,
PCI, PCMCIA). Systems that are not natively provided with
hardware reconfiguration facilities are therefore considered as
well. The FPGA must have full access to the physical system’s
memory. This is however not a strong requirement. Direct
memory access (DMA) is a common foundation of many high-
performance devices easy to support in both embedded and
plugged FPGAs. The FPGA hosts a soft hardware component
referred to as hardware monitor (HM). It computes code
integrity attestations for P exploiting the direct link between
the FPGA and the system’s memory (DMA in Fig. 1). HM
implements a set of security mechanisms better discussed in
the next sections of this paper, able to turn it into a core
of trust in the untrusted environment of U . It can therefore
be considered out of the attacker’s control. A specific device
driver (FPGAdriver of Fig. 1) allows access to HM from the
software domain. A module called hardware monitor manager
(HMM) embedded into P is responsible for collecting these
attestations and delivering them to the designated verification
entity. The security of this process is guaranteed by an ad hoc
communication protocol (see section IV).

The trusted host is a trusted network node under the control
of the defender. T is expected to deliver a certain service
(S) to genuine programs, only. Modified applications should
be detected and refused. A verifier (V) continuously checks
the code integrity of the remote application by observing
the attestations received from HM . Fig. 1 shows that direct
communications are only possible between V/S and P through
the network, and between P and HM through HMM and
the FPGAdriver. Communications between V and HM are
therefore mediated by P and the operating system (OS) that
might be under the control of the attacker. This in turn requires
establishing a secure communication between V and HM .

A. Basic assumptions

The following specific assumptions are considered within
this paper:

• The defender is free to operate any sort of modifications
on P (while preserving its original functionalities) to
make it difficult for the attacker to tamper with the code.
Moreover, it knows the operating system U executes.
The Linux operating system will be considered in this
paper given the availability of detailed information on its
internal organization.

• T is assumed intrinsically trusted by adopting both
hardware and software protections (e.g., firewall) able
to shield it against external attacks. The adversary can
inspect its dynamic behaviors (e.g., the I/O from T) by
interacting with it in a black-box manner, only.

• P must be a native code application whose executed code
(bin(P) of Fig. 1) is loaded in the system’s memory
and visible to HM . Programs coded with intermediate
languages and executed inside a virtual machine are
therefore out of the scope of this work.

• P must be a network based application. It cannot ex-
ecute without exchanging messages with S. Stand-alone
programs that run without communicating on the network
are out of the scope of this paper. Even if the attacker
can carry out his malicious activity at any time, i.e.,
off-line modifications of the code completed prior to
the execution as well as run-time modifications mounted
while the program is executing, the need of continu-
ous communication with S severely limits its power in
analyzing the application by reducing the possibility of
performing off-line testing with arbitrary inputs.

• Protected applications are not intended for high security
domains (e.g., military, government). The attacker has
no motivations to perform invasive hardware attacks to
break the secrets contained in the FPGA (e.g., by means
of electron microscopes). These attacks would be too
expensive if compared to the advantages deriving from
the misuse of the application.

• The remote attestation mechanism is built on top of
secure state-of-the-art cryptographic algorithms. The ad-
versary will be therefore unable to exploit any weaknesses
in these methods to break the remote attestation process.

• The attacker wants to obtain the service S provided by T ,
he thus has no interest in performing Denial of Service
(DoS) attacks against the remote attestation procedure. It
would be meaningless for the attacker to avoid attestation
requests from V or to avoid answering these requests.
This would be immediately identified as an attack thus
resulting in a cut of the deployed service.

IV. COMPUTING CODE INTEGRITY ATTESTATIONS

The steps to request, compute, deliver and verify code
integrity attestations based on the architecture of Fig. 1 are
summarized in the remote attestation protocol of Fig. 2.

Basic elements of the protocol are: a session key KS

shared between HM and V (valid at most t seconds), a
secure one-way function H (e.g., a cryptographic hash SHA-1)
used to calculate a Hash-based Message Authentication Code
(HMAC) and a symmetric block cipher EKs

/DKs
(e.g., AES).

Furthermore, V and HM share a request counter i. The way the

4

PHMM V

req

req_gen

ra_ver

ra_gen

1: R← random ()
2: i← i + 1
3: auth← EKS

(R, i)
4: req← (R, auth)
5: send (req)

1

1: req← receive ()
2: ra← HM_genra (req)
3: if ra <> NULL then
4: send(ra)
5: end if

1

U

1: ra← receive()
2: p� ← cksum(P ,R)
3: h� ← HW_auth(R)
4: ra� ← HMACKS

(p� � h� � R)
5: if ra� == ra then
6: VALID ATTESTATION
7: else
8: INVALID ATTESTATION
9: end if

1

ra

Fig. 2. Remote attestation protocol. For the sake of readability, retransmis-
sions in case of missing responses are not depicted.

session key KS and the initial request counter i are exchanged
will be discussed in section IV-A.

V initiates the protocol generating a remote attestation
request req (req_gen phase in Fig. 2). V is the only actor
allowed to perform this operation; it will discard any con-
nection not following the proper message flow. req includes
a random number R (req_gen-step 1, Fig. 2) and a request
counter i properly incremented at each request (req_gen-step
2, Fig. 2), both encrypted with the shared session key, i.e.,
auth = EKS

(R, i) (req_gen-step 3, Fig. 2). R is used as a
nonce to avoid reply attacks against remote attestations and to
avoid that requests can be replied to perform DoS against HM
(req_gen-step 4, Fig. 2). The minimum suggested length for
auth is the size of the block of the selected cipher (e.g., 128
or 256 bit). With a block of 128 bit a possible choice is 96
bits for R and 32 bits for i. This makes also very unlikely the
repetition of random numbers within the session key validity
time t. Once the request is ready, V opens an authenticated
channel with P that is listening for connections, and sends
req = (R, auth) (req_gen-step 5, Fig. 2). Since the attacker
has full control on U , the authenticated channel is effective
up to the untrusted host, only.

When P , or more precisely HMM , receives a remote
attestation request (ra_gen-step 1, Fig. 2), it forwards the
request to HM (ra_gen-step 2, Fig. 2). HMM does not
take any active action in the remote attestation generation
process. Communication with HM is achieved by means of
the HM_genra(req) system call exported by the FPGAdriver
(Fig. 1) and therefore contained inside OS. Together with req,
this function also provides HM with the entry point of the
page table of P required to correctly identify the process in
the physical memory.

Whenever HM receives a new request, it computes a new
remote attestation ra according to Alg. 1 and returns it to
HMM . Finally, HMM forwards it to V, and the channel is
immediately closed (ra_gen-step 4, Fig. 2).

To compute ra, HM uses its copy of the session key to
extract the random number and the sequence counter (R′, i′)
(Alg. 1 - step 1-2). The request is valid if R′ = R and, as
a reply protection, if i′ > i (Alg. 1 - step 3). Consecutive
indices are not mandatory since V will try with more than one
request in case of missing responses. If this verification fails,
HM simply ignores the request without further actions (Alg. 1

Algorithm 1 Compute attestation
Require: req,KS ,i

1: (R, auth)← split(req)
2: (R′, i′)← DKS (auth)
3: if R′ = R and i′ > i then
4: i← i′

5: p← cksum(P, R)
6: h← bs_auth(R)
7: ra = HMACKS (p ‖ h ‖ R)
8: return (ra)
9: else

10: return (NULL)
11: end if

- step 10). Otherwise, HM updates its request counter (Alg. 1 -
step 4) and collects a set of information p proving the integrity
of P , and a set of information h proving its own integrity (Alg.
1 - step 5-6). It then calculates the HMAC of this information
including the random number taken from the request (Alg.
1 - step 7, where ‖ indicates the concatenation operation)
and returns it to HMM . It is worth to remember here that
HM is an hardware block configured into the FPGA. The
operations of Alg. 1 are therefore executed by the hardware
components it contains. According to section III and to what
will be discussed in the remaining of this paper, the FPGA is
configured in such a way to represent a root of trust into U ,
thus guaranteeing security in the computation of Alg. 1.

When V receives the response to its request (ra_ver-step
1, Fig. 2), it locally recovers the same integrity information
provided by HM (p′, and h′) because it fully knows both
P and HM (ra_ver-steps 2-3, Fig. 2). It calculates ra′ =
HMACKS

(p′ ‖ h′ ‖ R) (ra_ver-step 4, Fig. 2) and verifies if
ra′ = ra (ra_ver-step 5, Fig. 2). If the remote attestation is
invalid V tries again until reaching nreq consecutive requests.
If all fail, it waits for a specific timeout and tries again
with other nreq requests. If even this set of requests fail, it
invalidates the current key and reacts according to a specific
policy (e.g., by disconnecting U from the given service).
nreq = 3, i.e., a total of 6 attempts, may represent a reasonable
trade-off between security and toleration of network delays or
loss.

V continuously logs all requests, taking track of those that
failed. The analysis of log information can be exploited to
identify suspicious users. A remote attestation is considered
valid only if received within a given time tra.

A. Hardware monitor and key establishment protocol

The most security sensitive part of the remote attestation
protocol is the possibility of securely sharing the session
key KS and the request counter i between V and HM .
Remote dynamic update of the FPGA content is exploited
to solve this problem. Together with providing an efficient
method to exchange the requested secrets, dynamic update
time constraints the activity of the attacker and limits the
lifetime of an attack to the time frame between two updates.

Fig. 3 proposes a generic partitioning of the FPGA block
of Fig. 1 including the set of elements required to implement
HM and to correctly establish the shared secrets. All blocks

5

Conf.
Manager

IC
AP

BDKB

BD rec. area 1

BD rec. area 2

BUS Interface

Control Access
Interface

DKs HMACKs cksum

HW_auth

mP BRAM

HM reconfigurable area

HM

SENSITIVE AREA

ROMi

BDKB,cur

Fig. 3. FPGA partitioning including all blocks required to implement HM
and to correctly establish the shared secrets

directly involved in the computation of ra are confined inside
a so called sensitive area. The basic property of this area is
that it is isolated in the FPGA with no direct connections to
external pins. The only way to access its internal resources is
through a set of predefined commands provided by the Control
Access Interface.

HM is composed of a fixed part and a reconfigurable area.
The fixed portion includes a very simple microprocessor (mP)
providing basic memory access, mathematic, and comparison
instructions, and a block of memory (BRAM). The reconfig-
urable area is a portion of the FPGA designed to be reconfig-
ured at run-time while the system is performing its tasks. It is
devoted to host the set of security cores required to implement
Alg. 1, that is, DKS

, cksum, bs_auth, HMACKS
, i, and a

small ROM containing the program executed by mP. While
DKS

and HMACKS
implement state-of-the-art cryptographic

algorithms, the way cksum and bs_auth work will be de-
tailed in the next subsections. Dynamic reconfiguration of the
FPGA allows V to prepare a bitstream containing the required
secrets, denoted as bs (DKS

, i,HMACKS
, cksum, bs_auth),

and to place it in the HM reconfigurable area through HMM .
This operation resorts to a configuration manager block and
to an Internal Configuration Access Port (ICAP) commonly
available in contemporary FPGAs (Fig. 3).

The security of this remote update mechanism strongly
depends on the complexity of full FPGA’s bitstream reversal.
Bitstream reversal is defined as the reverse engineering process
that turns an encoded bitstream into a functionally equiva-
lent description of the original design (e.g., netlist, hardware
description language) [39]. Full bitstream reversal would, of
course, reveal the FPGA design. Keys and security primitives
hidden in the bitstream would therefore be compromised. As
will be better discussed in section V, full FPGA’s bitstream
reversal is generally known to be a non-trivial problem. Nev-
ertheless, the complexity of this task can be further increased
by applying additional techniques.

Encryption can be applied to obtain bitstream confiden-
tiality. At each remote update the bitstream is encrypted
with a symmetric key KB . The FPGA performs the reverse
operation decrypting the incoming bitstream and recreating
the intended configuration. This operation is performed by a
bitstream decryptor (BD) block placed in the FPGA (BDKB

and BDKB,cur
of Fig. 3).

Together with bitstream encryption, netlist obfuscation is
exploited to increase the complexity of understanding security
cores contained in a bitstream. Obfuscation is increasingly
exploited in hardware design for Intellectual Property (IP) pro-
tection of hardware cores [6], [7]. Solutions include Hardware
Description Language (HDL) level obfuscation [7] as well as
netlist level obfuscation [6]. In particular, Chakraborty et al.
[6] proposes an interesting technique to provide obfuscation
of netlists together with a metric to evaluate the effects of the
design modifications on the resulting obfuscation. Commercial
solutions are also available (Helion Technology [40]). All
these solutions are exploited in this paper as an instrument
to provide additional level of security to HM , and therefore
to establish the root of trust into the FPGA first mentioned in
section III. Different types of obfuscations can be combined
together and the complexity of the obfuscated cores can be
additionally increased by including bogus hardware, or by us-
ing different routing schemes into the device. We denote with
O (B1, B2, . . . , Bn) the application of a set of obfuscation
transformations to a set of hardware blocks B1, B2, . . . , Bn.
The obfuscation transformations are in general not the same
for each block, nor in two applications of the O function.

Being the FPGA not provided with a factory certified
endorsement key that can be used to perform bitstream en-
cryption and therefore secure remote updates, an ad-hock key
establishment protocol is introduced (Fig. 4).

!"#$%&'()*+#,-./#0123##
4567$)**8!"8O#8#6956:

::#

User! -# V!
;"#<%=>#?*%(*=@#

A"#$%&'()*+#,-./#0123##
4568!"8O895B7

CD/E5B7$FG)@7HGI=)23:::#

*+J#

K"#1&?)2#=)23+&L$=L%&#>=2=#

M"#G+&>#4568!"8O
895B7

CD/E5B7$FG)@7HGI=)23:::#

N"#&%L'$=L%&#

U!

O"#@)2)=<#=)23+&L$=L%&#

P"#G+&>#4567$)**8!"8O#8#6956:
::#

HMM!

*=I(+&# *=#

*+J#
Q+*1RS#$%&#
$=<$)<=2+#$'# *=#

=IQ+#

Q+*1RS#$'#

*+JI(+&#

Fig. 4. The key establishment protocol

When P is executed (Fig. 4, step 1) the user authenticates
to V (Fig. 4, steps 2-3). A strong authentication method is
required. It must produce an authentication key shared between
P and V used to establish an authenticated channel conveying
all following messages (e.g., Needham-Schroeder-Lowe pro-
tocol [41]). Even in this case the channel is considered secure
up to U , only. The user’s authentication is performed in T ;
hence, the attacker cannot take advantage from controlling U .

The first step to perform is to correctly establish the
bitstream encryption key. V prepares a bitstream decryptor BD
with a bitstream symmetric encryption key KB , applies a set
of obfuscation transformation on it, encrypts the corresponding
bitstream using the last agreed bitstream symmetric encryption
key KB,curr, and sends it to P through the secure channel
(Fig. 4, step 4). P receives the entire bitstream and configures
it into the FPGA through HMM (Fig. 4, step 5). The bitstream

6

is placed in one of two available reconfigurable areas (BD rec.
area 1 or BD rec area 2 of Fig. 3). The reconfigurable area
storing the current bitstream decryptor (BDKB,curr

of Fig. 3)
is used to decrypt the new bitstream and to place it in the
second area through the ICAP. The two areas are therefore
used alternatively to host the current BD.

V then prepares a bitstream containing the
security cores required to compute Alg. 1
(bs (O (DKS

, i,HMACKS
, cksum, bs_auth))), encrypts

it with the bitstream symmetric encryption key KB , and
sends it to P through the secure channel (Fig. 4, step 6). P
receives the entire bitstream and configures it into the HM
reconfigurable area (Fig. 3) through HMM (Fig. 4, step 7).

V expects an acknowledgement, within a given time, of
the termination of the configuration phase to start the remote
attestation protocol and to update the user’s state information
(Fig. 4, step 8).

The secrets exchanged through the key establishment pro-
tocol are considered valid only for a limited period of time. If
the secrets expire or the request counter reaches its maximum,
V starts the key establishment protocol. The case of the first
connection of the user is analogous to a standard expiration
case. The only difference is that there is no shared secret thus
the BD sent during the first execution of the key establishment
protocol is not encrypted.

B. Computing code integrity information

Code integrity information of P are produced by computing
a checksum of the software code loaded in the system’s
memory. cksum (Fig. 3) is the block in charge of perform-
ing this computation. It reads (part of) the software code
as an input and produces the corresponding checksum. The
random number R included in the remote attestation request
is used as a seed to perform a pseudo-random walk through
the program’s memory. Several functions can be exploited
to compute the checksum (e.g., SHA-1, MD5, etc.). These
techniques constitute a pool of methods to create different
hardware monitors.

Reading the program’s memory requires to navigate the
page table of the process to transform virtual addresses into
physical memory regions. mP can assist cksum in performing
this operation. Nevertheless, this introduces a main security
problem since, as previously anticipated, the entry point of the
process page table is provided by the operating system that
is under the control of the attacker. OS should be therefore
validated in order to trust this information. cksum, together
with mP, should therefore perform the following steps:

1) computing a checksum of the text of the OS kernel
including the FPGA driver, and

2) computing a checksum of the portion of P currently
loaded in memory

The two checksums, together with the list of inspected
memory pages represent the integrity information p used
in Alg. 1. Computing checksums of the kernel text of an
operating system to detect malicious modifications is not new.
In particular [42] proposes a solution that perfectly fits our
architecture. It relies on hardware-based RAM acquisition to

check the integrity of a Linux operating system. A snapshot
of the system’s memory is sent through the bus (PCI in the
case of the paper) to a co-processor in an isolated environment
inaccessible to the compromised machine where the system’s
integrity is continuously checked based on MD5 checksums.

C. Computing FPGA configuration integrity information

Together with the integrity of P , the configuration of the full
FPGA must be validated in order to prevent the use of compro-
mised designs. The bs_auth block of Fig. 3 is responsible for
computing a checksum h of the FPGA configuration memory.
The FPGA configuration memory can be easily read back
through the ICAP interface (Fig. 3). The computed checksum
can be then included in ra to show the HM integrity. This
approach is commonly used in remote update of FPGAs to
control whether the configuration was successful or not. It can
therefore be easily implemented in contemporary devices.

V. SECURITY ANALYSIS

Several aspects must be considered to analyze strengths
and weaknesses of our remote attestation mechanism. They
include security of used cryptographic primitives, security of
protocols’ phases in isolation and when combined together
and protection against environmental attacks (e.g. hardware,
operating system, etc.). While security of cryptographic prim-
itives is guaranteed by the use of state-of-the-art secure
cryptographic algorithms (e.g., AES and SHA-1), the security
of the remaining aspects need to be carefully analyzed.

A. Analysis of protocols

If EKS
/DKS

and the one way function H used by HMAC
are implemented using secure cryptographic primitives (e.g.
AES for EKS

/DKS
, and SHA-1 for H) and KS is secret

and it is shared between HM and V, proving that the remote
attestation protocol guarantees: (i) integrity and authenticity of
the attestation request from V and (ii) integrity and authenticity
of the response from, HM is straightforward.

The key establishment protocol assures that V and HM
share the same key KS . When the protocol correctly termi-
nates, the FPGA is configured with the right hardware monitor
HM that embeds KS inside DKS

and HMACKS
(see Fig. 3).

In fact, the attacker does not have any interest in configuring
the FPGA with wrong bitstreams.

V and HM perform well established authentication pro-
cedures: V uses unilateral symmetric authentication using
random numbers to prove its identity to HM , and HM
authenticates to V by performing unilateral authentication
using a keyed one-way function [43]. The security therefore
depends on the impossibility of breaking H and EKS

/DKS
.

This is however guaranteed by our preliminary assumption
that H and EKS

/DKS
are implemented using secure cryp-

tographic primitives and that the attacker cannot therefore
exploit their weaknesses to perform its malicious activity (see
section III-A).

The integrity of P and HM is guaranteed since remote at-
testations are produced using a secure one-way function using

7

the signature of the program p and the FPGA configuration
integrity information h. To forge valid attestations the attacker
needs to obtain KS , p, and h by either performing reverse
engineering of the FPGA bitstream or other types of attacks
to the FPGA whose feasibility will be discussed later.

The next subsections analyze a set of common attacks
against the proposed protocols.

1) Reply attacks against remote attestations: The random
number R included in auth is used as a nonce to avoid reply
of previous valid remote attestations. The length of R (e.g.,
96 bits) makes very unlikely the repetition of random numbers
within the validity time t of KS . The couple (R, i) is therefore
never repeated during the secrets validity time. Due to the
loose verification of the request counter i ((Alg. 1 - step 3)),
R is sent both in clear and ciphered inside auth for verification
purposes (Fig. 2).

2) Reply attacks against remote attestation requests: The
usage of the request counter i avoids that remote attestation
requests can be replied (Alg. 1 - step 3).

3) Cryptanalysis attacks against KS: Remote attestation
requests protection against reply, also protects from cryptanal-
ysis attacks against KS . In fact, since HM avoids to produce
the attestation in case of invalid requests, it cannot be forced
to provide information about KS by flooding it with fake
requests.

To obtain information about KS an attacker is therefore
forced to create valid requests. However, forging valid requests
without knowing KS and the request counter i is a computa-
tionally heavy task. A brute force attack to find (Rf , authf)
such that DKS

(authf) = (R′f , if) with if > i and R′f = Rf

is exponential in the minimum between the length of the
block and the key of the used encryption algorithm. To avoid
cryptanalysis attacks, the remote attestation protocol must not
use stream encryption algorithms. In fact, these algorithms
would permit to split auth into the encrypted part of R and
the encrypted part of i, thus making the generation of valid
requests easier.

4) Man in the Middle attacks: We consider here for the first
time Man in the Middle (MITM) attacks. The MITM controls
the network. He can perform passive attacks (eavesdropping),
active attacks (packets modifications), and may be interested
in performing DoS attacks. The goal of the MITM is different
from the attacker’s goals presented in section III. It does not
have any personal advantage from using tampered programs
even if he is not explicitly against it. The attacker considered
in this paper is actually an allied in countering MITM attacks.
In fact, it needs the service provided by V to attest the integrity
of P . It will actually protect U and will not allow third parties
to access or make HM unavailable.

MITM attacks are avoided by resorting to an authenticated
channel between T and U . Opening an authenticated channel
is a computationally expensive task whose impact is usually
mitigated by techniques based on resume functionalities.

5) DoS against V: The fact that only V may initiate the
remote attestation protocol reduces the vulnerability of V to
DoS attacks, both from the attacker and the MITM. The MITM
cannot perform DoS attacks against V because remote attes-
tations are only transmitted inside the authenticated channel.

6) DoS against HM : By our assumptions, the attacker
is not interested in performing DoS against himself (see
section III-A). The MITM cannot perform DoS attacks against
HM because attestation requests are transmitted inside the
authenticated channel. The MITM can still block all messages
(requests, attestations, bitstreams). Nevertheless, this vulnera-
bility is a common threat with network applications.

7) Protocols verification: The security analysis produced
so far is based on the consideration that the proposed remote
attestation mechanism is built on top of secure cryptographic
primitives and authentication algorithms. While this guarantees
a strong base for the overall security we still need to verify
that the composition of all primitives does not introduce
threats. This has been possible using Scyther [44], a tool for
the verification, the falsification, and the analysis of security
protocols.1

Both the attacker proposed in section III operating on U ,
and the MITM have been considered.

The MITM has no control over T thanks to the authenticated
channel between V and P . Hence, he cannot forge authentic
messages to impersonate V. For this model the claimed proper-
ties that have been verified are: secrecy of the authentication
keys exchanged with the authentication protocol (Needham-
Schroeder-Lowe in our case), secrecy of the keys KB and KS ,
and correctness of the authentication phases. Scyther reported
that all claimed properties have been satisfied.

The general attacker that has full control of U knows
the secure channel authentication key and is therefore able
to impersonate V. Moreover, there is not an authentication
process between P and HM . In this case the claimed property
that has been verified is the secrecy of both KS and KB .
Scyther reported the existence of exactly five different patterns
(attacker’s behaviors) that may represent a security problem.
Nevertheless, a deeper analysis highlighted that:
• the first pattern represents the correct behavior. Notice

that the attacker may send to V a fake notification
before the FPGA has been completely configured with
the hardware monitor, but this does not affect the secrecy;

• the other four patterns have a common property: the
attacker may force an invalid key into the FPGA by cre-
ating fake monitors. This does not represent a real threat.
In fact, the use of the wrong key will be immediately
detected by V. In our model, in case of 2nreq failed
remote attestations V reacts according to a policy, e.g.,
it may block the usage of the program. In conclusion,
the attacker may only perform DoS to himself and the
FPGA, but this is in contrast with our assumptions.

B. Complexity of bitstream reversal

A key element to guarantee the security of the proposed
remote attestation procedure is the inability of performing full
FPGA’s bitstream reversal of both HM and BDs (see section
IV-A). This allows to turn these components into roots of trust
into U .

1This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes all tools and
code used to perform formal verification of the different protocols.

8

The obscurity, complexity, and size of FPGA bitstreams
confirm the general assumption that bitstream reversal is
difficult and time consuming, though theoretically possible.
FPGA’s bitstream encoding is largely undocumented and ob-
scure, even if not encrypted or confidential in a cryptographic
sense. FPGA vendors keep this encoding a secret as they do
for the chip’s own design and layout information. Further-
more, the most important processing step in the bitstream
generation process, i.e., place and route, is a very complex
problem implemented in a non deterministic way. This makes
it difficult to reliably generate slightly altered bitstreams and
observe incremental changes in order to infer the function
of the altered locations [45]. In fact, there are no reports
of successful reversal of modern FPGA bitstreams as defined
above or even a cost estimate that is backed up by data and
empirical analysis [46], [47], [39], [48], [49]. In the 1990s
the NeoCad company reverse engineered Xilinx’s bitstream
generation software, not the bitstream itself. Clear Logic was
able to use Altera’s software-generated bitstreams to produce
laser-programmable circuits. Although both cases involved the
generation of compatible bitstreams, neither company was able
to completely reverse engineer them to obtain the original
functional description. We must also remember that following
the Moore’s law, compared to today’s FPGAs the ones in
NeoCAD and Clear Logic’s time were much less sophisticated.

Partial bit-stream reversal, which decodes static data from
bitstreams, is far easier [45], [50]. Hiding cryptographic keys
directly into look-up tables and RAMs must be therefore
avoided, and the keys must be directly hardwired into HM .

Even if partial decompilation of the bitstream is possible,
the textual representation obtained by these tools is not a true
netlist. Furthermore, even assuming that the netlist stage could
be reached, higher-level analysis tools would be required to
actually structure and make sense of the data [45]. Since this
difficulty is not exactly measurable as it happens for measur-
able cryptographic standards, additional levels of complexity
have been exploited in this paper to increase the provided level
of protection.

Netlist obfuscation makes even worse for the attacker the
comprehension of a fully or partially reversed netlist.

Together with obfuscation, remote dynamic update of the
FPGA gives the attacker a limited time to succeed in his action.
Dynamic updates guarantee that, even if the attacker achieves
its goal, it should start from scratch after each replacement
(time-limited successful attacks). Moreover, this technique
increases the difficulty of mounting a successful attack by
creating a dependency of the current HM from all previously
released BDs. Fig. 5 graphically shows the effect of the FPGA
dynamic update on the attacker’s activity. An attacker must
first reverse engineer BDKBi

to extract KBi. Only when KBi

is extracted he may obtain in clear the bitstream of the current
HMi and, by reverse engineering also this component, he may
try to deduce KSi, p, and h. The time the attacker has to
perform these operations is limited by the secrets expiration
time t. This parameter can be regulated according to the
security requirements, but it is reasonable to consider multiple
of days or even weeks. If different versions of the monitors
are generated including enough diversity, the time to mount

an attack increases linearly with the number of replacements.
This also reduces the possibility that discovering past keys
would allow the attacker to compromise future session keys.

According to the above literature this gives a decent level
of assurance that FPGA bitstreams cannot easily be reverse
engineered and that direct modifications of the logic are
difficult.

!"##$%&'#$()*!$+$%&'

!"#$%&'("#)
+,-)'.)#$%/0$)

,*-)

!"#$%&'("#)12-)
("#)#$%/0$))
3,4-56578))

!"#$
%&"&'#()
)*++#)),

!&$),*-)'.)#$9%:6')12-)

!"#$%&'("#)
+,;)("#)#$%/0$)

,*;)
!&$),*;)'.)#$9%:6')12;)

!"#$%&'("#)12;)
("#)#$%/0$))
3,4;56578)

!&$),*-)'.)
#$9%:6')*+,*;)

<)

<)

!"#$%&'("#)
+,=)("#)#$%/0$)

,*=)

>"#$%&'("#)12=)
("#)#$%/0$))
3,4=565)78)!&$),*;)'.))

#$9%:6')*+,*=)

<)

<)

!&$),*=)'.))
#$9%:6')12=)

<)

-#.%/+#"#0')

-#.%/+#"#0'5))

-#.%/+#"#0')

-#.%/+#"#0')
-#.%/+#"#0') <)

Fig. 5. Effect of the FPGA dynamic update on the attacker’s activity

Remote update of the FPGA with several versions of
equivalent HMs and BDs also provides protection against
massive attacks. Using a single hardware monitor would
expose programs to potential mass deployment of attacks. In
fact, an attacker succeeding in understanding the hardware
monitor could distribute to a large audience a tampered version
of the program able to circumvent the implemented protection
technique. By updating HM the attacker must reverse engineer
the full library of available monitors to generate an (almost)
effective crack. Due to the complexity of the bitstream reversal
process, this time can be considered bigger than the usual life-
time of a program.

C. Environmental attacks

This section analyzes a set of attacks that exploits the
running environment to be mounted.

1) Memory copy attacks: The memory copy attack consists
of a fake paging table provided to HM in order to force it to
create the attestation on a memory area containing a genuine
copy of P , while a tampered running copy is placed in a
different area [21]. Mounting memory copy attacks without
compromising the kernel of the operating system that is
monitored by HM is hard to achieve, thus guaranteeing a
reasonable protection against this type of threats.

2) Bus resets: By trapping in a cycle of resets the bus where
the FPGA is connected, it is possible to prevent HM , and in
general all devices connected to the same bus, from performing
their tasks. This is equivalent to perform a DoS attack which
is against the interest of the attacker (see section III).

3) Power-off attacks and FPGA reconfigurations attacks:
As introduced in section V-B, to decipher the bistream of HM
the attacker needs to recover all previous bistream encryption
keys KB by reverse engineering the corresponding BD (see
Fig. 5). The current BD can be easily maintained in the FPGA
even in case of loss of primary power. SRAM-based FPGAs

9

are manufactured using a high performance low-power CMOS
process. They can preserve the configuration data stored in the
internal static memory cells during a loss of primary power
by forcing the device into a low-power non-operational state,
while supplying a minimal current from a battery.

An attacker may try to reduce the number of BDs to
understand by removing the back-up battery and therefore
cleaning the FPGA. A similar situation can be created by
configuring the FPGA with a bogus design preventing the
correct configuration of the received updates. Both situations
can be detected since the FPGA configuration cannot properly
complete and the corresponding notification cannot be sent
(see Fig 4).

Failing a remote update can be immediately considered as
an attack, or may be addressed by cleaning the FPGA and
starting a first instance of the key establishment protocol with a
not-encrypted BD (see section IV-A) thus reducing the number
of BDs the attacker need to understand to perform its activity.
These events must be logged by V to identify suspicious
situations to manage based on a specific security policy.

According to section V-B this does not represent a major
security problem for our protection technique. Nevertheless, if
not addressed it may contribute to reduce the strength of the
overall protection.

4) Timing attacks: If an attacker could foresee when remote
attestation requests are sent by V, he might develop a clever
crack able to automatically modify and repair the memory
area checked by HM . In alternative, it may force the swap
of tampered pages. This type of attack certainly deteriorates
the performance of the program proportionally to the number
of generated remote attestation requests. To prevent these
attacks, the intervals between remote attestation requests are
randomized to make their occurrence difficult to predict.

5) Relocation or cache based dynamic attacks: A very
skilled attacker could try to maintain a consistent image of
the monitored memory while hiding malicious code elsewhere,
such as in the processor cache. In this situation, the malicious
code would not be detected by HM .

However, it is currently unclear to what extent such attacks
would succeed on a permanent scale. Caches get flushed fre-
quently and more extensive attempts to relocate large portions
of the operating system or page tables would likely require
difficult changes to all running processes.

6) Parallel execution of multiple copies of the program
(cloning attack): With cloning attack we refer to the possibil-
ity of running in parallel two copies of the program (P and
P ′). The tampered version of P ′ interacts with S to receive
the given service while all attestation requests are forwarded
to the untampered version P of the program that answers to
V with the correct remote attestations. This mechanism must
be implemented without any modification to the code of the
original program P . This particular scenario is not covered
by our solution and also by previous publications presented in
section II. However two considerations reduce the criticality of
this attack. First, even if theoretically possible, implementing
the parallel execution of the two processes (P and P ′) with the
related communication mechanisms without any modification
to the code of P and to the operating system is not trivial.

Second, this type of attack requires the possibility of running
a clean (licensed) version of the software. This is somehow
in contrast with the aim of several attackers that would like
to run tampered unlicensed versions of the software. Running
the clean licensed version of the program may also lead to the
identification of the identity of the client which is obviously
against the attacker’s will.

VI. CASE STUDY AND EVALUATIONS

The goal of the experimental setup of this section is to
perform feasibility, scalability and performance analysis on
the proposed methods. CarRace is a small sized client-server
network game written in C++ designed for small terminals
(e.g., mobile terminals) running the Linux operating system.
The application allows players to connect to a central game
server (about 4,500 lines of C++ code) using a game client ap-
plication (about 7,400 lines of C++ code) and race cars against
each other. CarRace has been developed in the framework of
the RE-TRUST project [9] to demonstrate the application of
remote software protection techniques. During the race, each
client periodically sends data (e.g., car position, direction,
etc.) to the server which then broadcasts the data to the other
clients allowing them to render the game on their screens. To
reduce computational load on the server side, a critical issue
of contemporary on-line game applications, CarRace demands
most of the computations to the client that is executed in an
untrusted environment. Monitoring the client’s code integrity
is therefore mandatory.

Fig. 6 shows our experimental setup. The verifier (V) and
the game server representing the service S of Fig. 1 are
executed on two workstations both equipped with two Intel
Xeon 2.66GHz CPUs and 16GB of physical RAM. Both work-
stations run Ubuntu-Linux with kernel 2.6.32. V and S are exe-
cuted on two different machines to allow performance analysis
of V in isolation. The untrusted host U where the game client
representing the program P to protect runs is built on a Xilinx
ML605 demo board implementing a LEON3 microprocessor
running the MontaVista Linux operating system with kernel
2.4.26. The ML605 board is a development environment for
embedded systems design featuring Xilinx Virtex-6 FPGAs.
A 100BASE-T ethernet router connects the different nodes
guaranteeing the required exchange of messages. A laptop
running an X server is used as a graphical terminal overcoming
the unavailability of a full featured graphic card into the
development board. Due to the availability of a single ML605
board, S implements a computer emulated player allowing a
single real user to play against the computer. All experiments
presented in the next subsections have been performed by
bringing all systems to a known, minimal state. Only those
processes required for the experiments have been preserved
disabling typical operating systems’ activities such as cron,
syslog,or any other unnecessary service.

A. Verifier implementation and performance analysis

V implements a process that continuously waits on a TLS
socket for new clients. When a new client connects, it forks
generating a process to manage the new player. Two time-out

10

Verifier (V)
Game server (S)

Untrusted host (U)
Xilinx Virtex-6 FPGA ML605

demo board

Ethernet 100BASE-T
router

P
Game client

X Server used to
render the game

Fig. 6. Testcase architecture setup

for each client govern the rate at which remote attestations
and key establishments are performed. A repository of six
precomputed HMs and BDs allows to simulate the remote
update process. V is highly configurable. Specific informa-
tion on the program to monitor are all coded into a set
of configuration files. It can therefore be reused to protect
different programs. AES-128 is used as cipher to encrypt
remote attestation requests, while SHA-1 is used as digest
algorithm for the HMAC (see section IV). Implementations
of security primitives exploit openssl libraries. This trivial
implementation has opportunities for several improvements,
e.g., a pool of pre-forked processes can manage different
clients and remote attestations can be pre-computed when
there are free resources. However it is enough to provide
a preliminary assessment of the scalability of the proposed
method.

1) Remote attestation performance analysis: Performances
of V when executing remote attestations have been measured
running a set of simulations with a variable number of served
game clients (10, 100, 1000, or 10,000 clients) and a variable
interval between remote attestations (240sec, 120sec, 60sec,
and 30sec). A dummy client emulating the sole remote attesta-
tion process is used to perform measurements without need of
an elevated number of demo boards and players. An additional
dedicated workstation with the same characteristic of the one
implementing V is introduced in the setup of Fig. 6 to execute
all instances of the dummy client.

Measurements for each configuration have been collected
by observing V for a window of 4 hours of continuos activity.
Fig. 7 summarizes the obtained results.

Fig. 7(a) presents the average time to complete a full remote
attestation for a given client (time spent to wait for ra from
the client is not considered in the statistic). The average time
does not show significant variations among the considered
configurations even with the highest number of clients (values
ranging between 34.3msec to 38.9msec). The low computation
time guarantees the possibility of managing remote attestations
at the desired rate even in the worst configuration (10,000
clients with 30sec between two requests, a very high and
probably not realistic rate) thus providing a good scalability.
The coefficient of variation (CV) computed for the different
configurations show that measures are quite stable when the
number of clients is not high (≤ 1, 000) while their variability
starts to be significant when considering 10,000 clients. While
this is a sign that the load of the server is increasing, looking

at the average computation time of measures performed with
10,000 clients (30sec, 60sec, 120sec, and 240sec) the small
variations suggest that the size of CV is probably mainly
influenced by the elevated number of generated processes
(one for each client) rather then by the actual number of
computed remote attestations. This is a limitation of our simple
implementation that can be mitigated by implementing some
of the optimizations mentioned above.

Consumed network resources are also negligible. The ci-
pher used to generate remote attestation requests (AES-128)
has a block size of 128bit. According to section IV our
implementation uses a sequence counter i of 32bit and a
random nonce R of 96bit. Considering that the nonce is also
sent in clear the size of each request is 28byte. The size of
the remote attestation returned by the client considering the
use of SHA-1 as digest algorithm to compute the HMAC is
20byte. Fig. 7(b) shows the average upload/download network
bandwidth consumed by V during the 4 hours of observed
activities. As expected, the average bandwidth is directly
related to the number of performed remote attestations. The
request is anyway really low (a few tens of Kbits/sec) and
quite leveled over the observation time (no significant peaks
of use have been observed).

2) Key agreement performance analysis: The key establish-
ment procedure does not represent a critical activity. The rate
at which this process is performed is not high, we can expect
multiples of days or weeks. Considering an implementation of
V based on a library of precomputed HMs and BDs the ma-
jority of the computation time for the key establishment pro-
cedure is devoted to the bitstreams encryption. Our proposed
experimental setup allows to perform encryption with AES-
128 at a measured average rate of 138 MB/s (using blocks of
1024 byte). Considering a total average size of the bitstreams
representing HMs and BDs of ∼ 3 MB, approximatively
46 bitstreams/sec can be encrypted, guaranteeing a good level
of scalability even when no cryptographic accelerators are
used. Network use is also negligible given the low rate at
which this process is scheduled.

B. Untrusted host and HM implementation

The ML605 Xilinx board including a Virtex-6 FPGA imple-
ments the full untrusted host (Fig. 8). The system is based on
the LEON 3 processor and uses the Advanced Microcontroller
Bus Architecture (AMBA) as backbone. It includes 512 MB
DDR SDRAM, an ethernet controller, and 64 MB of flash
memory used as storage device, all available on the demo
board.

The LEON3 is a SPARC-V8 compliant RISC open source
processor. Our implementation works at a clock frequency of
50 MHz. An internal memory management unit (MMU) trans-
lates virtual addresses into physical ones. The LEON3 adopts a
four levels page table. The virtual address is partitioned in four
sections: three levels of displacements and an offset in the final
page table (see the SPARC-V8 specifications for further details
[51]). The same translation mechanism has been implemented
in the library of available HMs to explore the memory space
of the target program. FPGA designs have been produced

11

10 clients 100 clients 1000 clients 10000 clients

A
ve

ra
ge

 re
m

ot
e

at
te

st
at

io
n

se
rv

ic
e

tim
e

in
 u

s

0
10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

C
V

=
1.

4
%

C
V

=
1.

8
%

C
V

=
2.

1
%

C
V

=
 2

 %

C
V

=
1.

7
%

C
V

=
1.

8
%

C
V

=
2.

4
%

C
V

=
2.

4
%

C
V

=
 2

 %
C

V
=

2.
4

%
C

V
=

2.
7

%
C

V
=

2.
9

% C
V

=
 1

3
%

C
V

=
 1

5
%

C
V

=
 1

4
%

C
V

=
 1

7
%

240 sec 120 sec 60 sec 30 sec

(a) Average time (us) to serve a remote attestation with
standard deviation an coefficient of variation (CV)

10 clients 100 clients 1000 clients 10000 clients

A
ve

ra
ge

 u
pl

oa
d/

do
w

nl
oa

d
ba

nd
w

id
th

 in
 k

bi
t/s

ec

0
10

20
30

40
50

60
70

240 sec - Upload
240 sec - Download
120 sec - Upload
120 sec - Download
60 sec - Upload
60 sec - Download
30 sec - Upload
30 sec - Downlod

(b) Average network usage

Fig. 7. Experimental results obtained by observing the server for four hours of operations considering 8 different configurations

DDR3
Memory

Controller

512 MB
DDR3

SDRAM

AMBA AHB

AMBA APB
AHB/APB Bridge

I/O

LEON3

64 MB
Flash

Memory

FPGA area dedicated
to the architecture of

Fig. 3

Ethernet

Fig. 8. Implementation of the untrusted host. The AMBA Advanced High-
performance Bus (AHB) and the AMBA Advanced Peripheral Bus (APB) are
used to connect the different cores.

using the Xilinx ISE environment. All bitstreams have been
generated with the "Disable Readback" option. This prevents
the possibility of reading back the FPGA configuration mem-
ory, while leaving full access to the ICAP. The system runs the
MontaVista Linux operating system with kernel 2.4.26, with
a custom driver implementing the FPGAdriver of Fig. 1.

The Xilinx Virtex-6 FPGA that equips the ML605 board,
contains 37, 680 slices, 4 Ethernet MAC cores and 416 mem-
ory blocks of 36 Kb. Table I shows synthesis information in
terms of slices required for the different structures. Results
show how the size of HM is limited and can easily fit
commercial devices.

TABLE I
SYNTHESIS RESOURCES UTILIZATION

Module Slices % of Virtex-6
U Main system (LEON3, AMBA, ...) 16,340 43.3%
HM (rec. area) 3,112 8.2%
HM (fixed portion) 2,910 7.7%

C. CareRace client performance analysis

A "remote attestation on" "remote attestation off" evaluation
approach has been used to compare the impact of the remote
attestation process on the CarRace game client. Similarly
to the experiments performed for V, four intervals between
remote attestations have been considered (240sec, 120sec,

60sec and 30sec). For each configuration 30 repetitions (car
races) of the experiment have been performed.

The CarRace client implements an iterative process in which
two sets of functions, i.e., core functions managing the game
activity and rendering functions generating X commands to
render the game on the console, are repeatedly executed.
Table II presents averages of the total execution time of the two
groups of functions (together with the corresponding CV to
asses their dispersion) considering the 5 configurations (remote
attestation off, and remote attestation on with the four consid-
ered intervals) and the 30 trials. The penalty column allows
to evaluate the penalty introduced by the remote attestation
process w.r.t. the execution without remote attestation. As
expected, the more frequently remote attestations are requested
by V, the more impact there is on the system’s performances.
While a very high remote attestation rate (30sec between two
requests) produces a quite high overhead (18.31%), keeping
the remote attestation interval between 60sec and 240sec
allows to maintain the overhead at acceptable limits for the
considered application (between 5.16% and 1.15%). Loss of
performances are caused by the shared use of the bus/memory
between the LEON3 and HM , by the time consumed by
HMM (embedded into the protected program) and by the calls
to the FPGAdriver, with the first contribution accounting for
∼ 20% of the overhead. If required, custom hardware designs
including multi-port memories can be exploited to mitigate
this contribution.

Similarly to V the key establishment process does not
represent a critical issue for the application. The average time
to perform FPGA configuration with the proposed library of
HMs is about ∼ 1.5 s. This process can be executed in parallel
with the execution of the program, and can be scheduled in
the time interval between remote attestations in order to be
almost transparent to the program’s execution.

D. Simulated attacks

To asses the security of our selected test-case we performed
an empirical experiment involving a group of seven PhD
students of Politecnico di Torino attending a PhD course in

12

TABLE II
COMPARISON OF THE CLIENT’S EXECUTION TIME WITH OR WITHOUT REMOTE ATTESTATIONS

Rendering functions Core functions
Avg CV Penalty Avg CV Penalty

Remote attestation disabled 55.1068 3.02% 0.00% 18.9104 1.95% 0.00%
Remote attestation request every 240sec 55.4871 2.04% 0.69% 18.9974 2.04% 0.46%
Remote attestation request every 120 sec 55.8232 2.15% 1.30% 19.0749 2.99% 0.87%
Remote attestation request every 60 sec 56.8096 3.21% 3.09% 19.3018 3.21% 2.07%
Remote attestation request every 30 sec 61.1465 4.08% 10.96% 20.3003 3.90% 7.35%

Software Engineering. All students had at least two years of
experience in research topics including software-engineering,
security and FPGA design. A preliminary session was used
to fully explain the characteristic of the system to attack and
the goal of the experiment. All students were provided with
the source code of the application, the documentation on the
protection schema and a complete suite of tools (compiler,
debuggers, FPGA design, etc.). They were asked to produce
tampered versions of the CarRace client exploiting the attacks
discussed in section V. To motivate the students, successful
attacks were rewarded with a maximum score in the final
exam. All student had one month to perform their activity.

The result of the experiment gave positive results. All
tampered versions of the program (about 30 programs covering
the range of attacks discussed section V), once installed and
monitored have been correctly detected further confirming the
security analysis proposed in section V. In particular, none
of the tentatives of implementing the critical cloning attack
was successfully completed. Additional empirical studies with
larger groups of students and multiple repetitions are planned
to provide a strongest empirical validation of the security of
the system.

VII. CONCLUSION

This paper proposes the use of reconfigurable computing
to securely implement remote code integrity verification of
software including both protocols design and hardware archi-
tecture has been presented. One of the main contributions of
the paper is the use of remote dynamic update of hardware
components to make it difficult for an attacker to perform
full bitstream reversal of hardware monitors thus defeating the
protection technique. Experimental data on scalability issues
give promising results.

Future activities include the development of a complete
implementation of the framework able to consider the en-
tire lifecycle of the program. This will also include fully
automating the generation of different versions of HMs and
BDs, the reduction of the overhead through a distributed
set of trusted hosts, and the definition of a standard set
of reactions to tampering detection. The production of the
monitors is essentially an off-line process. Nevertheless, after
the generation, they need to be catalogued and associated with
the secrets they contain in order to be quickly available to V
when needed. In a large scale scenario, the same agent may
be sent to different users with different keys. Also distribution
should be designed carefully to reduce coalitions.

REFERENCES

[1] F. M. Mendes Neto and P. F. Ribeiro Neto, Designing Solutions-Based
Ubiquitous and Pervasive Computing: New Issues and Trends. Hershey,
PA: Information Science Reference - Imprint of: IGI Publishing, 2010.

[2] D. Schellekens, B. Wyseur, and B. Preneel, “Remote attestation on
legacy operating systems with trusted platform modules,” Science of
Computer Programming, vol. 74, no. 1-2, pp. 13 – 22, Dec. 2008.

[3] C. Kil, E. Sezer, A. Azab, P. Ning, and X. Zhang, “Remote attestation
to dynamic system properties: Towards providing complete system
integrity evidence,” in Proceedings of the Dependable Systems Networks
Conference, 2009, pp. 115 –124.

[4] K. Compton and S. Hauck, “Reconfigurable computing: A survey of
systems and software,” ACM Computing Surveys, vol. 34, no. 2, pp.
171–210, June 2002.

[5] D. McGart, “Gartner dataquest analyst gives asic, fpga markets
clean bill of healtg,” EE Times, 13 June 2005. [Online]. Available:
http://www.eetimes.com/news/latest/archive/?archiveDate506/18/2005

[6] R. Chakraborty and S. Bhunia, “HARPOON: An obfuscation-based soc
design methodology for hardware protection,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493–1502, Oct. 2009.

[7] M. Brzozowski and V. Yarmolik, “Obfuscation as intellectual rights
protection in VHDL language,” in Proceedings of the 6th International
Conference on Computer Information Systems and Industrial Manage-
ment Applications, 2007, pp. 337–340.

[8] A. Benso, A. Cilardo, N. Mazzocca, L. Miclea, P. Prinetto, and
E. Szilard, “Reconfigurable systems self-healing using mobile hardware
agents,” in Proceedings of the IEEE International Test Conference, .
2005, pp. pp.9–476.

[9] Re-trust (remote entrusting by run-time software authentication).
[Online]. Available: http://www.re-trust.org

[10] S. Di Carlo, P. Prinetto, and A. Scionti, “A fpga-based reconfigurable
software architecture for highly dependable systems,” in Proceedings of
the IEEE Asian Test Symposium, 2009, nov. 2009, pp. 125–130.

[11] S. Di Carlo, A. Miele, P. Prinetto, and A. Trapanese, “Microprocessor
fault-tolerance via on-the-fly partial reconfiguration,” in Proceedings of
the 15th IEEE European Test Symposium, may. 2010, pp. 201–206.

[12] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing,
and obfuscation - tools for software protection,” IEEE Transactions on
Software Engineering, vol. 28, no. 8, pp. 735–746, August 2002.

[13] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of software-
based survivability mechanisms,” in Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks, 2001,
pp. 193–202.

[14] M. Dalla Preda and R. Giacobazzi, “Semantics-based code obfuscation
by abstract interpretation,” J. Comput. Secur., vol. 17, no. 6, pp. 855–
908, 2009.

[15] H. E. Link and W. D. Neumann, “Clarifying obfuscation: Improving
the security of White-Box DES,” in Proceedings of the International
Conference on Information Technology, 2005, pp. 679–684.

[16] M. Abadi and G. Plotkin, “On protection by layout randomization,”
Computer Security Foundations Symposium, IEEE, vol. 0, pp. 337–351,
2010.

[17] H. Xu and S. J. Chapin, “Address-space layout randomization using code
islands,” J. Comput. Secur., vol. 17, no. 3, pp. 331–362, 2009.

[18] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im)possibility of obfuscating programs,” in
Proceedings of the 21st Annual International Cryptology Conference
on Advances in Cryptology, ser. Lecture Notes in Computer Science.
Springer-Verlag, 2001, vol. 2139, pp. 1–18.

http://www.eetimes.com/news/latest/archive/ ?archiveDate506/18/2005
http://www.re-trust.org

13

[19] D. Aucsmith, “Tamper resistant software: an implementation,” in Pro-
ceedings of the First International Workshop on Information Hiding, ser.
Lecture Notes in Computer Science, R. Anderson, Ed. Springer Berlin
/ Heidelberg, 1996, vol. 1174, pp. 317–333.

[20] H. Chang and M. Atallah, “Protectioning software code by guards,” in
Proceedings of the ACM Workshop on Security and Privacy in Digital
Rights Management, 2001, pp. 160–175.

[21] G. Wurster, P. C. van Oorschot, and A. Somayaji, “A generic attack
on checksumming-based software tamper resistance,” in In Proceedings
of the IEEE Symposium on Security and Privacy, ser. Lecture Notes in
Computer Science. Springer, 2005, vol. 4437, pp. 127–138.

[22] J. Cappaert, B. Preneel, A. Bertrand, M. Matias, and D. B. Koen,
“Towards tamper resistant code encryption: Practice and experience,” in
Proceedings of the Second Information Security Practice and Experience
Conference, ser. Lecture Notes in Computer. Springer, 2008, vol. 4991,
pp. 86–100.

[23] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. Jakubowski,
“Oblivious hashing: A stealthy software integrity verification primitive,”
in Proceedings of the International Workshop on Information Hiding,
ser. Lecture Notes in Computer Science, F. Petitcolas, Ed. Springer
Berlin / Heidelberg, 2003, vol. 2578, pp. 400–414.

[24] J. T. Giffin, M. Christodorescu, and L. Kruger, “Strengthening Software
Self-Checksumming via Self-Modifying Code,” in Proceedings of the
21st Annual Computer Security Applications Conference, 2005, pp. 23–
32.

[25] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans. Inf.
Syst. Secur., vol. 13, no. 1, pp. 1–40, 2009.

[26] G. Tan, Y. Chen, and M. H. Jakubowski, “Delayed and controlled failures
in tamper-resistant software,” in Proceedings of the First International
Workshop on Run Time Enforcement for Mobile and Distributed Systems,
2006, pp. 216–231.

[27] R. Kennell and L. H. Jamieson, “Establishing the genuinity of remote
computer systems,” in Proceedings of the 12th USENIX Security Sym-
posium, 2003, pp. 295–310.

[28] A. Seshadri, A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla,
“SWATT: software-based attestation for embedded devices,” in Pro-
ceedings of the IEEE Symposium on Security and Privacy, 2004, pp.
272–282.

[29] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla,
“Pioneer: verifying code integrity and enforcing untampered code exe-
cution on legacy systems,” in Proceedings of the ACM Symposium on
Operating Systems Principles, 2005, pp. 1–16.

[30] T. C. Group. Trusted computing platform. [Online]. Available:
http://www.trustedcomputing.org/

[31] P. van Oorschot, “Revisiting software protection,” in Proceedings of
the Information Security Conference, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2003, vol. 2851, pp. 1–13.

[32] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and im-
plementation of a TCG-based integrity measurement architecture,” in
Proceedings of the 3th USENIX Security Symposium, 2004, pp. 16–16.

[33] Intel. Intel trusted execution technology. [Online]. Available: http:
//developer.intel.com/technology/security/index.htm

[34] F. Wolff, C. Papachristou, D. Weyer, and W. Clay, “Embedded system
protection from software corruption,” in NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), jun. 2010, pp. 223–229.

[35] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Hardware-assisted
run-time monitoring for secure program execution on embedded proces-
sors,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 14, no. 12, pp. 1295 –1308, dec. 2006.

[36] T. Jiutao and L. Guoyuan, “Research of software protection,” in Interna-
tional Conference on Educational and Network Technology, jun. 2010,
pp. 410–413.

[37] O. Gelbar, P. Ott, B. Narahari, R. Simha, A. Choudhary, and J. Zam-
breno, “CODESSEAL: Compiler/FPGA approach to secure applica-
tions,” in Proceedings of the Intelligence and Security Informatics
Conference, 2005, vol. 3495, no. Lecture Notes in Computer Science,
pp. 530–535.

[38] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, J.-P. Bossuet, and
R. Vaslin, “Reconfigurable hardware for high-security/high-performance
embedded systems: the SAFES perspective,” IEEE Trans. On Very Large
Scale Integration (VLSI) Systems, vol. 16, no. 2, Feb. 2008.

[39] S. Drimer. Volatile fpga design security - a survay. [Online]. Available:
http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf

[40] Helion technology. [Online]. Available: http://www.heliontech.com/
[41] G. Lowe, “Breaking and fixing the needham-schroeder public-key pro-

tocol using fdr,” in Proceedings of the 7th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, ser.
Lecture Notes in Computer Science. Springer Verlag, 1996, vol. 1055,
pp. 147–166.

[42] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh, “COPILOT -
a coprocessor-based kernel runtime integrity monitor,” in Proceedings of
the 13th conference on USENIX Security Symposium, 2004, pp. 13–13.

[43] A. J. Menezes, van Paul C. Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[44] C. J. Cremers, “The scyther tool: Verification, falsification, and analysis
of security protocols,” in Proceedings of the 20th International Confer-
ence on Computer Aided Verification, 2008, pp. 414–418.

[45] J.-B. Note and E. Rannaud, “From the bitstream to the netlist,” in
Proceedings of the 16th International ACM/SIGDA Symposium on Field
Programmable Gate Arrays, 2008, pp. 264–264.

[46] T. Wollinger, J. Guajardo, and C. Paar, “Security on FPGAs: State-of-
the-art implementations and attacks,” ACM Trans. Embed. Comput. Syst.,
vol. 3, no. 3, pp. 534–574, 2004.

[47] S. Trimberger, “Trusted design in FPGAs,” in Proceedings of the 44th
Annual Design Automation Conference, 2007, pp. 5–8.

[48] D. Schellekens, P. Tuyls, and B. Preneel, “Embedded trusted computing
with authenticated non-volatile memory,” in Proceedings of the 1st
international conference on Trusted Computing and Trust in Information
Technologies, 2008, pp. 60–74.

[49] T. Huffmire, B. Brotherton, T. Sherwood, R. Kastner, T. Levin, T. D.
Nguyen, and C. Irvine, “Managing security in FPGA-based embedded
systems,” IEEE Design and Test of Computers, vol. 25, pp. 590–598,
2008.

[50] D. Ziener, S. Abmust, and J. Teich, “Identifying FPGA IP-cores based
on lookup table content analysis,” in Proceedings of the International
Conference on Field Programmable Logic and Applications, 2006, pp.
1–6.

[51] SPARC International Inc. The sparc architecture manual. [Online].
Available: www.sparc.com/standards/V8.pdf

http://www.trustedcomputing.org/
http://developer.intel.com/technology/security/index.htm
http://developer.intel.com/technology/security/index.htm
http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf
http://www.heliontech.com/
www.sparc.com/standards/V8.pdf

	Introduction
	Related works
	Remote code integrity verification principles
	Basic assumptions

	Computing code integrity attestations
	Hardware monitor and key establishment protocol
	Computing code integrity information
	Computing FPGA configuration integrity information

	Security analysis
	Analysis of protocols
	Reply attacks against remote attestations
	Reply attacks against remote attestation requests
	Cryptanalysis attacks against KS
	Man in the Middle attacks
	DoS against V
	DoS against HM
	Protocols verification

	Complexity of bitstream reversal
	Environmental attacks
	Memory copy attacks
	Bus resets
	Power-off attacks and FPGA reconfigurations attacks
	Timing attacks
	Relocation or cache based dynamic attacks
	Parallel execution of multiple copies of the program (cloning attack)

	Case study and evaluations
	Verifier implementation and performance analysis
	Remote attestation performance analysis
	Key agreement performance analysis

	Untrusted host and HM implementation
	CareRace client performance analysis
	Simulated attacks

	Conclusion
	References

