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a b s t r a c t

The ability of Gaussian noise to induce ordered states in dynamical systems is here presented in an over-
view of the main stochastic mechanisms able to generate spatial patterns. These mechanisms involve: (i) a

 

deterministic local dynamics term, accounting for the local rate of variation of the field variable, (ii) a

 

noise component (additive or multiplicative) accounting for the unavoidable environmental distur-
bances, and (iii) a linear

 

spatial coupling component, which provides spatial coherence and takes into
account diffusion mechanisms. We investigate these dynamics using analytical tools, such as mean-field
theory, linear stability analysis and structure function analysis, and use numerical simulations to confirm
these analytical results.

1. Introduction

Spatial

 

patterns

 

are

 

widely

 

present

 

in

 

different

 

natural

 

dynam-
ical

 

systems.

 

Their

 

occurrence

 

has

 

been

 

studied

 

for

 

quite

 

a

 

long

 

time

 

with

 

applications

 

to

 

different

 

fields,

 

including

 

for

 

example

 

hydrodynamic

 

systems

 

(e.g.

 

Rayleigh–Bénard

 

convection

 

[1,2])

 

and

 

biochemical

 

and

 

neural

 

systems

 

(see,

 

for

 

instance,

 

[3,4]).

 

In

 

particular,

 

a

 

number

 

of

 

environmental

 

processes

 

are

 

known

 

for

 

their

 

ability

 

to

 

develop

 

highly

 

organized

 

spatial

 

features.

 

For

 

exam-
ple,

 

remarkable

 

degrees

 

of

 

coherence

 

can

 

be

 

found

 

in

 

the

 

spatial

 

distribution

 

of

 

dryland

 

and

 

riparian

 

vegetation

 

[5–8],

 

river

 

chan-
nels

 

[9–11],

 

coastlines

 

[12,13],

 

sand

 

ripples

 

and

 

dunes

 

[14].

 

Fig.

 

1

 

shows

 

an

 

example

 

of

 

natural

 

spatial

 

patterns

 

around

 

the

 

world.

 

These

 

patterns

 

exhibit

 

amazing

 

regular

 

configurations.

 

Found

 

over

 

areas

 

of

 

up

 

to

 

several square kilometers, they can occur on differ-
ent

 

soils

 

and

 

with

 

a

 

broad

 

variety

 

of

 

vegetation

 

species

 

and

 

life

 

forms

 

[15–18].
The

 

study

 

of

 

patterns

 

can

 

offer

 

useful

 

information

 

on

 

the

 

under-
lying

 

processes

 

causing

 

possible

 

changes

 

in

 

the

 

system.

 

In

 

recent

 

years,

 

several

 

authors

 

have

 

investigated

 

the

 

mechanisms

 

of

 

pattern

 

formation

 

in

 

nature,

 

and

 

their

 

response

 

to

 

changes

 

in

 

environmen-
tal

 

conditions

 

or

 

disturbance

 

regime.

 

For

 

example,

 

in

 

the

 

case

 

of

 

landscape

 

ecology,

 

these

 

studies

 

have

 

related

 

vegetation

 

patterns

 

to

 

the

 

underlying

 

eco-hydrological

 

processes

 

[7,19,20],

 

the

 

nature

 

of

 

the

 

interactions

 

among

 

plant

 

individuals

 

[6,19], and the land-
scape’s susceptibility to desertification under different climate
drivers and management conditions [21,22].

Deterministic

 

mechanisms

 

of

 

pattern

 

formation

 

have

 

been

 

widely

 

studied

 

[23–25]

 

with

 

a

 

number

 

of

 

applications

 

to

 

environ-
mental

 

processes

 

[26,8,6,27–31].

 

Stochastic

 

models

 

have

 

only

 

been

 

developed

 

more

 

recently

 

[32,33].

 

They

 

explain

 

pattern

 

formation

 

as

 

a

 

noise-induced

 

effect

 

in

 

the

 

sense

 

that

 

patterns

 

can

 

emerge

 

as

 

a

 

consequence

 

of

 

the

 

randomness

 

of

 

the

 

system’s

 

fluctuations.

 

These

 

random

 

drivers

 

have

 

often

 

been

 

related

 

[34,35]

 

to

 

a

 

symme-try-
breaking

 

instability.

 

They

 

destabilize

 

a

 

homogeneous

 

(and,

 

thus,

 

symmetric)

 

state

 

of

 

the

 

system

 

and

 

determine

 

a

 

transition

 

to

 

an

 

ordered

 

phase,

 

which

 

exhibits

 

a

 

degree

 

of

 

spatial

 

organiza-tion.

 

In

 

the

 

thermodynamics

 

literature

 

these

 

order-forming

 

transi-tions

 

are

 

usually

 

referred

 

to

 

as

 

non-equilibrium

 

transitions,

 

to

 

stress

 

the

 

fundamental

 

difference

 

in

 

the

 

role

 

of

 

noise

 

with

 

respect

 

to

 

the
classical case of equilibrium transitions, which exhibit an in-crease
in

 

disorder

 

as

 

the

 

amplitude

 

of

 

internal

 

fluctuations

 

increases.

Here,

 

we

 

propose

 

an

 

overview

 

of

 

the

 

main

 

stochastic

 

processes

 

related

 

to

 

the

 

presence

 

of

 

Gaussian

 

white

 

noise,

 

focusing

 

on

 

the

 

fun-damental

 

mechanisms

 

able

 

to

 

induce

 

spatial

 

coherence.

 

We

 

concen-trate

 

on

 

Gaussian

 

white

 

noise

 

because

 

it

 

provides

 

a

 

reasonable

 

assumption

 

for

 

the

 

unavoidable

 

randomness

 

of

 

real

 

systems

 

–

 

the

 

spatial

 

and

 

temporal

 

scales

 

of

 

the

 

Gaussian

 

white

 

noise

 

are

 

much

 

shorter

 

than

 

the

 

characteristic

 

scales

 

over

 

which

 

the

 

spatio-tempo-ral

 

dynamics

 

of

 

the

 

field

 

variable

 

are

 

evolving

 

–

 

and,

 

therefore,

 

it

 

is

 

typically

 

adopted

 

in

 

stochastic

 

modeling.

 

Moreover,

 

the

 

white

 

noise

 

assumption

 

simplifies

 

analytical

 

and

 

numerical

 

calculations.

 

We

 

call

 

‘‘patterned’’

 

a

 

field

 

that

 

exhibits

 

an

 

ordered

 

state

 

with

 

organized

 

spatial

 

structures.

 

This

 

general

 

definition,

 

including

 

both

 

periodic

 

as

 

well

 

as

 

multiscale

 

patterns,

 

is

 

often

 

adopted

 

in

 

the

 

environmental

 

sciences, where the number of
different processes can prevent the organization of the system with
a specific wavelength. We define

1

Spatial pattern formation induced by Gaussian white noise 

Stefania Scarsoglio a,*, Francesco Laio a, Paolo  D’Odorico b, Luca Ridolfi a 

a Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili,  Politecnico di Torino, Torino, Italy 
b Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA



multiscale

 

those

 

patterns

 

that

 

are

 

scale-free

 

[36,37],

 

in

 

the

 

sense

 

that

 

spatial

 

coherence

 

emerges

 

without

 

showing

 

a

 

clear

 

periodicity.

 

Depending

 

on

 

their

 

behavior

 

in

 

time,

 

patterns

 

can

 

be

 

also

 

classified

 

as

 

steady

 

or

 

transient,

 

on

 

the

 

basis

 

of

 

whether

 

the

 

spatial

 

coherence

 

is

 

constant

 

in

 

time

 

or

 

appears

 

only

 

temporarily

 

with

 

the

 

tendency

 

to

 

fade

 

out

 

with

 

time.

 

Steady

 

patterns

 

are

 

here

 

defined

 

as

 

statistically

 

steady

 

in

 

time.

 

This

 

means

 

that,

 

once

 

the

 

steady

 

state

 

is

 

reached,

 

the

 

field

 

variable

 

can

 

locally

 

assume

 

different

 

values,

 

but

 

the

 

mean

 

characteristics

 

of

 

ordered

 

spatial

 

structures

 

remains

 

the

 

same.

 

In

 

the

 

case of oscillating patterns the spatial coherence
instead

 

fluctu-ates

 

with

 

time

 

and

 

patterns

 

periodically

 

emerge

 

and

 
disappear.

In

 

Section

 

2

 

a

 

mathematical

 

model

 

of

 

the

 

spatio-temporal

 

dynamics

 

is

 

introduced.

 

We

 

then

 

consider

 

two

 

simple

 

stochastic

 

models

 

(Sections

 

3

 

and

 

4),

 

in

 

order

 

to

 

clarify

 

the

 

interplay

 

among

 

three

 

fundamental

 

mechanisms:

 

the

 

local

 

dynamics,

 

the

 

noise

 

component and the spatial coupling. Pattern formation with tempo-
ral phase transition is described in Section 5. Concluding remarks are

given in Section 6. Analytical prognostic tools and numerical
algorithms

 

for

 

pattern

 

detection are treated in Appendix A.

2. Stochastic

 

modeling

The

 

spatio-temporal

 

dynamics

 

of

 

the

 

state

 

variable,

 

/,

 

can

 

be

 

expressed,

 

at

 

any

 

point

 

r

 

= ( x,

 

y),

 

as

 

the

 

sum

 

of

 

four

 

terms:

 

(i)

 

a

 

function,

 

f(/),

 

of

 

local

 

dynamics;

 

(ii)

 

a

 

multiplicative

 

noise

 

term,

 

g(/)n(r,

 

t);

 

(iii)

 

a

 

term,

 

DL½/�,

 

accounting

 

for

 

the

 

spatial interactions
with the other points of the domain, and (iv) an additive random
component

 

na(r,

 

t).

 

Therefore,

 

the

 

dynamics

 

read

@/

@t

 

¼ f ð/Þ þ gð/Þnðr; tÞ þ DL½/� þ naðr; tÞ; ð1Þ

where

 

L

 

is

 

an

 

operator

 

expressing

 

the

 

spatial

 

coupling

 

of

 

the

 

dynamics, while D is the strength of the spatial coupling. The
description of the spatio-temporal stochastic resonance and

Fig. 1. Example of aerial photographs showing vegetation patterns (tiger bush). (a) Somalia (9�200N, 48�460E), (b) Niger (13�210N, 2�50E), (c) Somalia (9�320N, 49�190E), (d)
Somalia (9�430N, 49�170E), (e) Niger (13�240N, 1�570E), (f) Somalia (7�410N, 48�00E), (g) Senegal (15�60N, 15�160W), and (h) Argentina (54�510S, 65�170W). Google Earth imagery �
Google

 

Inc.

 

Used

 

with

 

permission.
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coherence

 

–

 

two

 

mechanisms

 

of

 

noise-induced

 

pattern

 

formation

 

that

 

need

 

the

 

cooperation

 

of

 

a

 

temporal

 

periodicity

 

–

 

is

 

not

 

included

 

in

 

this

 

review.

 

Thus,

 

we

 

will

 

concentrate

 

on the case of dynamics in
which

 

the

 

state

 

of

 

the

 

system

 

is

 

determined

 

by

 

one

 

state

 

variable,

 

/,

 

without

 

time-dependent

 

forcing

 

terms.
The

 

crucial

 

point

 

in

 

the

 

dynamical

 

systems

 

here

 

investigated

 

is

 

that

 

pattern

 

formation

 

is

 

noise-induced,

 

i.e.,

 

it

 

is

 

due

 

to

 

random

 

fluctuations

 

and

 

does

 

not

 

occur

 

in

 

the

 

deterministic

 

counterpart

 

of

 

the

 

dynamics.

 

In

 

fact,

 

these

 

symmetry-breaking

 

states

 

vanish

 

as

 

the

 

noise

 

intensity

 

drops

 

below

 

a

 

critical

 

value

 

depending

 

on

 

the

 

specific

 

spatiotemporal

 

stochastic

 

model

 

considered.

 

For

 

some

 

configurations

 

these

 

noise-induced

 

transitions

 

are

 

re-entrant.

 

This

 

means

 

that

 

the

 

ordered

 

phase

 

is

 

reached

 

beyond

 

a

 

threshold

 

but

 

is

 

then

 

destroyed

 

if

 

the

 

noise

 

intensity

 

exceeds

 

a

 

higher

 

threshold.

 

In

 

these

 

cases,

 

the

 

noise

 

has

 

a

 

constructive

 

effect

 

only

 

when

 

its

 

inten-
sity

 

is

 

within

 

a

 

certain

 

interval

 

of

 

values.

 

Smaller

 

or

 

larger

 

values

 

are

 

either

 

too

 

weak

 

or

 

too

 

strong

 

to induce ordered structures. We
consider

 

a

 

white

 

(in

 

time

 

and

 

space) Gaussian noise with zero
mean

 

and

 

correlation

 

given

 

by

hnðr;

 

tÞnðr0;

 

t0Þi

 

¼

 

2sdðr

 

�

 

r0Þdðt

 

�

 

t0Þ; ð2Þ

where

 

s

 

is

 

the

 

noise

 

intensity.

 

We

 

interpret

 

the

 

Langevin

 

equation

 
(1)

 

in

 

the

 

Stratonovich

 

sense.

 

In

 

this

 

case

 

hg(/)n(/)i

 

=

 

shg(/)g0(/)i,

 

where g0(/) is the derivative of g with respect to /. In contrast,

 

under

 

Ito

 

interpretation,

 

one

 

has

 

hg(/)n(/)i

 

= 0

 

[32,33].
A

 

number

 

of

 

mathematical

 

models

 

can

 

be

 

used

 

to

 

express

 

the

 

spatial

 

coupling

 

in

 

spatiotemporal

 

dynamics.

 

We

 

call

 

pattern-
forming

 

those

 

operators

 

that,

 

under

 

suitable

 

conditions,

 

are

 

able

 

to

 

generate

 

periodic

 

patterns

 

even

 

without

 

noise.

 

In

 

contrast,

 

non-pattern-forming

 

operators

 

are

 

able

 

to

 

give

 

spatial

 

coherence

 

inducing

 

multiscale patterns, without selecting a clear dominant
length scale. A typical

 

example of non-pattern-forming operator
is

 

the

 

Laplacian,

L½/� ¼

 

r2/

 

¼@
2/

@x2

 

þ
@2/

@y2

 

;
ð3Þ

which

 

is

 

widely

 

used

 

to

 

represent

 

the

 

effect

 

of

 

the

 

diffusion

 

mech-
anisms

 

in

 

a

 

dynamical

 

system.

 

This

 

operator

 

accounts

 

for

 

spatial

 

interactions

 

between

 

a

 

point

 

of

 

the

 

domain

 

and

 

its

 

nearest

 

neigh-
bors,

 

and

 

is

 

therefore

 

considered

 

as

 

a

 

short-range

 

spatial coupling.
A mathematical

 

structure able to describe pattern-forming
cou-plings

 

is

 

instead

 

the

 

Swift–Hohenberg operator

SH½/� ¼ � ð r2þ

 

k0
2Þ2/; ð4Þ

where

 

k0

 

is

 

a

 

parameter

 

corresponding

 

to

 

the

 

wavenumber

 

selected

 

by the spatial interactions. It should be noted that, beside the effect

 
of short-range interactions expressed by the Laplacian operator r2,
the biharmonic term, r4, accounts for long-range interactions. In-
deed,

 

in

 

a

 

finite

 

difference

 

discrete

 

representation

 

of

 

Eq.

 

(4)

 

the

 

biharmonic

 

operator

 

accounts

 

for

 

interactions

 

with

 

points

 

of

 

the

 

domain

 

located

 

next

 

to

 

the

 

nearest

 

neighbors.

 

The

 

Swift–Hohenberg

 

operator

 

is

 

one

 

of

 

the

 

simplest

 

types

 

of

 

coupling

 

able

 

to

 

account

 

for

 

both

 

short

 

and

 

long

 

range

 

interactions

 

and

 

to

 

form

 

periodic

 

pat-
terns.

 

For

 

this

 

reason

 

it

 

has

 

been

 

widely

 

adopted

 

in

 

different

 

appli-
cations

 

[24,32].

 

The

 

structure

 

(4)

 

was

 

first

 

introduced

 

by

 

[1]

 

to

 

study

 

the

 

effect

 

of

 

hydrodynamic

 

fluctuations

 

in

 

systems

 

exhibiting

 

Rayleigh–Bénard

 

convection

 

[25].

 

However,

 

the

 

interplay

 

between

 

short

 

and

 

long

 

range

 

interactions

 

expressed

 

by

 

(4)

 

is

 

a

 

recurrent

 

mechanism

 

of

 

pattern

 

formation

 

in

 

nature.

 

For

 

example,

 

in
landscape

 

ecology,

 

cooperative

 

interactions

 

for

 

vegetation

 

growth
– such

 

as

 

mulching,

 

shading,

 

absence

 

of

 

biological

 

crusts

 

[38–42]
– occur

 

in

 

the

 

short

 

range

 

of

 

plants’

 

crown

 

areas,

 

while

 

inhibitory
effects

 

hindering

 

vegetation

 

establishment – such as competition
for water and nutrients through the root system [31,38,43,44] –
typically occur at larger distances.

3. Additive

 

noise

Consider

 

the

 

stochastic

 

model
@/

@t

 

¼ a/þ DL½/� þ naðr; tÞ; ð5Þ

where /(r, t) is the scalar field, a is a parameter, and na(r, t) is a

 

zero-mean

 

Gaussian

 

white

 

(in

 

space

 

and

 

time)

 

noise

 

with

 

intensity

 

sa.

 

Eq.(5)

 

is

 

the

 

prototype

 

model

 

used

 

to

 

show

 

how

 

patterns

 

may

 

occur

 

in

 

the

 

absence

 

of

 

multiplicative

 

noise

 

(i.e.,

 

g(/)

 

=

 

0

 

in

 

the

 

general

 

equa-tion

 

(1))

 

and

 

of

 

a

 

time-dependent

 

forcing.

 

We

 

concentrate

 

on

 

linear

 

deterministic

 

dynamics

 

to

 

point

 

out

 

the

 

fundamental

 

mechanisms

 

able

 

to

 

induce

 

pattern

 

formation,

 

without

 

invoking

 

nonlinearities,

 

which

 

in

 

this

 

case

 

do

 

not

 

substantially

 

change

 

the

 

pattern

 

properties.

 

In

 

so

 

doing,

 

we

 

present

 

very

 

simple,

 

though

 

common

 

and realistic, models of pattern formation. In this
section

 

we

 

will

 

first

 

study

 

the case where L½/� is a pattern forming
spatial

 

coupling.

3.1. Pattern forming coupling

The

 

prototype

 

model

 

is

@/

@t

 

¼ a/

 

�

 

Dðr2

 

þ

 

k0
2Þ2/

 

þ

 

na: ð6Þ

The

 

deterministic

 

part

 

of

 

the

 

dynamics

 

does

 

not

 

generate

 

patterns

 

for

 

any

 

value

 

of

 

a: i f

 

a

 

<

 

0

 

the

 

system

 

is

 

damped

 

to

 

zero

 

without

 

showing any spatial coherence, if a is positive, no steady states exist

 

and

 

the

 

dynamics

 

of

 

/

 

diverge

 

without

 

displaying

 

any

 

ordered

 

spa-
tial

 

structures.

 

Additive

 

noise,

 

na,

 

is

 

able

 

to

 

keep

 

the

 

dynamics

 

away

 

from

 

the

 

homogenous

 

deterministic

 

steady

 

state

 

even

 

though

 

in

 

the

 

underlying

 

deterministic

 

dynamics

 

f(/)

 

would

 

tend

 

to

 

cause

 

the

 

convergence

 

to

 

the

 

homogenous

 

state.

 

In

 

these

 

conditions

 

patterns

 

emerge

 

and

 

are

 

continuously

 

sustained

 

by

 

noise.

 

These

 

patterns

 

are

 

noise-induced

 

in

 

that

 

they

 

disappear

 

and

 

the

 

homogeneous

 

stable

 

state

 

/

 

=

 

0

 

is

 

restored

 

if

 

the

 

noise

 

intensity

 

is

 

set

 

to

 

zero.

 

Fig.

 

2

 

re-
ports

 

some

 

results

 

from

 

numerical

 

simulations,

 

including

 

the

 

spa-
tial

 

field,

 

the

 

probability

 

density

 

function

 

(pdf)

 

of

 

/,

 

and

 

the

 

azimuth-averaged

 

power

 

spectrum

 

and

 

the

 

structure

 

function

 

of

 

the

 

stochastic

 

model

 

(6).

 

More

 

details

 

on

 

the

 

numerical

 

methods

 

are

 

provided

 

in

 

Appendix

 

A.

 

The

 

results

 

confirm

 

that

 

a

 

very

 

clear

 

and

 

statistically

 

stable

 

pattern

 

occurs

 

in

 

spite

 

of

 

a

 

being

 

negative:

 

the

 

noise

 

component

 

moves

 

the

 

dynamics

 

away

 

from

 

the

 

determin-istic
steady

 

state

 

/0 =

 

0

 

and

 

allows

 

the

 

spatial

 

differential

 

terms

 

to

 

drive

 
the

 

field

 

into

 

a

 

patterned

 

state

 

with

 

wave

 

length

 

2p/k0.
This

 

pattern-inducing role of the noise can be detected through
the structure function, as defined in Appendix A.3. Using Eq. (A.12)
one

 

obtains

Sst

 

ðkÞ ¼
sa

Dð�k2

 

þ

 

k0
2Þ2

 

�

 

a

 

: ð7Þ

Thus,

 

even

 

for

 

a

 

<

 

0

 

the

 

steady

 

state

 

structure

 

function

 

has

 

a

 

maximum

 

at

 

k

 

=

 

k0

 

(see

 

third

 

row

 

of

 

Fig.

 

2,

 

where

 

the

 

numerical

 

power

 

spectrum

 

and

 

the

 

structure

 

function

 

are

 

compared

 

at

 

steady

 

state).

 

This

 

result

 

confirms

 

that

 

additive

 

random

 

fluctuations

 

are

 

able

 

to

 

induce

 

a stable pattern. When the noise is absent (sa = 0 )
the

 

steady

 

state

 

structure

 

function

 

is

 

uniformly

 

null

 

and

 

no

 

pat-
terns

 

form.
The

 

normal

 

mode

 

stability

 

analysis

 

(see

 

Appendix

 

A.1)

 

is

 

unable

 

to

 

detect

 

the

 

occurrence

 

of

 

patterns.

 

In

 

fact,

 

according

 

to

 

this

 

anal-
ysis

 

no

 

pattern

 

should

 

emerge

 

when

 

a

 

<

 

0. Similarly, the general-
ized

 

mean

 

field

 

technique

 

(see

 

Appendix

 

A.4.1)

 

is

 

unable

 

to

 

capture
the

 

constructive role of additive noise.
The

 

classical

 

mean

 

field

 

technique (see

 

Appendix

 

A.4.2)

 

leads

 

to

d/i

dt
¼ f ð/iÞ þ gð/iÞni� Dk0

4/i� D
20

D4�
8k0

2
D2

!
ð/i�mÞ þ na;i; ð8Þ
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where

 

D

 

is

 

the

 

spatial

 

step

 

(see

 

Appendix

 

A).

 

This

 

analysis

 

shows

 

that

 

the

 

order

 

parameter,

 

m,

 

does

 

not

 

change,

 

i.e.,

 

the

 

periodic

 

pat-
terns

 

induced

 

by

 

additive

 

noise

 

do

 

not

 

entail

 

phase

 

transitions.

 

The

 

pdfs

 

of

 

the

 

field

 

variable,

 

/,

 

shown

 

in

 

Fig.

 

2,

 

confirm

 

the

 

theoretical

 

findings

 

from

 

the

 

mean

 

field

 

analysis.

 

Indeed,

 

one

 

observes

 

that

 

the

 

pdfs

 

remain

 

unimodal

 

and

 

symmetrical

 

at

 

any

 

time,

 

with

 

the

 

mean

 

at

 

/

 

=

 

0

 

in

 

spite

 

of

 

the

 

appearance

 

of

 

patterns.

3.2. Non-pattern forming coupling

In this section, we consider the same interplay between the lo-
cal deterministic component, f(/), and the noise component inves-
tigated in the previous section. However, we consider a spatial
coupling which is not able to select a specific wavelength. The pro-
totype model becomes

@/
@t
¼ a/þ Dr2/þ na: ð9Þ

The

 

introduction

 

of

 

the

 

additive

 

random

 

component

 

allows

 

one

 

to

 

obtain

 

very

 

interesting

 

patterned

 

fields.

 

The

 

effect

 

of

 

additive

 

noise

 

is

 

even

 

more

 

surprising

 

than

 

with

 

a

 

pattern-forming

 

coupling.

 

In

 

that

 

case,

 

(unsteady)

 

patterns

 

were

 

in

 

fact

 

already

 

potentially

 

pres-
ent

 

in

 

the

 

deterministic

 

dynamics

 

(see

 

Section

 

3.1).

 

In

 

contrast,

 

here

 

the

 

deterministic

 

dynamics

 

does

 

not

 

reveal

 

any

 

transient

 

spatial

 
coherence.

Considering the steady state structure function, one obtains

Sðk; tÞ ¼ sa

Dk2 � a
ð10Þ

which

 

exhibits

 

a

 

maximum

 

at

 

k

 

=

 

0

 

(see

 

third

 

row

 

of

 

Fig.

 

3,

 

where

 

the

 

numerical

 

power

 

spectrum

 

and

 

the

 

structure

 

function

 

are

 

shown

 

at

 

steady

 

state).

 

No

 

specific

 

periodicity

 

is

 

selected,

 

but

 

a

 

range

 

of

 

wave

 

numbers

 

close

 

to

 

zero

 

compete

 

to

 

give

 

rise

 

to

 

multiscale

 

patterns.

 

However,

 

since

 

it

 

is

 

difficult

 

to

 

predict

 

the

 

characteristics

 

of

 

these

 

patterns

 

only

 

by

 

looking

 

at

 

the

 

properties

 

of

 

the

 

structure

 

function,

 

we

 

have

 

to

 

rely

 

mostly

 

on

 

numerical

 
simulations.

An

 

example

 

is

 

reported

 

in

 

Fig.

 

3,

 

where

 

results

 

are

 

shown

 

in

 

terms

 

of

 

the

 

spatial

 

field,

 

the

 

pdf,

 

the

 

azimuth-averaged

 

power

 

spectrum

 

and

 

the

 

structure

 

function.

 

As

 

expected

 

from

 

the

 

analysis

 

of

 

the

 

structure

 

function,

 

no

 

clear

 

periodicity

 

is

 

visible,

 

but

 

many

 

wave

 

lengths

 

are

 

present.

 

The

 

boundaries

 

of

 

the

 

coherence

 

regions

 

are

 

irregular

 

and

 

these

 

spatial

 

structures

 

fall

 

then

 

in

 

the

 

class

 

of

 

multiscale

 

fringed

 

patterns,

 

which

 

are

 

especially

 

relevant

 

in

 

the

 

environmental

 

sciences

 

[36,37].

 

In

 

fact,

 

a

 

number

 

of

 

environmental

 

patterns

 

exhibit

 

a

 

spatial

 

behavior

 

very

 

similar

 

to

 

the

 

one

 

shown

 

in

 

Fig.

 

3.

 

A

 

typical

 

example

 

is

 

the

 

distribution

 

of

 

vegetated

 

sites

 

in

 

semi-arid

 

environments

 

[8].
In

 

this

 

case,

 

other

 

prognostic

 

tools,

 

such

 

as

 

the

 

modal

 

stability

 

analysis

 

and

 

the

 

generalized

 

mean

 

field

 

theory,

 

fail

 

to

 

provide

 

use-
ful

 

indications.

 

The

 

pdf

 

is

 

unimodal

 

(see

 

the

 

second

 

row

 

of

 

the

 

Fig.

 

3)

 

and

 

its

 

mean

 

coincides

 

with

 

the

 

basic

 

homogeneous

 

stable

 

state

 

(i.e.,

 

m

 

=

 

/0

 

=

 

0).

 

Therefore,

 

there

 

is

 

no

 

phase

 

transition.

 

This

behavior follows the general rule that Gaussian additive noise is
unable to give rise to phase transitions (i.e. changes of m) for any
type of spatial coupling.

Pattern

 

formation

 

induced

 

by

 

additive

 

noise

 

is

 

usually

 

intro-
duced

 

in

 

the

 

scientific

 

literature

 

as

 

a

 

remarkable

 

example

 

of

 

noisy

 

precursor

 

near

 

a

 

deterministic

 

pattern-forming

 

bifurcation

 

[32].

 

The

 

additive

 

noise

 

acts

 

on

 

a

 

deterministic

 

system

 

that

 

exhibits

 

a

 

bifurcation

 

point

 

between

 

a

 

homogeneous

 

stable

 

state

 

and

 

a

 

stable

 

patterned

 

state

 

(an

 

example

 

is

 

the

 

Ginzburg–Landau

 

model

 

[33,32]).

 

In

 

this

 

case,

 

the

 

role

 

of

 

the

 

additive

 

noise

 

is

 

to

 

unveil

 

the

 

intrinsic

 

spatial

 

periodicity

 

of

 

the

 

deterministic

 

system

 

even

 

before

 

reaching

 

the

 

pattern-forming

 

bifurcation.
This point of view suggests that a deterministic bifurcation is

necessary in order to have an additive noise generating a pattern.
The example with f(/) = a/ we have just presented demonstrates,
instead, that this is not necessarily true. In this case there is no
bifurcation since the dynamical system diverges when a > 0. There-
fore, the existence of a deterministic bifurcation is not a necessary
condition for pattern formation. Patterns emerge as an effect of
additive noise, which unveils the capability of the deterministic
component of the dynamical system to induce transient periodic
patterns also when the asymptotic stable state is homogenous.
Thus, noise exploits this capability and hampers patterns to
disappear.

Moreover, it should be noted that the presence of nonlinear
components in the deterministic dynamics does not substantially
change any of the previous results. The fine details of the patterns
can change, but neither their stable occurrence nor their dominant
wave length (if detectable) changes.

4. Multiplicative noise

The cooperation between multiplicative noise and spatial cou-
pling is based on two key actions: (i) the multiplicative random
component temporarily destabilizes the homogeneous stable state,
/0, of the underlying deterministic dynamics, and (ii) the spatial
coupling acts during this instability, thereby generating and stabi-
lizing a pattern. The basic model is

@/
@t
¼ f ð/Þ þ gð/Þnðr; tÞ þ DL½/�; ð11Þ

where,

 

with

 

respect

 

to

 

the

 

general

 

Eq.

 

(1),

 

na

 

has

 

been

 

eliminated

 

in

 

order

 

to

 

isolate

 

the

 

role

 

of

 

the

 

multiplicative

 

noise.

 

n

 

is

 

a

 

zero-
average

 

Gaussian

 

white

 

noise

 

with

 

intensity

 

s.

 

We

 

indicate

 

with

 

/0

 

the

 

stable

 

homogeneous

 

state

 

of

 

the

 

system

 

in

 

the

 

deterministic

 

case.

 

Namely,

 

/(r,

 

t) =

 

/0

 

is

 

a

 

homogeneous

 

solution

 

of

 

(11)

 

when

 

s

 

=

 

0

 

(i.e.,

 

f(/0) = 0

 

because

 

L½/� ¼ 0

 

in

 

homogeneous

 

states).

 

Moreover,

 

we

 

consider

 

cases

 

where

 

g(/0)

 

=

 

0,

 

so

 

that

 

the

 

noise

 

does

 

not

 

have

 

the

 

possibility

 

to

 

destabilize

 

the

 

homogeneous

 

steady

 

state.
The

 

analytical

 

tools

 

detecting

 

the

 

possible

 

presence

 

of

 

the

 

short

 

term

 

instability

 

are

 

described

 

in

 

Appendix

 

A.2.

 

For

 

values

 

of

 

s

 

lower

 

than

 

a

 

critical

 

value,

 

s

 

<

 

sc,

 

the

 

state

 

variable

 

/(x,

 

t)

 

experiences

 

fluc-tuations

 

about

 

/0

 

but

 

noise

 

does

 

not

 

play

 

any

 

constructive

 

role.

 
The

1 0 1

1

2

p

0 1 2 3
k0

0.5

S k

Fig.

 

2.

 

Model

 

(6)

 

at

 

t

 

=

 

100,

 

with

 

a

 

=�1,

 

D

 

=

 

10,

 

k0

 

=

 

1,

 

and

 

sa

 

=

 

0.5.

 

First

 

panel:

 

numerical

 

simulations

 

of

 

the

 

field.

 

Black

 

and

 

white

 

tones

 

are

 

used

 

for

 

positive

 

and

 

negative

 

values

 

of

 

/,

 

respectively.

 

Second

 

panel:

 

pdf

 

of

 

/.

 

Third

 

panel:

 

azimuthal-averaged

 

power

 

spectrum

 

(solid:

 

numerical

 

simulations,

 

dotted:

 

structure

 

function).
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Other

 

works

 

have

 

been

 

proposed

 

to

 

describe

 

the

 

role

 

of

 

multi-
plicative

 

noise

 

in

 

pattern

 

formation

 

and

 

phase

 

transitions

 

[34,35,45],

 

and

 

to

 

show

 

how

 

multiplicative

 

noise

 

can

 

induce

 

peri-
odic

 

patterns

 

[46,33].

 

However,

 

they

 

all

 

present

 

quite

 

complicated

 

non

 

linear

 

expressions

 

to

 

represent

 

the

 

local

 

dynamics

 

and

 

the

 

noise

 

terms,

 

so

 

that

 

their

 

physical

 

interpretation

 

is

 

not

 

always

 

straightforward.

 

For

 

example,

 

when

 

g(/0)

 

–

 

0,

 

the

 

noise

 

plays

 

a

 

role

 

similar

 

to

 

na(r,

 

t)

 

in

 

Eq.

 

(5).

 

Moreover,

 

the

 

results

 

of

 

those

 

mod-
els

 

are

 

qualitatively

 

similar

 

to

 

those

 

described in the following sec-
tions, provided that the interplay between short-term instability
and

 

spatial

 

coupling

 

remains the same.

4.1. Pattern forming coupling

To illustrate how pattern formation can be driven by multiplica-
tive noise in the presence of a pattern-forming spacial coupling, we
consider the model

@/
@t
¼ a/� /3 þ /n� Dðk2

0 þr2Þ2/; ð12Þ

where a is a negative number, the random component is modulated
by a function g(/) = /, and n is a zero mean white Gaussian noise,
with intensity s. The local dynamics are f(/) = a/ � /3, where the
nonlinear term �/3 has been introduced to avoid that the dynamics

diverge.

 

Indeed,

 

the

 

linear

 

term

 

prevents

 

the

 

dynamics

 

from

 

relax-
ing

 

to

 

a

 

homogeneous

 

steady

 

state,

 

thereby

 

allowing

 

the

 

spatial

 

terms

 

to

 

be

 

different

 

from

 

zero,

 

while

 

the

 

nonlinear

 

term

 

prevents

 

the

 

divergence

 

of

 

the

 

dynamics

 

(i.e.,

 

it

 

ensures

 

the

 

convergence

 

to

 

a

 

statistically

 

stable

 

state).

 

The

 

deterministic

 

homogeneous

 

stable

 

state,

 

obtained

 

as

 

a

 

solution

 

of

 

f(/0)

 

=

 

0,

 

is

 

/(r,

 

t) =

 

/0

 

=

 

0.

 

From

 

the

 

short-term

 

instability

 

(see

 

Appendix

 

A.2)

 

one

 

has

 

that

 

/0

 

is

 

sta-ble

 

for

 

s

 

<�

 

a

 

and

 

becomes

 

instable

 

for

 

s

 

>�

 

a.

 

To

 

show

 

this

 

point,

 

Fig.

 

4

 

reports

 

the

 

time

 

behavior

 

of

 

the

 

ensemble

 

average

 

of

 

a

 

num-ber

 

of

 

numerically

 

evaluated realizations of the zero-dimensional
stochastic model obtained eliminating the spatial component from
Eq.

 

(12),

 

that

 

is

d/
dt
¼ f ð/Þ þ gð/ÞnðtÞ ¼ a/� /3 þ /nðtÞ: ð13Þ

It

 

is

 

evident

 

from

 

Fig.

 

4

 

that

 

the

 

growth

 

phase

 

appears

 

only

 

when

 

s

 

>

 

sc =�a

 

and

 

at

 

the

 

beginning

 

of

 

simulations

 

(i.e.,

 

at

 

short

 

term),

 

while

 

the

 

effect

 

of

 

the

 

initial

 

perturbation

 

disappears

 

in

 

the

 

long

 

run.

 

Mathematically,

 

the

 

short-term

 

instability

 

can

 

be

 

understood

 

by

 

observing

 

that

 

when

 

/

 

is

 

close

 

to

 

zero

 

the

 

disturbance

 

effect

 

due

 

to
the

 

(multiplicative)

 

noise

 

tends

 

to

 

prevail on the restoring ef-fect of
f.

 

When

 

/

 

grows,

 

the

 

leading

 

term,

 

/3,

 

prevails

 

on

 

g

 

and

 

the

 

local

 

dynamics,

 

f,

 

tend

 

to

 

restore

 

the

 

state

 

/0.
Once

 

the

 

presence

 

of

 

a

 

short-term

 

instability

 

has

 

been

 

detected,

 

the

 

capability

 

of

 

the

 

spatiotemporal

 

stochastic

 

model

 

(12)

 

to

 

give
rise

 

to

 

patterns

 

can

 

be

 

investigated through the stability analysis

 

by

 

normal

 

modes,

 

see

 

Appendix A.1. The dispersion relation is

cðkÞ ¼ aþ s� Dðk2
0 � k2Þ2; ð14Þ

which

 

provides

 

the

 

same

 

threshold

 

sc

 

for

 

the

 

neutral

 

stability

 

found

 

with

 

the

 

short-term

 

instability,

 

while

 

the

 

maximum

 

amplification

 

is

 

for

 

the

 

wavenumber

 

k

 

=

 

k0

 

(see

 

the

 

right

 

panel

 

of

 

Fig.

 

4).

 

It

 

follows

 

that

 

statistically

 

steady

 

periodic

 

patterns,

 

with

 

wave

 

length

 

k

 

= 2 p/
k0,

 

emerge

 

when

 

the

 

noise

 

intensity

 

exceeds

 

the

 

threshold

 

sc =�a.
Moreover, the critical value of the noise intensity for the neutral
stability, sc¼ ½ � aþ Dðk0

2� k2Þ2�, is confirmed by the structure
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Fig. 3. Model (9) with a =�0.1, D = 2.5, and sa = 5. The columns refers to 0, 200, and 400 time units. First row: numerical simulations of the field. Second row: pdfs of / (solid:
numerical simulation, dotted: classic mean-field, dashed: corrected mean-field). Third row: azimuthal-averaged power spectrum (solid: numerical simulations, dotted:
structure

 

function).
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system remains blocked in the disordered phase and no patterns oc-
cur. Only transiently, the spatial coupling might be able to induce 
patterns that disappear as the system approaches its steady state. 
Conversely, when the noise increases above a critical level, s > sc, the 
spatial term can take advantage of the noise-induced short term 
instability and prevent that the displacement from the homogeneous 
equilibrium state decays to zero. In this way, the spa-tial coupling 
traps the system in a new ordered state, maintaining the dynamics 
far from the state /0. Eq. (11) is here interpreted in the Stratonovich 
sense, where hg(/)n(/)i = shg(/)g0(/)i, while under Ito’s 
interpretation no short-term instability occurs, as hg(/)n(/)i =0 (see 
Appendix A.2).



function

 

(see

 

Appendix

 

A.3).

 

The

 

generalized

 

mean-field

 

analysis

 

of

 

the

 

most

 

unstable

 

mode

 

predicts an unconfined region of instabil-
ity.

 

This

 

means

 

that,

 

if

 

s

 

>

 

sc,

 

the

 

system

 

is

 

able

 

to

 

exhibit

 

periodic

 

patterns

 

for

 

any

 

value

 

of

 

D.
The

 

numerical

 

simulation

 

of

 

the

 

stochastic

 

model

 

(12)

 

confirm

 

these

 

theoretical

 

findings.

 

Fig.

 

5

 

shows

 

an

 

example

 

of

 

patterns

 

emerging

 

from

 

the

 

simulation.

 

These

 

patterns

 

have

 

the

 

same

 

basic

 

characteristics

 

as

 

those

 

observed

 

in

 

the

 

case

 

of

 

additive

 

noise

 

(see

 

Fig.

 

2).

 

They

 

are

 

statistically

 

stable

 

and

 

exhibit

 

a

 

clear

 

dominant

 

wave

 

length

 

corresponding

 

to

 

k0.

 

In

 

this

 

case

 

the

 

pdf

 

of

 

the

 

field

 

is

 

weakly

 

bimodal

 

with

 

the

 

zero

 

mean,

 

demonstrating

 

that

 

no

 

phase

 

transition

 

occurs.

 

However,

 

there

 

are

 

some

 

important

 

differ-ences

 

with

 

respect

 

to

 

the

 

case

 

of

 

additive

 

noise.

 

Firstly,

 

the

 

bound-aries

 

appear

 

to

 

be

 

more

 

regular

 

when

 

patterns

 

are

 

induced

 

by

 

multiplicative

 

noise.

 

Such

 

aspect

 

is

 

also

 

displayed

 

by

 

the

 

power

 

spectrum

 

of

 

the

 

field,

 

which

 

shows

 

a

 

more

 

sharp

 

peak

 

at

 

k0

 

in

 

the

 

case

 

of

 

multiplicative

 

noise

 

(compare

 

the

 

third

 

rows

 

of

 

Figs.

 

2

 

and

 

5).

 

This

 

difference

 

is

 

due

 

to

 

the

 

fact

 

that

 

multiplicative

 

noise

 

is

 

modulated

 

by

 

the

 

local

 

value

 

of

 

/,

 

and

 

this

 

has

 

the

 

effect

 

to

 

make

 

the

 

boundaries

 

of

 

the

 

pattern

 

more

 

regular

 

because

 

the

 

/

 

field

 

is

 

spatially

 

correlated

 

(from

 

the

 

definition

 

itself

 

of

 

patterned

 

state).

 

Another

 

difference

 

is

 

that

 

patterns

 

induced

 

by

 

additive

 

noise

 

exhi-
bit

 

more

 

stable

 

shapes

 

than

 

those

 

emerging

 

as

 

an

 

effect

 

of

 

multipli-
cative

 

noise.

 

For

 

example,

 

patterns

 

shown

 

in

 

Fig.

 

5

 

seem

 

to

 

evolve

 

from

 

a

 

labyrinthine

 

shape

 

to

 

a

 

striped

 

shape.

 

Overall,

 

numerical

 

simulations

 

show

 

that

 

patterns

 

induced

 

by

 

additive

 

noise

 

quickly

 

reach

 

their

 

steady

 

state

 

without

 

showing

 

any

 

transient

 

temporal

 

evolution,

 

while

 

those

 

induced

 

by

 

multiplicative

 

noise

 

present

 

a

 

transient

 

behavior,

 

during

 

which

 

they

 

modify

 

their

 

shape

 

until

 

the

 

steady

 

state

 

is

 

reached.

 

The

 

third

 

difference

 

is

 

the

 

possible

 

occurrence

 

of

 

a

 

weak

 

bimodality

 

in

 

the

 

pdf

 

of

 

/

 

in

 

the

 

dynamics

 

driven

 

by

 

multiplicative

 

noise

 

(see

 

Fig.

 

5).

 

The

 

presence of such
bimodality

 

depends

 

on

 

model

 

structure,

 

parameter

 

values,

 

and

 

field

 

size;

 

however,

 

it

 

generally

 

remains

 

weak.
Let’s

 

now

 

look

 

at

 

the

 

effect

 

of

 

nonlinear

 

g(/)

 

terms

 

on

 

the

 

short-
term

 

instability.

 

Consider

 

Eq.

 

(12)

 

with

 

a

 

<

 

0

 

and

 

g(/) =

 

/a. I f a
> 1

 

no

 

short-term

 

instability

 

occurs.

 

This

 

result

 

is

 

explained

 

interpret-ing

 

the short-term behavior as a balance between the
tendency of f(/) to restore the homogeneous state, / = /0 = 0, and
the diverging

action of g(/) � n. Since / is close to zero, the power a > 1 of the
function g(/) reduces the effect of the noise term, which becomes
unable to contrast the action of the leading term, a/, of f(/). Pat-
terns occur only transiently and the field then rapidly decays to
the homogeneous state /0.

Conversely,

 

if

 

a

 

<

 

1,

 

short-term

 

instability

 

occurs

 

in

 

that

 

the

 
multiplicative

 

component

 

always

 

overcomes

 

the

 

action

 

of

 

f(/)

 

close

 

to

 

zero.

 

The

 

balance

 

between

 

f(/)

 

and

 

g(/)n

 

is

 

reverted

 

when

 

/

 

moves

 

away

 

from

 

/0 =

 

0,

 

and

 

this

 

fact

 

hampers

 

the

 

dynamical

 

system

 

to

 

diverge. In this case, patterns are
statistically stable and exhibit the same dominant wave length
as

 

those

 

shown

 

in

 

Fig.

 

5.

4.2. Non-pattern forming coupling

We

 

explore

 

the

 

capability

 

of

 

spatio-temporal

 

models

 

driven

 

by

 

multiplicative

 

noise

 

to

 

generate

 

patterns

 

when

 

a

 

non-pattern

 

forming

 

spatial

 

coupling

 

is

 

adopted.

 

To

 

focus

 

on

 

the

 

role of the type
of

 

spatial operator, we consider the same model as in Section 4.1,
but

 

with

 

a

 

diffusive

 

Laplacian operator, namely

@/
@t
¼ a/� /3 þ /nþ Dr2/; ð15Þ

where

 

n

 

is

 

a

 

zero

 

mean

 

white

 

Gaussian

 

noise,

 

with

 

intensity

 

s,

 

and

 

Eq.

 

(15)

 

is

 

interpreted

 

in

 

the

 

Stratonovich

 

sense.

 

The

 

model

 

(15)

 

has

 

a

 

homogeneous

 

deterministic

 

stable

 

state

 

at

 

/0 =

 

0

 

and

 

exhibits
short-term

 

instability when s > sc =�a (see Section 4.1). The disper-
sion relation obtained with the linear stability analysis reads

cðkÞ ¼ aþ s� Dk2
: ð16Þ

We can make the following three remarks. First, the value s =�a of
the noise intensity marks the condition of marginal stability. No
unstable wave numbers occur when s <� a, while the wave num-
bers lower than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ aÞ=D

p
become unstable if s > �a. The thresh-

old s = �a coincides with the one obtained in the short term
analysis. Second, the strength, D, of the spatial diffusive coupling
impacts the range of unstable wavenumbers. In particular, the
unstable wave numbers decrease when D increases, consistently
with the fact that the diffusive coupling introduces spatial

0 10
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0.3
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0.5 1

k

3
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γ

Fig. 4. (left) Behavior of h/i�/0 obtained as ensemble average of 106 realizations of the model (13) with a =�1. The initial condition is / = 0.1, s = 0.5 and s = 5 for the dashed
and

 

solid

 

curves,

 

respectively.

 

(right)

 

Dispersion

 

relation

 

of

 

the

 

model

 

(12),

 

with

 

s

 

=

 

0.1, 1,

 

2

 

(dotted,

 

dashed

 

and

 

solid

 

curves,

 

respectively),

 

a

 

=�1,

 

D

 

=

 

1,

 

and

 

k0

 

= 1 .
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Fig. 5. Model (12) at t = 100, with a =�1, D = 15, k0 = 1 , s = 2.5. First panel: numerical simulations of the field. Second panel: pdf of /. Third panel: azimuthal-averaged power
spectrum.
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coherence

 

in

 

the

 

random

 

field.

 

However,

 

D

 

does

 

not

 

impact

 

the

 

occurrence

 

of

 

instability,

 

in

 

that

 

it

 

depends

 

only

 

on

 

the

 

noise

 

inten-
sity.

 

Third,

 

the

 

most

 

(linearly)

 

unstable

 

mode

 

is

 

always

 

kmax

 

=

 

0,

 

for

 

any

 

D

 

and

 

provided

 

that

 

s

 

>�

 

a.

 

The

 

classic

 

mean-field

 

analysis

 

pre-
dicts

 

a

 

phase

 

transition

 

for

 

any

 

value

 

of

 

the

 

spatial

 

coupling,

 

D. I n

 

other

 

words,

 

once

 

the

 

critical

 

threshold

 

of

 

noise

 

intensity

 

is

 

ex-
ceeded,

 

the

 

system

 

is

 

always

 

able

 

to

 

move

 

to

 

a

 

new

 

ordered

 

state.

 

Fig.

 

6

 

shows

 

that

 

the

 

emergence

 

of

 

a

 

pattern

 

with

 

no

 

clear

 

peri-
odicity.

 

It

 

evolves

 

in

 

time

 

and

 

tends

 

to

 

disappear

 

in

 

the

 

long

 

term.

 

The

 

pdf

 

of

 

the

 

field

 

reveals

 

that

 

patterns

 

occur

 

during

 

a

 

phase

 

tran-
sition

 

from

 

the

 

initial

 

basic

 

state

 

having

 

order

 

parameter

 

m

 

=

 

/0

 

= 0

 

to

 

a

 

new

 

substantially

 

homogeneous

 

state

 

with

 

m

 

–

 

0.

 

In

 

particu-
lar,

 

for

 

the

 

case

 

shown

 

in

 

Fig.

 

6

 

numerical

 

simulations

 

give

 

m

 

=

 

0.8

 

for

 

t

 

>

 

100

 

time

 

units.

 

Although

 

with

 

diffusive

 

coupling

 

both

 

the

 

cases

 

of

 

additive

 

and

 

multiplicative

 

noise

 

(not

 

shown

 

for

 

sake

 

of

 

brevity)

 

exhibit

 

a

 

well

 

defined

 

peak

 

at

 

k

 

=

 

0,

 

numerical

 

simulations

 

show

 

a

 

different

 

scenario

 

(compare

 

Figs.

 

6

 

and

 

3).

 

While

 

the

 

presence

 

of

 

additive

 

noise

 

produces

 

steady

 

multiscale

 

fringed

 

patterns,

 

multiplicative

 

noise

 

induces

 

only

 

smooth

 

tran-sient

 

patterns.

 

The

 

reason

 

of

 

this

 

different

 

temporal

 

behavior

 

is

 

that,

 

in

 

the

 

multiplicative

 

case,

 

the

 

diffusive

 

operator

 

is

 

unable

 

to

 

maintain

 

the

 

system

 

far

 

from

 

homogeneous

 

condition,

 

in

 

spite

 

of

 

the

 

initial

 

instability.

 

Indeed,

 

to

 

have

 

steady

 

patterns

 

sustained

 

by

 

multiplicative

 

noise

 

the

 

presence

 

of

 

a

 

pattern-forming

 

spatial

 

coupling

 

is

 

necessary.

 

When

 

other

 

types

 

of

 

spatial

 

couplings

 

are

 

considered,

 

they

 

are

 

unable

 

to

 

block

 

the

 

system

 

far

 

from

 

the

 

homo-
geneous

 

state.

 

In

 

these

 

cases,

 

the

 

spatial

 

coupling

 

interacts

 

with

 

the
short-term

 

instability,

 

as

 

detected

 

by

 

the

 

dispersion

 

relation
– recall that the stability analysis is performed on an equation that
approximates

 

only

 

the

 

first

 

stages

 

of

 

the

 

ensemble

 

average

 

dynam-
ics

 

–

 

but

 

this

 

interaction

 

lasts

 

only

 

until

 

the

 

temporal

 

dynamics

 

are

 

able

 

to

 

sustain

 

the

 

instability.

 

Thereafter,

 

the

 

patterns

 

undergo

 

the

 

same

 

fate

 

as

 

the

 

initial

 

instability,

 

i.e.,

 

they

 

tend

 

to

 

disappear.

 

In

 

the

 

long

 

run

 

the

 

main

 

legacy

 

of

 

the

 

spatial

 

coupling

 

is

 

the

 

phase

 

transition

 

(i.e.,

 

m

 

–

 

0),

 

though

 

for

 

a

 

homogeneous

 

field.

 

Similarly

 

to

 

the

 

case

 

discussed

 

in

 

Section

 

4.1,

 

the

 

coherence

 

regions

 

are

 

much

 

smoother

 

than

 

those

 

observed

 

with

 

additive

 

noise.

 

Even

 

in the this
case, this difference is due to the multiplicative nature of the noise,
which

 

entails

 

that

 

the

 

g(/)n

 

term

 

is

 

spatially

 

correlated.

5. Patterns with temporal phase transition

In this section we consider the extension to spatial systems of
noise-induced transitions in purely temporal systems [47]. Such

transitions correspond to the occurrence of steady state probability
distributions whose modes are different from the equilibrium
states of the corresponding deterministic system. A relevant case
is represented by systems exhibiting noise-induced bistability. In
this case, suitable noise intensities are able to generate pdfs with
two modes even though the deterministic dynamics have only
one stable state. Two key ingredients are needed to activate this
type of stochastic dynamics. First, a deterministic local kinetics,
f(/), which tends to drive the dynamical system towards the stea-
dy state, / = /0. Second, a multiplicative random component that
tends to drive the state of the system away from / = /0; the inten-
sity of this component is generally maximum at / = /0. As a result
of the balance between deterministic and stochastic components,
bimodal probability distributions of / may emerge at steady state.

In spatiotemporal dynamical systems the spatial coupling could
(i) cooperate with the stochastic component to prevent the relaxa-
tion imposed by the local dynamics and maintaining the system
away from the uniform state, h/i = /0, and (ii) give spatial coher-
ence to the field creating a patterned state where the coherent re-
gions correspond to the two modes existing in the underlying
temporal dynamics.

The

 

mechanism

 

discussed

 

here

 

is

 

sometimes

 

called

 

entropy-
driven

 

pattern

 

formation

 

[32]

 

as

 

the

 

dynamical

 

system

 

escapes

 

from

 

the

 

minimum

 

of

 

the

 

potential

 

(i.e.,

 

/

 

=

 

/0)

 

because

 

of

 

the

 

strength

 

of

 

noise

 

(which

 

is

 

an

 

entropy

 

source).

 

There

 

are

 

two

 

main

 

differ-
ences

 

with

 

respect

 

to

 

the

 

case

 

presented

 

in

 

the

 

previous

 

sections:
(i) patterns do not result from a short-term instability, and (ii) they
emerge

 

even

 

if

 

the

 

noise is interpreted according to Ito’s rule.

5.1. Model with g(/0) = 0

It is interesting to consider what happens when no noise term is
present for / = /0, i.e. when g(/0) = 0. Indeed, in this case the noise
component is unable to unlock the system from the deterministic
stable state /0 and to sustain the pattern-forming effect of the spa-
tial coupling by maintaining the dynamics away from the homoge-
neous stable state, / = /0.

We consider the model

@/
@t
¼ �a/þ /ð1� /ÞnðtÞ � D k2

0 þr2
� �2

/ ð17Þ

interpreted according to Ito. As in the case of Section 3 we concen-
trate on the case of linear local dynamics to show how patterns may
emerge even without invoking nonlinearities in the underlying

0.02 0 0.02

30

60

p

2 0 2

1.5

p

2 0 2

1.5

p

Fig. 6. Model (15) with a =�1, s = 2 , D = 5. The columns refer to 0, 10, and 40 time units. First row: numerical simulations of the field. Second row: pdfs of /.
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deterministic

 

dynamics.

 

The

 

purely

 

temporal version of the model
(17) (i.e.,

 

d//dt

 

=

 

�a/

 

+ /(1�/)n)

 

shows a noise-induced transition
for

 

sc

 

= 4 a.

 

The

 

steady

 

state

 

pdf

 

reads

pð/Þ ¼ ð1� /Þ
a
s�2

/
a
sþ2

Exp � a
sð1� /Þ

� �
/ 2 �0;1½ 18Þ

and

 

has

 

always

 

a

 

mode

 

for

 

/

 

?

 

0,

 

while

 

a

 

second

 

mode

 

occurs

 

when

 

s

 

>

 

sc.

 

The

 

onset

 

of

 

bimodality

 

in

 

the

 

model

 

(17)

 

is

 

due

 

to

 

coopera-
tion

 

between

 

the

 

noise

 

and

 

the

 

natural

 

boundaries

 

at

 

/

 

=

 

0

 

and

 

/=

 

1.

 

When

 

the

 

noise

 

is

 

sufficiently

 

strong,

 

the

 

system

 

tends

 

to

 

move

 

away

 

from

 

/

 

=

 

0,

 

but

 

the

 

boundary

 

at

 

/

 

=

 

1

 

prevents the system from
visiting

 

the

 

whole

 

real

 

axis,

 

and

 

an

 

accumulation

 

of

 

probabil-ity

 

close

 

to

 

the

 

upper

 

limit

 

of

 

the

 

domain

 

emerges.
Since

 

the

 

noise

 

is

 

interpreted

 

according

 

to

 

Ito,

 

model

 

(17)

 

does

 

not

 

present

 

any

 

noise-induced

 

short

 

term

 

instability

 

(i.e.,

 

h

 

g(/

 

)ni

 

=

 

0).

 

However,

 

the

 

spatial

 

coupling

 

is

 

able

 

to

 

exploit

 

the

 

tempo-ral

 

noise-induced

 

transition

 

and

 

to

 

show

 

patterns.

 

In

 

Fig.

 

7

 

an

 

example

 

is

 

reported.

 

In

 

spite

 

of

 

the

 

pdf

 

of

 

the

 

temporal

 

system

 

dis-playing

 

a

 

strong

 

bimodality

 

for

 

high

 

enough

 

noise

 

strength,

 

the pdf of the
field is unimodal and centered in zero. The generalized mean-field
analysis is not able to provide further information.

  Patterns

 

can emerge also when in Eq. (17)

 

the

 

diffusive spatial 
coupling is used in  place

 

of the Swift–Hohenberg

 

operator,

@/
@t
¼ �a/þ /ð1� /ÞnðtÞ þ Dr2/: ð19Þ

Fig.

 

8

 

shows

 

an

 

example

 

of

 

these

 

patterns.

 

For

 

high

 

enough

 

values

 

of

 

the

 

ratio

 

D/a,

 

the

 

pdf

 

is

 

unimodal

 

and

 

converges

 

to

 

/

 

=

 

1.

 

How-ever,

 

the

 

classic

 

mean-field

 

analysis

 

is

 

not

 

able

 

to

 

capture

 

any

 

phase

 

transition

 

of

 

the

 

system.

6. Conclusions

We presented different stochastic mechanisms of spatial pattern
formation. They all describe spatial coherence and organization as
noise-induced phenomena, in the sense that these patterns emerge
as an effect of the randomness of the systems drivers.

Additive noise plays a fundamental role when the deterministic
local dynamics tends to drive the field variable towards a uniform
steady state, while noise is able to maintain the dynamics away
from the uniform steady state. The interaction of additive noise
with the spatial coupling provides a simple and realistic, mecha-
nism of pattern formation. In the presence of a multiplicative com-
ponent of adequate intensity the spatial coupling exploits the
initial instability of the system to generate ordered structures,
which in the absence of noise would tend to disappear in the long
run.

The stochastic models presented here show how noise may play
a crucial role in pattern formation. However, most of the literature
on self-organized morphogenesis in the environment is based on
deterministic mechanisms. The limited application of stochastic
theories to environmental patterns is likely due to the fact that

Appendix A. Analytical and numerical tools

The

 

mathematical

 

complexity

 

of

 

the

 

spatio-temporal

 

models

 

of

 

type

 

(1)

 

hampers

 

general

 

analytical

 

solutions.

 

For

 

this

 

reason,

 

sev-
eral

 

approximate

 

analytical

 

techniques

 

have

 

been

 

developed

 

in

 

or-
der

 

to

 

obtain

 

some

 

indications

 

of

 

pattern

 

formation.

 

We

 

briefly

 

describe

 

the

 

most

 

important

 

ones.

A.1. Linear stability analysis by normal modes

When

 

the

 

occurrence

 

of

 

a

 

dominant

 

wavelength

 

is

 

the

 

main

 

symptom

 

of

 

pattern

 

formation,

 

the

 

first

 

available

 

prognostic

 

tool

 

is

 

provided

 

by

 

the

 

normal

 

mode

 

linear

 

stability

 

analysis.

 

This

 

analysis

 

is

 

based

 

on

 

the

 

idea

 

of

 

disturbing

 

the

 

basic

 

state

 

of

 

the

 

system

 

with

 

a

 

hypothetical

 

infinitesimal

 

perturbation,

 

and

 

to

 

assess

 

whether

 

the

 

perturbation

 

grows

 

in

 

time

 

(in

 

which

 

case

 

patterns

 

have

 

the

 

possi-
bility

 

to

 

emerge)

 

or

 

not.

 

The

 

analysis

 

involves

 

three

 

steps.

 

Firstly,

 

a

 

deterministic

 

equation

 

for

 

the

 

spatiotemporal

 

dynamics

 

of

 

the

 

ensemble

 

average

 

of

 

the

 

field

 

variable,

 

h/i,

 

is

 

determined

 

and

 

its

 

homogeneous

 

steady

 

state

 

is

 

found.

 

In

 

general,

 

the

 

multiplicative

 

random

 

component

 

can

 

be

 

expressed

 

as

 

hg(/)ni

 

=

 

shgS(/)i,

 

where

 

gS(/)

 

is

 

a

 

function

 

of

 

the

 

state

 

variable.

 

Applying

 

Novikov’s

 

theorem

 

[33],

 

for

 

the

 

case

 

of

 

Gaussian

 

white

 

noise

 

interpreted

 

in

 

the

 

Straton-ovich

 

sense,

 

we have hg(/)ni = shg(/)g0(/)i, i.e. gS(/) =
g(/)g0(/). Instead, with Ito’s interpretation we have hg(/)ni = 0.
Using

 

Eq.

 

(1),

 

we

 

find

@h/i
@t
¼ hf ð/Þi þ shgSð/Þi þ DL½h/i�: ðA:1Þ

The

 

basic

 

state,

 

h/i

 

=

 

/0,

 

is

 

obtained

 

as

 

the

 

zero

 

of

 

Eq.

 

(A.1)

 

at
steady

 

state,

 

i.e.

 

f(/0) + s g S(/0) = 0 .
Eq. (A.1) is then linearized, and Taylor’s expansion of Eq. (A.1)

around

 

/

 

=

 

/0,

 

truncated

 

to

 

the

 

first

 

order, provides

@h/i
@t
¼ f 0ð/0Þh/i þ sg0Sð/0Þh/i þ DL½h/i�; ðA:2Þ

where f 0ð/0Þ ¼ df ð/Þ
d/ j/¼/0

and g0Sð/0Þ ¼ dgSð/Þ
d/ j/¼/0

. The basic state
h/i = /0 is perturbed (third step) by adding an infinitesimal
harmonic perturbation

0.01 0.01

250

p

Fig. 7. Model (17) under Ito interpretation at t = 100. The parameters are a = 0.001, D = 10, and s = 1 .
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most of the stochastic models use some specific (and complicated) 
non linear terms both in the local deterministic dynamics and in the 
multiplicative function, g(/), of the noise component. The use of these 
‘‘ad hoc’’ functions limits the applicability of these theories to process 
based environmental modeling. Thus, only few studies have 
investigated the possible emergence of vegetation patterns as a noise-
induced effect. However, because noisy fluctuations –ðsuch as those 
associated with fires, rain, or soil heterogeneity –are a recurrent 
feature of environmental drivers, their randomness can actually 
induce spatial coherence in a number of environmen-tal processes, as 
well as in problems related to front propagation under non-
equilibrium conditions [48,49,32].



h/i ¼ /0 þ /̂ectþik�r; ðA:3Þ

with /̂ being the perturbation amplitude, c the growth factor,ffiffiffiffiffiffiffip
i

 

¼

 

�1

 

the

 

imaginary

 

unit,

 

k

 

= ( kx,

 

ky)

 

the

 

wave

 

number

 

vector

 

of the
perturbation,

 

and

 

r

 

= ( x,

 

y)

 

the coordinate vector. If Eq. (A.3)

 

is
inserted in (A.2), one obtains the so-called dispersion relation

cðkÞ ¼ f 0ð/0Þ þ sg0Sð/0Þ þ DhLðkÞ; ðA:4Þ

where

 

hLðkÞ

 

is

 

a

 

function

 

of

 

the

 

wave

 

number

 

k

 

=

 

jkj

 

which

 

depends

 

on

 

the

 

specific

 

form

 

of

 

spatial

 

coupling L considered. From Eq. (A.4)
the threshold

 

value

 

of

 

the noise intensity is easily obtained by set-
ting the marginal condition, c = 0,

sc ¼ �
f 0ð/0Þ þ DhLðkÞ

g0Sð/0Þ
: ðA:5Þ

When s > sc, the growth factor, c, is positive and spatial patterns
may occur.

A.2. Short-term instability

A

 

second

 

tool

 

can

 

be

 

used

 

to

 

assess

 

the

 

possible

 

short

 

term

 

instability

 

in

 

the

 

dynamical

 

system.

 

The

 

transient

 

instability

 

is

 

important

 

because

 

it

 

tends

 

to

 

move

 

the

 

dynamics

 

away

 

from

 

the

 

basic

 

state

 

h/i

 

=

 

/0.

 

If

 

this

 

phenomenon

 

is

 

accompanied

 

by

 

a

 

suit-
able

 

spatial

 

coupling,

 

the

 

system

 

can

 

be

 

trapped

 

in

 

a

 

new

 

ordered

 

state.

 

The

 

first

 

steps

 

of

 

the

 

stability

 

analysis

 

are

 

the

 

same

 

as

 

those

 

described

 

in

 

Appendix

 

A.1,

 

and

 

lead

 

to

 

Eq.

 

(A.1).

 

Since

 

we

 

are

 

here

 

interested

 

in

 

the

 

initial

 

evolution

 

of

 

small

 

displacements

 

from

 

/0,

 

we

 

can

 

assume

 

hf(/)i � f(h/i)

 

and

 

hgS(/)i �

 

gS(h/i).

 

For

 

the

 

same

 

reason,

 

we

 

can

 

also

 

neglect

 

the

 

spatial

 

gradients

 

of the fluctuations
assuming that in the short term they are small. Eq. (A.1) can be
approximated

 

at

 

any

 

point

 

of

 

the

 

field as [32]

dh/i
dt
� f ðh/iÞ þ sgSðh/iÞ ¼ feff ðh/iÞ; ðA:6Þ

where

 

feff

 

is

 

often

 

indicated

 

as

 

the

 

effective

 

kinetics. The short term
stability

 

analysis

 

of

 

the

 

state

 

/0 by

 

Eq.

 

(A.6)

 

concerns

 

only

 

the

 

tem-
poral

 

dynamics

 

at

 

a

 

generic

 

point

 

of

 

the

 

field.
Eq.

 

(A.6)

 

clearly

 

shows

 

that

 

noise

 

can

 

destabilize

 

the

 

determinis-
tically

 

stable

 

state

 

/0.

 

This

 

can

 

happen

 

in

 

two

 

possible

 

ways:

 

(i)

 

when

 

the

 

roots

 

of

 

feff (h/i)

 

=

 

0

 

do

 

not

 

coincide

 

with

 

those

 

of

 

f(h/i)

 

=

 

0

 

or

 

(ii)

 

when

 

the

 

state

 

/0 remains

 

a

 

zero

 

of

 

the

 

r.h.s.

 

of

 

Eq.(A.6), but
sufficiently high noise intensities destabilize this state an unstable
one;

 

this

 

occurs when the following condition is met

dfeff

dh/i

����
/0

P 0: ðA:7Þ

In

 

both

 

cases

 

noise

 

has

 

to

 

be

 

multiplicative

 

for

 

a

 

transition

 

to

 

occur.

 

The noise threshold sc can be obtained by setting the inequality in
(A.7) equal to zero. The condition (A.7) derives from the first-order

truncated Taylor expansion of the function feff around /0, which
yields

dh/i
dt
� dfeff

dh/i

����
/0

h/i: ðA:8Þ

When feff(/0) = 0, the sign of the coefficient of h/i on the r.h.s. of the
previous relation determines the stability of small perturbations
around /0.

When

 

the

 

noise

 

is

 

additive

 

the

 

effective

 

kinetics are feff

 

(h/i) =
f(h/i).

 

Thus,

 

the

 

stable

 

states

 

of

 

(A.6)

 

are

 

the

 

same

 

as

 

those

 

of

 

the

 

deterministic

 

counterpart

 

of

 

the

 

process.
It

 

is

 

also

 

worth

 

to

 

stressing

 

the

 

impact

 

of

 

the

 

type

 

of

 

noise

 

and

 

of

 

its

 

interpretation.

 

While

 

in

 

the

 

Stratonovich

 

case,

 

gS(/) = sg(/)g0(/),

 

using

 

Ito

 

interpretation

 

we

 

have

 

gS(/)

 

=

 

0.

 

Therefore,

 

the

 

noise-
induced

 

instability is possible only in the Stratonovich interpreta-
tion of the Langevin Eq. (1) and it cannot occur when Ito’s framework
is adopted.

A.3. Structure function

The presence of patterns modifies the correlation structure of
the field. Instead of considering the correlation function, this meth-
od analyzes its Fourier transform in space, which is known with
the name of structure function and defined as Sðk; tÞ ¼
h/̂ðk; tÞ/̂ð�k; tÞi, where /̂ð�k; tÞ is the Fourier transform of /(r, t)
and k = (kx,ky) is the wave number vector. The structure function
is therefore equal to the power spectrum of the field /. The first-
order temporal derivative of the structure function reads

@Sðk; tÞ
@t

¼ @/̂ðk; tÞ
@t

/̂ �k; tÞ
* +

þ @/̂ð�k; tÞ
@t

/̂ðk; tÞ
* +

: ðA:9Þ

@/̂ðk; tÞ
@t

¼ f 0ð/0Þ/̂ðk; tÞ þ g0ð/0Þ/̂ðk; tÞnðtÞ þ naðtÞ

þ DhLðkÞ/̂ðk; tÞ; ðA:10Þ

where

 

hLðkÞ

 

is

 

the

 

same

 

operator

 

already

 

defined

 

in

 

Appendix

 

A.1.

 

By

 

substituting

 

Eq.

 

(A.10)

 

into

 

Eq.

 

(A.9)

 

and

 

using

 

Novikov’s

 

theo-

rem [33] to express the terms h^/ðk; tÞ/^ð�k; tÞnðtÞi ¼ sSðk; tÞ and h/
^ð�k;

 

tÞnaðtÞi ¼ sa

 

(where sa

 

is the intensity of the additive white
Gaussian

 

noise),

 

we

 

obtain

@Sðk; tÞ
@t

¼ 2 f 0ð/0Þ þ DhLðkÞ þ g0ð/0Þs½ �Sðk; tÞ þ 2sa: ðA:11Þ

At steady state the structure function reads

SstðkÞ ¼ �
sa

f 0ð/0Þ þ DhLðkÞ þ g0ð/0Þs½ � : ðA:12Þ

0 0.5 1

3

p

Fig.

 

8.

 

Model

 

(19)

 

at

 

t

 

=

 

300

 

under

 

Ito

 

interpretation.

 

The

 

initial

 

conditions

 

are

 

given

 

by

 

uniformly

 

distributed

 

random

 

numbers

 

between

 

[0.49,

 

0.51].

 

Black

 

and

 

white

 

tones

 

are

 

used

 

for

 

the

 

value

 

intervals

 

[0.5,

 

1]

 

and

 

[0,

 

0.5],

 

respectively.

 

The

 

parameters

 

are

 

a

 

=

 

0.001,

 

D

 

=

 

25,

 

s

 

=

 

40.
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where hLðkÞ is the same operator already defined in Appendix A.1. 
By substituting Eq. (A.10) into Eq. (A.9) and using Novikov’s theo-
rem [33] to express the terms h^/ðk; tÞ/^ðk; tÞnðtÞi ¼ sSðk; tÞ and 
h/^ðk; tÞnaðtÞi ¼ sa (where sa is the intensity of the additive white 
Gaussian noise), we obtain



Eq.

 

(A.12)

 

can

 

be

 

investigated

 

to

 

understand

 

if

 

periodic

 

patterns,

 

corresponding

 

to

 

a

 

maximum

 

of

 

the

 

structure

 

function

 

for

 

wave

 

numbers

 

k

 

different

 

from

 

zero,

 

are expected to appear. Eq. (A.12)
shows that the additive noise is fundamental to have a non-null
steady-state

 

structure

 

function.

A.4. Mean-field analysis

The

 

mean-field

 

theory

 

is

 

typically

 

used

 

to

 

provide

 

an

 

approxi-
mated

 

solution

 

of

 

stochastic

 

partial

 

differential

 

equations

 

for

 

spa-
tially-extended

 

systems. The method is valuable mainly for a
qualitative

 

analysis

 

of

 

(stochastic)

 

spatiotemporal

 

dynamics

 

[34,35,50,51].
The mean field technique adopts a finite difference representa-

tion of the stochastic spatiotemporal dynamics (1)

d/i

dt
¼ f ð/iÞ þ gð/iÞ � niðtÞ þ D � lð/i;/jÞ þ hð/iÞ � FðtÞ þ na;iðtÞ;

ðA:13Þ

where /i, ni, and na,i are the values of /, n, and na at site i, respec-
tively, i runs across all the cells of the discretized domain, and
j 2 nn(i) refers to the neighbors of the ith site involved in the dis-
cretized representation, l(/i,/j), of the specific spatial coupling con-
sidered. A general expression for l(/i,/j) is

lð/i;/jÞ ¼ wi/i þ
X

j2nnðiÞ
wj/j; ðA:14Þ

where

 

the

 

number

 

of

 

neighbors,

 

nn(i),

 

and

 

the

 

weighting

 

factors

 

wi

and

 

wj

 

depend

 

on

 

the

 

specific

 

finite

 

difference

 

scheme

 

adopted

 

to

 

numerically

 

approximate

 

the

 

spatial

 

operator

 

[52].

 

The

 

analytical

 

solution

 

of

 

Eq.

 

(A.13)

 

is

 

hampered

 

by

 

the

 

fact

 

that

 

the

 

dynamics

 

of

 

/i

are

 

coupled

 

to

 

that

 

of

 

the

 

neighboring

 

points.

 

To

 

circumvent

 

this

 

issue,

 

the

 

mean

 

field

 

approach

 

assumes

 

that

 

(i)

 

the

 

variables /j can
be approximated by their local ensemble mean, h/ji, and (ii) there is
a

 

relation

 

linking

 

h/ji

 

to

 

the

 

ensemble average, h/i.

A.4.1. Generalized mean-field theory
To study the stability of the homogeneous steady state with re-

spect to periodic patterns, the pattern is approximated by a har-
monic function,

h/ji ¼ h/i cos½k � ðri � rjÞ�; ðA:15Þ

where

 

k

 

= ( kx,

 

ky)

 

is

 

the

 

wave number vector. The function ll(/i,

 

/

j) in Eq. (A.13) is approximated as

lð/i;/jÞ � lhð/i; h/i; kx; kyÞ; ðA:16Þ

where lh(�) depends on the spatial coupling considered.
Under

 

the

 

assumption

 

(A.16),

 

the

 

dynamics

 

(A.13)

 

of

 

/i

 

become

 

independent

 

of

 

those

 

of

 

the

 

neighboring

 

points.

 

Thus,

 

it

 

is

 

possible

 

to determine exact expressions for the steady-state probability dis-
tributions pst(/;

 

h/i,

 

kx,

 

ky) o f

 

/.

 

The

 

self-consistency condition

h/i ¼
Z þ1

�1
/pstð/; h/i; kx; kyÞd/ ¼ Fðh/i; kx; kyÞ ðA:17Þ

can be used to obtain the unknown h/i as a function of kx and ky.
The

 

occurrence

 

of

 

solutions

 

of

 

Eq.

 

(A.17)

 

different

 

from

 

h/i

 

=

 

/0

(where

 

/0

 

is

 

the

 

uniform

 

steady

 

state

 

of

 

the

 

system)

 

corresponds

 

to

 

the

 

loss

 

of

 

stability

 

of

 

the

 

uniform

 

steady

 

state

 

with

 

respect

 

to

 

peri-
odic

 

perturbations.

 

It

 

is

 

expected

 

that

 

this

 

loss

 

of

 

stability

 

takes

 

place

 

only

 

for

 

some

 

specific

 

value

 

of

 

the

 

wave

 

numbers

 

kx

 

and

 

ky.
Other noise-induced phenomena can be investigated with this

method. Indeed, spatial pattern formation is not the only interest-
ing noise-induced effect. In fact, modifications of other statistical
descriptors of the field can be relevant, too. Modifications of order
parameters are known as phase transitions. In particular, when the

spatio-temporal average, m, of the state variable at steady state is
different from the homogeneous steady state value, a phase transi-
tion occurs. Non-equilibrium phase transitions are induced by the
random forcing. The occurrence of non-equilibrium phase transi-
tion is neither necessary nor a sufficient condition for noise-
induced pattern formation. Non-equilibrium phase transitions
imply that noise is able to change the value of the order parameter,
but not that ordered geometrical structures necessarily emerge.
Conversely, we have shown that noise-induced patterns may
emerge even when m remains unchanged with respect to the dis-
ordered case (i.e., no phase transition occur).

A.4.2. Classic mean-field theory
The

 

classic

 

mean

 

field

 

theory

 

can

 

be

 

presented

 

as

 

a

 

simplified

 

version

 

of

 

the

 

generalized

 

mean

 

field.

 

More

 

specifically,

 

it

 

is

 

as-
sumed

 

that

 

all

 

cells

 

have

 

the

 

same

 

mean,

 

which coincides with the
spatiotemporal mean of the field. Namely, k = 0 in Eq. (A.15), i.e. h/
ji

 

=

 

h/i = m.

 

In

 

this

 

case,

 

Eq.

 

(A.17)

 

becomes

h/i ¼
Z þ1

�1
/pstð/; h/iÞd/ ¼ F h/ið Þ: ðA:18Þ

The

 

change

 

in

 

the

 

number

 

of

 

solutions

 

of

 

Eq.

 

(A.18)

 

indicates

 

the

 

existence

 

of

 

a

 

phase

 

transition.

 

The

 

focus

 

of

 

this

 

analysis

 

is

 

not

 

on

 

the

 

appearance

 

of

 

periodic

 

patterns

 

but

 

only

 

on

 

the

 

occurrence

 

of

 

phase

 

transitions.

 

The

 

effectiveness

 

of

 

this

 

standard

 

mean

 

field

 

approximation

 

can

 

be

 

improved

 

by

 

expressing

 

the

 

values

 

of

 

/j

 

in

 

the

 

neighborhood

 

of

 

point

 

i

 

as

 

the

 

average

 

between

 

the

 

spatiotemporal

 

mean

 

and

 

the

 

local

 

value

 

of

 

/

 

at

 

point

 

i,

 

namely /j

 

� 1/2(h/i + /i).
This

 

correction

 

of

 

the

 

mean

 

field

 

approximation

 

accounts

 

for

 

the

 

dependence

 

of

 

/j

 

on

 

the

 

local

 

conditions

 

[32].
The

 

analytical

 

tools

 

here

 

described

 

provide

 

in

 

general

 

some

 

in-
sights

 

into

 

pattern

 

formation,

 

but

 

the

 

definitive

 

way

 

to

 

study

 

the

 

noise-induced

 

pattern

 

formation

 

is

 

to

 

numerically

 

simulate

 

the

 

dynamics

 

and

 

assess

 

the

 

emergence

 

of

 

spatial

 

coherence

 

through

 

a

 

comparison

 

with

 

homogeneous

 

or

 

disordered

 

states

 

of

 

the

 

sys-tem.

 

In

 

fact,

 

the

 

linear

 

stability

 

analysis

 

by

 

normal

 

modes

 

and

 

the

 

short-
term

 

instability

 

analysis

 

tend

 

to

 

fail

 

when

 

the

 

noise

 

is

 

additive

 

(i.e.

 

g

 

=

 

0

 

in

 

Eq.

 

(1)).

 

In

 

this

 

case,

 

both

 

analyses

 

predict

 

sta-ble

 

configurations

 

for

 

any

 

noise

 

intensity

 

and

 

any

 

strength

 

of

 

the

 

spatial

 

coupling.

 

On

 

the

 

other

 

hand,

 

when

 

only

 

multiplicative

 

noise

 

is

 

present

 

(i.e.

 

na

 

= 0 in Eq. (1)), the structure function does not pro-
vide

 

any

 

information

 

on

 

pattern

 

formation,

 

as

 

/

 

tends

 

to

 

remain

 

equal

 

to

 

zero.
The

 

typical

 

numerical

 

approach

 

is

 

to

 

discretize

 

the

 

continuous

 

spatial

 

domain

 

using

 

a

 

regular

 

Cartesian

 

lattice

 

with

 

spacing

 

Dx

 

=

 

Dy

 

=

 

D.

 

Here

 

we

 

consider

 

a

 

two-dimensional

 

square

 

lattice

 

with

 

128

 

�

 

128

 

sites

 

and

 

D

 

=

 

1.

 

The

 

original

 

stochastic

 

partial

 

dif-
ferential

 

equation

 

(1)

 

is

 

then

 

transformed

 

into

 

a

 

system

 

of

 

coupled

 

stochastic

 

ordinary

 

differential

 

equations

 

as

 

in

 

Eq.

 

(A.13).

 

Infinitely

 

vast

 

random

 

fields

 

are

 

generally

 

approximated

 

numerically

 

in

 

a

 

satisfactory

 

way

 

by

 

periodic

 

boundary

 

conditions,

 

which

 

have

 

been

 

used

 

also

 

in

 

this

 

study.

 

Moreover,

 

unless

 

it

 

was

 

otherwise

 

speci-
fied,

 

the

 

initial

 

conditions

 

used

 

in

 

the

 

simulations

 

were

 

uniformly

 

distributed

 

random

 

numbers

 

between

 

[�0.01,

 

0.01].

 

Numerical

 

simulations

 

were

 

carried

 

out

 

with

 

the

 

Heun’s

 

predictor–corrector

 

scheme

 

[35,32].

 

The

 

pdf

 

is

 

obtained

 

from

 

the

 

spatial

 

distribution
of / at fixed time and is numerically evaluated at 100 equally
spaced

 

intervals, D/, that cover the range of / values.
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