POLITECNICO DI TORINO
Repository ISTITUZIONALE

Functional test generation for the pLRU replacement mechanism of embedded cache memories

Original

Functional test generation for the pLRU replacement mechanism of embedded cache memories / PEREZ HOLGIN, W.
J.; SANCHEZ SANCHEZ, EDGAR ERNESTO; SONZA REORDA, Matteo; Tonda, ALBERTO PAOLO; VELASCO
MEDINA, J.. - STAMPA. - (2011), pp. 1-6. (Intervento presentato al convegno Proceedings of the 12th IEEE Latin-
American Test Workshop) [10.1109/LATW.2011.5985898].

Availability:
This version is available at: 11583/2380322 since:

Publisher:
IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

Published
DOI:10.1109/LATW.2011.5985898

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

20 May 2024

Functional Test Generation for the pLRU Replacement Mechanism
of Embedded Cache Memories

W.J. Perez H.**, E. Sanchez', M. Sonza Reorda', A. Tonda', J. Velasco Medina®
! Politecnico di Torino, Torino, Italy
? Universidad del Valle, Cali, Colombia
3 Universidad Pedagdgica y Tecnologica de Colombia, Sogamoso, Colombia

Abstract

Testing cache memories is a challenging task, especially
when targeting complex and high-frequency devices such as
modern processors. While the memory array in a cache is
usually tested exploiting BIST circuits that implement March-
based solutions, there is no established methodology to tackle
the cache controller logic, mainly due to its limited
accessibility. One possible approach is Software-Based Self
Testing (SBST): however, devising test programs able to
thoroughly excite the replacement logic and made the results
observable is not trivial. A test program generation
approach, based on a Finite State Machine (FSM) model of
the replacement mechanism, is proposed in this paper. The
effectiveness of the method is assessed on a case study
considering a data cache implementing the pLRU
replacement policy.

1. Introduction

Modern processing systems depend on high performance
processor cores, able to process high amounts of data and
execute a very large number of instructions per second. To
achieve the performance requested by the specifications, it is
crucial to support the system with a cheap and fast memory
hierarchy organization [1].

Among the different memory levels existing in a processing
system, one of the most important is the cache one. In the
memory hierarchy the cache is placed near the processor core,
and it is dedicated to reducing the gap between high-
performing processors and other memory devices, usually
much slower.

In recent years, the costs of test and validation processes
have been constantly growing with respect to the total
integrated circuit (IC) manufacturing cost: in particular, there
is not yet a mature and comprehensive methodology able to
cope with all testing issues regarding the first level of memory
hierarchy systems, i.e., caches.

However, research activities on cache testing are thriving,
and different solutions have been proposed in this area. In [2],
for example, a structural modification of the cache
architecture to enhance the IDDQ testing sensitivity is
proposed, while in [3] the authors present a Memory Built-In
Self Test (MBIST) device, able to apply a modified March

algorithm to both L1 and L2 caches. All these hardware-based
approaches, however, necessitate of considerable
modifications of the initial design.

Another interesting solution is to translate March-like tests
into sequences of processor instructions [4], [5], [14], [22].
This methodology does not require altering the original design
of the device, but it still needs special system features to ease
main memory writing and reading operations while the cache
memory is disabled; such mechanisms may not be present in
the normal operation mode of microprocessor-based systems.

March-like approaches have proven efficient to test
memory elements in caches, but they do not consider
thoroughly the control part of the cache memory, which is
crucial to obtain the correct behavior and the expected
performance from the processor.

Software-Based Self-Test (SBST) [6] is a methodology that
exploits the Instruction Set Architecture (ISA) of the targeted
processor to run suitable test programs while the processor
itself operates in normal mode: data generated by the
programs are then checked for conformity with the expected
results to detect possible misbehaviors. SBST does not require
additional hardware and it can be applied both to stand-alone
devices and to Systems-on-Chip (SoCs), where the processor
and other cores included into the device are deeply embedded
and their accessibility is limited. SBST can be seen as a
extension of the work on functional tests for processors first
presented in [7].

The success of a SBST-based strategy is strongly dependent
on the availability of suitable test programs, able to address
the different parts of the device. The limited accessibility of
cache controllers’ input and output signals, in terms of both
controllability and observability, makes the creation of
effective test programs especially critical.

In literature, it is possible to find a certain number of SBST
approaches that address cache memory testing: in [18], for
example, the conversion of a March algorithm to executable
instruction sequences is proposed. The algorithm is improved
to take into account the control logic of the cache, but the
methodology is applicable to direct-mapped caches, only. A
general SBST algorithm to generate test programs for data
cache controllers is presented in [10], this time independently
on the controller type. In [11], the authors report a hybrid

solution to test data and instruction cache controllers: the
approach makes use of an external Infrastructure Intellectual
Property (I-IP) core to increase the observability of the results.

This paper focuses on the replacement policy adopted in
set-associative data cache memories and is based on the work
presented in [7], that clearly shows how a March test is not
enough to achieve good results on the replacement logic, thus
demonstrating the need for specific solutions for its test. The
approach is based on building a FSM model of the
replacement circuit, which is then exploited by a traversing
algorithm able to obtain a compact set of memory accesses
suitable to test the targeted replacement logic. However, when
that algorithm is applied to cache controllers implementing
the pLRU mechanism, the length of the generated sequence
tends to become excessively large. A major contribution of
this paper is that we exploit some specific peculiarities of the
pLRU replacement logic [8] to produce a more compact test
sequence. The obtained results are suitable for post-
production testing, incoming inspection and on-line tests of
both stand-alone processors and processor cores embedded in
SoCs: it can also be applied to different cache configurations,
with regards to cache size, organization and writing strategies
(i.e., write-back or write-through). Moreover, being based on
a SBST approach, the method is suitable to detect delay faults,
and does not require any change in the targeted hardware.

The rest of the paper is organized as follows. Section 2
introduces some vocabulary, sums up the basic concepts of
FSMs and introduces the issue of FSM testing. Section 3
describes the proposed approach. Section 4 presents the case
study and reports experimental results. Section 5 concludes
the paper.

2. Background

2.1. Finite state machines testing

A finite state machine (FSM) M is defined in [20] as a
quintuple M=(I,0,S,5,A) in which:

o [is a finite and nonempty set of input symbols

« O is a finite and nonempty set of output symbols

« §'is a finite and nonempty set of states

e 0. S x1— S is the state transition function

e A: S x I — O is the output function.

A FSM in a state s € § that receives an input a € [moves
to the state specified by ds, a) and produces the output
specified by A(s, a).

FSM testing can be performed using different strategies;
however, the general problem is to deduce information from a
generic machine M by observing its I/O behavior. Testing
functional faults in an FSM can be done by following a
conformance testing procedure [20]. A conformance test aims
at generating a test sequence to determine whether the black
box implementation of the modeled FSM behaves exactly as
the specification machine, independently of its
implementation and on the possible faults.

In a conformance testing:

e An initialization sequence is applied, bringing the
implementation machine to a known initial state.

e A transition tour is performed, in order to verify if every
transition in the specification machine is correctly
implemented in the black box device, and it reaches each
time the expected state.

2.2. Cache Replacement Policies

A cache replacement policy is a major design parameter of
set-associative cache memories. The efficiency of the
replacement policy affects both the hit rate and the access
latency of a cache system. In the worst case, a malfunctioning
cache replacement mechanism can produce a bypass of the
cache memory and severely degrade the system performance.
A great number of replacement policies exist, and each one is
a compromise between hit rate, cost (in terms of required
hardware resources), and performance. The most common
replacement mechanisms are: Least Recently Used (LRU),
Most Recently Used (MRU), pseudo-LRU (pLRU), Least
Frequently Used (LFU), First In First Out (FIFO), FIFO-
Clock, and many others.

2.3. Pseudo-LRU

The pseudo-LRU replacement policy is a hardware efficient
approximation of a LRU algorithm where the ages of the
ways in a cache set are not linearly ordered, but arranged in a
binary tree (see Fig. 1). This tree has » leaves (one for each
cache way in the set) where n is a power of two, and n-/
nodes. Each node is represented by a single bit, thus using n-/
bits, called history bits. Referring to Fig. 1, the least recently
used way corresponds to the binary state of two history bits at
different levels in the tree, in this case ayb, or ayb;. In the
example ay=0 and b,=0; therefore, the LRU line is that stored
in the way w;.

The main advantage of the pLRU policy is that its
implementation requires less hardware than the LRU policy,
but it inherently involves a loss of information about how
historically have been accessed the ways in the set. For
example, in a 4-way LRU implementation we need a
minimum of 8 bits (2x4) to store the “access order” of the
ways in the set, while for the same case a pLRU
implementation requires only 3 history bits. However, the
main drawback of pLRU implementations is that when a miss
arises it cannot guarantee that the cache always substitutes the
least recently used line. This behavior is considered an
anomalous behavior that does not represent in any case a
functional bug, but an intrinsic weakness of the replacement
policy.

The access order for every way (AW O,) in the set depends
on the values of the history bits ay, by, and by, then, it is
possible to formally defined it by:

AOW, = ay + b,
AOW, = ay + b,

AOW, =ay + by
AOW; =@y + by
Thus, when a memory access generates a miss, the current
way whose access order (AOW,.) equals 0 is evicted from the
line. In the figure, if aybyb; = 000, the way that leaves the line
is Wy since AOW, = 0.

W3

Fig 1. pLRU 4-way. The “access order” of the ways in the set is represented
by the history bits a,, by and b;. In this example, if agbyb; = 000 the least
recently used way is wy and therefore it will be evicted in the next miss
access.

If we consider a hit/miss access to the cache memory, it is
possible to state that the new value on the history bits is
obtained by toggling from 0 to 1 the 0 values belonging to the
accessed way represented by the AOW, equations.

Assuming again that aybyb; = 000, and supposing that a hit
access is performed on Wy; then, the new value adopted by
the history bits is aybyb; = 110. Supposing that in this case, a
new hit access is performed on W, the final history bits value
is aybyb, = 100, since b, is toggled from 0 to 1.

Another important issue to consider when tackling the
pLRU replacement policy is that it is susceptible to timing
anomalies known as domino effects, as reported in [8]. That
paper shows that there are cyclic sequences of accesses in
pLRU caches that could cause that a data stored in a way
never to be removed from the cache.

3. Proposed approach

The proposed approach described in this paper is based on
the work previously introduced in [7]. In a few words, herein
we improve the method presented in that paper by including
an additional step able to handle cache anomalies present in
the circuitry of the replacement mechanisms when
implementing the pLRU algorithm. It is important to mention
that we do not face the test of the memory elements present in
the cache controller (i.e., the tag bits), but only the
replacement logic.

The original algorithm in [7] is able to deterministically
generate sequences of memory accesses for testing the LRU
cache replacement algorithm available in cache controllers.

The cache controller functions, and specifically the
replacement mechanisms, can be implemented in different
ways, resorting to data structures such as a memory to store
the history bits, priority queues, and others. However, we
adopt a high-level strategy able to cope with different cache
implementations, and thus independent on the actual
implementation (“black box™ approach).

Bearing in mind the complexity of the cache replacement
mechanisms, we model their behavior using a FSM. Such a
representation allows us to scale well considering different
cache implementations, and avoiding an explosion on the
considered cases without losing essential information
regarding the implemented replacement algorithm.

In this paper, we propose an algorithm that initialize the
FSM in a well known state by traversing some initial
transitions or recurring to a flush instruction. Then, the
algorithm traverses all the FSM transitions checking at every
time if the reached transition corresponds to the expected one.
in this way, the resulting transitions sequence is able to
thoroughly excite the pLRU replacement mechanism, based
only the knowledge of its behavior. The only cache
information we assume observable is the cache hit/miss
signal. The proposed algorithm includes supplementary
memory accesses that increase observability without recurring
to additional hardware. Finally, the obtained transition
sequence is carefully converted to a suitable test program,
coping with the specific characteristics of the processor core
and its cache. A great advantage of the presented
methodology is that it faces all possible faults that could affect
the cache replacement logic, while at the same time it is
sufficiently general to apply to all possible implementations of
the targeted replacement policy. The complete process is
described in the following.

3.1. Additional testing considerations

Checking whether the operations performed by the test
program produced the expected results (thus revealing the
presence of a faulty circuit) is made more complex by the fact
that many faults in a cache controller do not manifest
themselves causing the processor to produce wrong results,
but simply slowing down its performance. Therefore, the test
procedure requires the availability of some mechanism able to
verify whether a given access (or a sequence of them)
produces a cache hit or miss as expected. This can be
achieved, for example, by measuring the time required by the
processor to execute a given piece of code [10], or resorting to
a hybrid technique, as described in [11], or resorting to
performance counters, as suggested in [12] and [22]. For the
purpose of this paper, we assume that one of such
mechanisms is available. In the rest of the paper we will refer
to this mechanism as cache monitor.

3.2. pLRU modeling

In the approach of [7], the formal representation of a FSM
state depends on the internal order of the ways according to
the normal evolution of the device. Therefore, considering a
generic n-way cache and denoting each way as wy,wy,..,w,.,
each possible state corresponds to a permutation of
Wo,Wp,..,W,.1, Where the rightmost way is the first one that will
be replaced, while the leftmost is the last one. Differently, in
this paper we introduce a new FSM representation by stating a

different concept of state. In this case, we use the history bits

available in the pLRU cache replacement logic in order to

define our FSM states, avoiding the explosion of states and
transitions in cache memories with a larger number of ways.

Considering the previous ideas, the FSM M has the
following sets of input symbols, output symbols and states:

e The set / of input symbols consists of all the addresses
accessed by the processor. The number of possible input
symbols is strictly dependent on the size of the main
memory. Although the set of input symbols is very large,
for our purpose we consider only two groups of symbols.
The former contains the » addresses stored in the generic
time in the n-ways of the cache set: each one of them,
when accessed, produces a “hit” and activates a transition
to another FSM state. The latter includes all the remaining
addresses, each one of which produces a “miss” when
accessed and activates a transition towards a new state,
which is the same no matter the address chosen.

e The set of output symbols O is composed of the two
symbols hit and miss, which are the only output that can
be observed for our purpose: the output of our FSM is the
hit/miss signal in the cache controller that is checked using
the cache monitor implemented.

e The set of states S is built considering the reached value of
the history bits present in the pLRU replacement logic.
Therefore, considering a generic n-way cache, being n a
power of 2, there are »n-I history bits, and consequently,
2" states. In a n-way set-associative cache, each state has
n+1 outgoing transitions: » transitions represent a memory
access to one of the n blocks stored in the cache set,
therefore producing a hit (and possibly changing the
ordering of ways). The remaining outgoing transition
represents an access to a memory block not memorized in
the cache, therefore producing a miss.

Based on the previous considerations, it is possible to state
that a n-way cache that implements the pLRU replacement
mechanism, counts with 2" states, and (n+1)(2"") transitions.

Considering the characteristics of the resulting FSM, it is
possible to see that the derived FSM is fully specified: in a
given state and upon every input there is a distinct next state.
It is also deterministic, since at a state and upon an input, the
FSM follows a unique transition. Finally, the machine is
strongly connected, since it is possible to demonstrate that
given a couple of states s; and s;, it is always possible to find a
sequence of memory accesses that lead the FSM from s; to s;.

Figure 2 shows the FSM derived for the pLRU replacement
logic of a 4-way cache: the FSM counts with 8§ states and 40
transitions. It is possible to observe that the new FSM
representation positively impacts the number of both states
and transitions, since using the previous FSM representation,
these values would amount to 24 and 125 respectively [7].

3.3. FSM traversing algorithm
The traversing algorithm firstly initializes the FSM in a

well known state, then generates a sequence of memory
accesses able to guarantee that all the transitions in the
modeled FSM are traversed at least once, and at the end of
every transition, the reached state is verified. However,
considering the observability issues previously exposed, it is
necessary to include a special sequence of memory accesses
able to check whether the reached state is the expected one.
This verification sequence is referred to as status check.

Ma[w3]

(7 Hit

The initialization and generation of a sequence of
transitions able to go through all the FSM transitions do not
deserve special consideration since these tasks are relatively
straightforward and easy to implement. In literature, the
problem of generating a transition tour is known as the
Chinese Postman Problem (CPP) [16]; and is possible to
solve it by applying the Floyd—Warshall algorithm described
in [17]. Since the size of the considered FSM is relatively
small, finding an exact solution for this problem is rather easy.

In order to address the generation of the status check we
must consider the pLRU functional behavior and identify the
required sequence of memory accesses. For this purpose it is
possible to exploit the concepts described in [7], but pLRU
peculiarities introduce the necessity to calculate at every
transition the real access order of the data present in the cache.

The access order for every way in a pLRU cache is
determined by the history bits that change depending on the
accessed way. In Table 1, ways ordering created by a pLRU
algorithm and a LRU algorithm in a 4-way cache are shown.

Table 1. pLRU and LRU comparison example for a 4-way cache

LRU pLRU Memory access agbgb,
WoW[WyW3 WoW[WoW3 Hit(wg) 000
WoWWoW3 WoW{WoW3 Hit(w,) 001
WoWoW | W3 W3WoW W) Hit(w,) 101
W WoWoW3 W W W3W Miss 000

W3 W0 Evicted way

LRU and pLRU columns in Table 1 show the order
established by each of two replacement logics after a defined
memory access. The left most way (w,) is the newest, while
the rightmost one is the oldest. The Memory access column
shows the access performed at each step, while the last
column shows history bits values for pLRU implementation.

Let us suppose that both cache controllers start from the
same initial conditions. Then, after 3 different hit accesses, it
is possible to see that a miss may remove from memories a
different data depending on the cache implementation: W3 in
the LRU case, W0 in the pLRU implementation.

In order to correctly apply the status check sequence, we
use an algorithm that models the pLRU policy and is able to
generate the next FSM state using as input the current state,
the hit/miss expected value, and the accessed way. Assuming
that wy,wy,..,w,.; represent the ways of a generic n-way set
associative cache, and 4y,A4,,....4,_; the addresses of the blocks
stored in each way; additionally, let us identify the oldest way
in the memory with 4,4, and w,,,, that could not correspond to
A,.; Wy, due to the pLRU replacement logic. The proposed
status check sequence works as follows:

e Firstly, we perform an access to an address (4,) not
present in the cache; the purpose of this operation is to
remove the oldest block in memory 4,,.

e Secondly, we access to the address A,;,; which has just
been removed from the cache and check if the access
causes a miss (as expected) or a hit. Clearly, if the access
causes a hit, a fault affects the cache.

e Third, supposing that the previous operation performed
correctly, and removed from the cache the oldest value,
then, we access again to the just removed block,
provoking again a miss condition. If this is not the case,
the reached state is not the correct one. We repeat this
operation for all the remaining n-/ ways, by accessing the
block that should have been removed at the previous
access and checking the cache miss behavior. These
access transitions should all provoke miss.

e Finally, we perform some access to the addresses still in
cache, provoking the same number of hit results, in order
to lead back the FSM to the original state. This number of
accesses ranges from / to n-1, and is calculated using the
same function devised for modeling the pLRU policy.

It is important to note that in order to actually remove a
block from the cache memory, and then check its absence
from the cache, we must clearly know at every iteration which
one is the oldest value present in the cache.

4. Case study

The effectiveness of the proposed methodology has been
evaluated on the cache controller of the data cache available
in the Leon3 processor core [15]. Leon3 is a 32-bit RISC
processor compliant with the Sparc V8 architecture. It
implements a 7-stage pipeline with separate instruction and
data caches. The cache system supports associative caches
counting up to 4 ways per cache line, different cache size
possibilities, and the replacement policy 1is selected
considering LRU, LRR or random strategies.

The basic Leon3 processor core is made up of pipeline,
cache controllers and AMBA AHB interface (see Fig 3). The
full vhdl source code is available under the GNU GPL license
and distributed as part of the GRLIB IP Library.

In order to assess the proposed methodology, we
implemented a pLRU replacement policy using the same
structures and design parameters present in the Leon3. For
this purpose, we only modified the vhdl files related to the
data cache controller. Analyzing the GRLIB IP library, the
vhdl file directly involved in the data cache controller
description is dcache.vhd, which uses the libcache.vhd and
libiu.vhd libraries, while the top level file is cache.vhd. These
files contain 1,138, 667, 245, and 134 code lines respectively.
On the other hand, the data cache memory is described in the
cachemem.vhd file and counts 453 lines of code.

The main modifications were conducted in the dcache.vhd
and libcache.vhd files in order to add the pLRU replacement
policy. 98 new code lines are added, and 5 existing code lines
are modified in the dcache.vhd file; in addition, 43 new code
lines were included to the /ibcache.vhd file.

The entire functional behavior of the processor core was
simulated at RT level using ModelSim SE 6.4b in order to
verify and validate the correct implementation of the pLRU
replacement mechanism for 2 and 4-ways. Some test
sequences were manually devised, in order to check the
correctness of the implementation. Interestingly, we also
developed the test sequences (read/write operations) described
by [8] that actually highlight the pLRU domino effects
reported in our implementation.

In any case, it is important to note that the 2-way pLRU
case is too simple and becomes the same that 2-way LRU
case. Therefore, for the purposes of this work we are
interested only in the 4-way pLRU case.

The data cache controller implementing a 4-way pLRU
replacement mechanism was synthesized using Synopsys
Design Vision targeting a homemade technology library. The
synthesized version of the whole cache controller counts
8,624 equivalent gates, while the circuitry implementing our
pLRU implementation requires 4,045 out of the 8,624 gates.
The fault simulation campaign was performed on 7max v. B-
2008.09-SP3 by Synopsys. The number of stuck-at faults for
the entire cache controller is 22,901; 10,223 of them
correspond to the pLRU replacement circuitry.

LEON3

MAC16 3-Port Register File

IEEE 754

Floating-Point
7-Stage Unit

Integer Pipeline

MUL32

| DIV 16

Co-processor

Debug
Instruction Data Debug I/F
IRAM Cache Cache D-RAM Interface
IR Interrupt || Memory Management Power Trace
15 Control Unit Down Buffer

[Minimum Configuration
[optional blocks

$32 [co-Processors

AMBA AHB Interface

Fig 3. Leon3 processor core architecture

5. Experimental results

We developed a new tool in Java counting about 1,000
lines that is able to generate the traversing algorithm
described before. The sequence of memory accesses is then
translated to C language exploiting a Perl script that contains
about 500 lines. The C program is then compiled using
MKPROM for BCC v1.0.31b to be run in the Leon3
microprocessor core. The devised sequence counts 660
memory accesses that includes all the 40 FSM transitions
present in the first line history bits of the cache memory, an
average of 6 more access to perform the status check after
every transition, and finally 380 additional accesses to toggle
every history bit of the rest of the cache lines.

The complete program sizes 15,6 Kbytes, and takes about
293 K clock cycles to be executed. By applying the obtained
algorithm, we verified that the sequence achieves 100% fault
coverage on the considered list of stuck-at faults on the pLRU
replacement logic available in the targeted cache controller.

6. Conclusions

In this paper we extend our previous work that tackled test
program generation for the replacement policy available on
cache controllers. The methodology is based on modeling the
circuitry implementing the replacement policy as a FSM,
which is then exploited to automatically generate a sequence
of memory accesses that thoroughly excite the cache
controller replacement policy. The proposed approach is able
to make the behavior of the replacement policy observable
from the outside, by just checking whether the circuitry
generates the correct sequence of hit/miss operations.

The proposed approach is evaluated on a 4-way set
associative cache controller that implements the pLRU
replacement policy, on the Leon3 processor core. Fault
simulation results show that the proposed methodology is able
to fully test the circuitry.

When compared with [7], the methodology proposed here
not only reduces the number of accesses to memory required
by the original approach, but also avoids the explosion of

states and transitions on larger cache implementations, thus
significantly reducing the length of the final sequence.

7. References

[1] John L, Henessey & David A, Pattterson, "Computer Architecture", 3th
edition, Morgan Kaufmann publishers. 2003.

[2] S. Bhunia, Li Hai, K. Roy, “A high performance IDDQ testable cache
for scaled CMOS technologies”, IEEE Asian Test Symposium, 2002,
pp. 157-162.

[3] P.J. Tan, Le Tung, Mantri Prasad, J. Westfall, “Testing of UltraSPARC
T1 Microprocessor and its Challenges”, IEEE International Test
Conference, 2006, pp. 1-10.

[4] Sultan M. Al-Harbi, Sandeep K. Gupta, "A Methodology for
Transforming Memory Tests for In-System Testing of Direct Mapped
Cache Tags", 16th IEEE VLSI Test Symposium (VTS '98), pp. 394-400.

[5] J. Sosnowski, "In system of cache memories", Proc. IEEE International
Test Conference, 1995, ITC pp. 384-383.

[6] N. Kranitis, A. Paschalis, D. Gizopoulos, G. Xenoulis, “Software-Based
Self-Testing of embedded processors”, IEEE Transactions on
Computers, Vol 54, issue 4, pp 461 — 475, April 2005.

[7]1 Perez H, W.J.; Ravotto, D.; Sanchez, E.; Reorda, M.S.; Tonda, A.;, "On
the Generation of Functional Test Programs for the Cache Replacement
Logic", Asian Test Symposium, 2009. ATS '09., vol., no., pp.418-423,
23-26 Nov. 2009

[8] Berg, Christhop. PLRU Cache domino effects. ECRTS 2006. 6th Intl.
Workshop on Worst-Case Execution Time (WCET) Analysis.
http://drops.dagstuhl.de/opus/volltexte/2006/672.

[9] S.Thatte and J.Abraham, “Test Generation for Microprocessors”, IEEE
Transactions on Computers, vol. 29, no. 6, pp. 429-441, June 1980.

[10] W.J. Perez H., J. Velasco Medina, D. Ravotto, E. Sanchez, M. Sonza
Reorda, "Software-Based Self-Test Strategy for Data Cache Memories
Embedded in SoCs", Proc. 11th IEEE Workshop on Design and
Diagnostics of Electronic Systems (DDECS), 2008.

[11] W. J. Perez, J. Velasco-Medina, D. Ravotto, E. Sanchez, M. Sonza
Reorda, "A Hybrid Approach to the Test of Cache Memory Controllers
Embedded in SoCs", Proc. 14th IEEE International On-Line Testing
Symposium, 2008.

[12] M. Hatzimihail, M. Psarakis, D. Gizopoulos, A. Paschalis, “A
methodology for detecting performance faults in microprocessors via
performance monitoring hardware”, Proc. IEEE International Test
Conference, 2007, pp. 1-10

[13] A. J. Van de Goor, “Testing Semiconductor Memories, Theory and
Practice”, John Wiley & Sons, 1991.

[14] A.J. Van De Goor, “Using March Tests to Test SRAMs", IEEE Design
& Test, Vol. 10, issue 1, 1993, pp. 8 — 14.

[15] Aeroflex Gaisler, http:// http://www.gaisler.com/cms/

[16] J. Edmonds, E.L. Johnson, “Matching, Euler tours and the Chinese
postman”, Mathematical Programming, vol. 5, pp.88-124, 1973.

[17] R. W. Floyd, “Algorithm 97: Shortest path”, Communications of the
ACM, v.5 n.6, p.345, June 1962.

[18] S. Alpe, S. Di Carlo, P. Prinetto, A. Savino, "Applying March Tests to
K-Way Set-Associative Cache Memories," European Test, 2008 13th ,
vol., no., pp.77-83, 25-29 May 2008

[19] Yi-Cheng Lin, Yi-Ying Tsai, Kuen-Jong Lee, Cheng-Wei Yen, Chung-
Ho Chen, "A Software-Based Test Methodology for Direct-Mapped
Data Cache," 17th IEEE Asian Test Symposium, 2008., pp.363-368

[20] D. Lee, M. Yannakakis, "Principles and methods of testing finite state
machines - a survey ," Proceedings of the IEEE , vol.84, n0.8, pp.1090-
1123, Aug. 1996

[21] Jim Handy, “The cache memory book”, 2th edition, Morgan Kaufmann
publishers, 1998.

[22] J. Sosnowski, Improving software based self testing for
cache memories, Proc. of IEEE 2nd International Design and Test
Workshop, pp.49-54, 2007, IEEE Comp. Soc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

