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ABSTRACT:  The  use  of  zerovalent  iron  micro-  and  nanoparticles  (MZVI  and  NZVI)  for 

groundwater remediation is hindered by colloidal instability, causing aggregation (for NZVI) and 

sedimentation (for MZVI) of the particles. Transportability of MZVI and NZVI in porous media 

was previously shown to be significantly increased if viscous shear-thinning fluids (xanthan gum 

solutions)  are used as carrier  fluids.  In this  work,  a  novel  modeling approach is  proposed and 

applied for the simulation of 1D flow and transport of highly concentrated (20 g/l) non-Newtonian 

suspensions of MZVI and NZVI, amended with xanthan gum (3 g/l). The coupled model is able to  

simulate the flow of a shear thinning fluid accounting for the variable apparent viscosity arising 

from changes in xanthan and suspended iron particle concentrations. The transport of iron particles 

is  modeled  using  a  dual-site  approach  accounting  for  straining  and  physico-chemical 

deposition/release phenomena. A general formulation for reversible deposition is herein proposed, 

that includes all commonly applied dynamics (linear attachment, blocking, ripening). Clogging of 

the porous medium due to deposition of iron particles is modeled by tying porosity and permeability 

to  deposited  iron  particles.  The  numerical  model  proved  to  adequately  fit  the  transport  tests 

conducted using both MZVI and NZVI and can develop into a powerful tool for the design and the 

implementation of full scale zerovalent iron applications.



Introduction

Engineered  micro-  and  nano-materials  are  characterized  by  promising  properties  that  can  be 

exploited for the treatment of contaminated matrixes (1-2). Injectable Fe-based particles have been 

extensively studied in recent years for the remediation of a broad range of contaminants in aquifer 

systems, or to enhance microbial activity (3-5). Nano-sized (NZVI) as well as micro-sized (MZVI) 

zerovalent iron particles are an improvement as compared to commonly used granular iron  (6-7): 

suspended in a slurry, these colloidal dispersions can be directly injected to target the source of 

contamination,  overcoming most  of  the  limitations  of  zerovalent  iron-based permeable  reactive 

barriers  (PRBs)  (2).  Although the  technology is  still  under  development,  successful  field scale 

applications make it extremely promising (8).

Beside  reactivity,  one  of  the  key  issues  towards  the  implementation  of  NZVI  and  MZVI  is 

assessing  their  transport  mechanisms during  injection  into the  subsurface  (i.e.  at  high particles 

concentrations,  pressures  and flow velocities),  and later  under  natural  flow conditions.  Particle 

mobility is highly desired during injection and in the early stages of migration, to guarantee an 

acceptable spacing between injection points and to ensure a uniform distribution of the iron slurry 

in the contaminated area. However, previous studies have shown that the transport of unmodified 

NZVI and MZVI suspensions  is  strongly limited by their  colloidal  instability  (9-12).  Although 

NZVI primary particles are in the order of tens of nanometers, much larger dendritic aggregates are 

formed due to the strong magnetic attractive interactions  (13),  which then undergo straining in 

porous media (i.e. are retained in small and dead-end pores (14)). Magnetic interactions also lead to 

ripening phenomena during  subsurface  filtration,  which  result  in  a  progressive  clogging of  the 

porous matrix  (15). MZVI mobility, in turn, is considerably affected by sedimentation, due to the 

large  size  of  the  microparticles.  Consequently,  its  mobility  is  strongly  limited,  and  would  be 

insufficient for any field application (12).

To prevent  particle  aggregation and settling,  two main  strategies  can be  adopted.  Usually,  a 

surface modification via adsorption of polymers is used for NZVI (16-18): polymeric chains form a 



soft “shell” around the particles (17-18), providing electrostatic, steric, or electrosteric stabilization. 

As an alternative, highly concentrated NZVI (but also the less stable MZVI) can be stabilized by 

modification of the rheological properties of the dispersant fluid. Previous studies have shown that 

biodegradable polymers, namely xanthan gum, are effective in providing both steric and viscous 

(kinetic) stabilization of iron slurries (12, 19). Xanthan was found to be a good carrier for highly 

concentrated  NZVI  and  MZVI  suspensions  (12),  increasing  their  column  breakthrough,  and 

facilitating the injection processes due to the shear thinning behavior of the dispersions (20). Shear-

thinning fluids are characterized by decreasing viscosity with increasing shear rate. Consequently, 

xanthan solutions can enhance stability of the iron dispersion when the product is stored (as high 

viscosity prevents gravitational settling and aggregation of the particles),  and do not hinder the 

injection operations, that are conducted at high shear rates (thus reducing the viscosity of the fluid). 

Modeling iron transport during injection and under natural conditions is of pivotal importance for 

the interpretation of lab tests and in order to design and implement effective field applications. A 

wide  literature  is  available  on  modeling  colloid  transport  in  groundwater  systems,  particularly 

referred to naturally occurring particles, such as microorganisms (for the risk they represent for 

human  health)  and  clays  or  oxides  (that  are  known  to  act  as  carriers  for  strongly  sorbing 

contaminants). Models are commonly based on a modified advection-dispersion equation, including 

exchange terms describing particle  deposition onto the soil  matrix,  and the consequent  release. 

Concentration-dependent deposition rates for the simulation of blocking and ripening phenomena 

are commonly used  (21-22) and spatial-dependent sites have been adopted to mimic mechanical 

filtration or straining (23). Conversely, mechanistic approach provides a physical justification of the 

macroscopic deposition/release coefficients (24-25). In both approaches, the Newtonian fluid flow 

and  colloidal  transport  equations  are  solved  independently,  or  are  only  weakly  or  empirically 

coupled (23, 26-27). However, when dealing with iron suspensions, ripening and straining can often 

lead to a progressive clogging of the porous medium. Therefore, hydrodynamic parameters and 

fluid properties cannot be considered independent on the concentration of deposited and suspended 



particles (28). Clogging phenomena are usually simulated using a filter-averaged approach, mostly 

for wastewater treatment applications  (28). Other studies are related to the change in pore space 

geometry due to mineral precipitation (29) or microbial growth (30-31).

In this study, colloid transport is modeled using a dual-site (physico-chemical interactions and 

straining)  advection-dispersion-deposition  equation.  A  general  formulation  for 

attachment/detachment  dynamics  is  herein  proposed,  capable  to  describe  all  commonly  used 

deposition mechanisms and kinetics, namely linear attachment, blocking, ripening. The influence of 

colloid transport on porosity, permeability, and fluid viscosity is explicitly included into the model. 

The shear-thinning behavior of the iron slurries is described including a variable apparent viscosity 

in Darcy’s law (32). The set of model equations is implemented in a finite-differences code, that 

represents  the  extension  of  the  MNM1D  model,  previously  proposed  by  the  authors  for  the 

simulation of colloid transport under transient ionic strength  (27).  The model is  used to fit  1D 

column tests conducted at highly concentrated (20 g/l) slurries of MZVI and NZVI dispersed in a 

non-Newtonian gel of xanthan gum (3 g/l) (12). 

Theory and mathematical modeling

In the following paragraphs the non-Newtonian flow and colloidal transport model is presented. 

Clogging effects are modeled by defining state equations for viscosity of the mobile phase and for  

porosity,  both  expressing  the  dependence  of  these  parameters  on  the  amount  of  deposited  or 

suspended particles. A modified Cross model (33) is formulated, describing the viscosity of shear-

thinning suspensions of NZVI and MZVI particles as a function of shear rate, particle and xanthan 

concentration. Clogging of porous medium is modeled through changes of permeability, used here 

as a proxy, which is function of the deposited particles. Clogging and non-Newtonian properties of 

the  pore  fluid  are  included  in  variable  (time  and  space  dependent)  permeability  and  viscosity 

coefficients. Therefore, a modified Darcy’s law for non-Newtonian fluids is adopted. As for the 

transport of particles, a novel formulation for particle attachment/detachment dynamics is proposed. 



The proposed formulation relies on the hypotheses of 1D horizontal quasi-stationary flow, constant 

discharge,  and  negligible  compressibility  of  particles,  porous  matrix,  pore  fluid,  and  particles 

deposits.

Porosity. The void space of the porous medium (characterized by the clean bed porosity n) can be 

filled by (i) the immobile deposited particles, characterized by a volume fraction  sε , and (ii) the 

mobile phase, with a volume fraction sm n εε −= , which comprises the pore fluid (water, viscous 

solution of xanthan, etc.) and the suspended particles. During the transport of highly concentrated 

suspensions  of  iron  particles,  the  effects  of  attachment,  detachment,  and  straining  processes 

determine a change of the volume fraction  
mε  available for the flow, from the initial clean bed 

porosity, n , with a progressive clogging of the medium, due to the accumulation of particles in the 

solid phase:

( ) b
m s

s

s n n sρε ε
ρ

= − = − (1)

where mε  is the volume fraction of the mobile phase, bρ  is the porous medium bulk density [ML-

3],  s  is mass of retained particles per unit mass of porous medium [-], and  sρ  is the density of 

particle deposits [ML-3].

Permeability. Modification of porosity and specific surface area of the porous matrix, due to the 

deposition of particles, affects the permeability of the porous medium. According to Kozeny (34), 

the permeability depends on the third power of porosity and on the inverse square of the specific 

surface area of the matrix, which evolves from the clean bed surface area 0a  [L-1] according to the 

following expression: 
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where θ  is the fraction of the surface area of the deposited particles pa  [L-1] that contributes to 

the increase of the surface area of the matrix, and pρ  is the density of the particles [M L-3]. The 

higher is θ  (always lower than 1), the more irregular and dendritic is the particle deposit.

The derived expression for the permeability K  [L 2] is therefore:
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where 0K  is the clean bed permeability (corresponding to porosity  n  and specific surface area 

0a ).

Mobile  phase  viscosity. The  dependence  of  the  dynamic  viscosity  of  xanthan-stabilized 

suspensions of iron particles on shear rate  γ&  [T-1] can be expressed by an extended Cross model 

(33) accounting for both xanthan and particle concentration: 

( ) ( )
( ) ( )

,0 ,
,

,
, ,

1 m

m x m
m m x m c

m

c c
c c

c
χ

µ µ
µ γ µ

λ γ
∞

∞

−
= +

 + × 
&

&
(4)

where  c  is  the concentration of suspended particles [ML-3],  xc  is  the xanthan concentration, 

( )cmλ  is the so-called Cross time constant [T], ( )cmχ  is the Cross rate constant [-], ( )xm cc,0,µ  is the 

zero shear viscosity, and ∞,mµ  is the asymptotic viscosity at high shear rates, here assumed to be 

equal to pure water viscosity.

Previous studies  (35-36) have shown that zero shear viscosity is significantly affected by both 

xanthan and iron particles concentrations. Because of the relatively small xanthan concentration (0-

3  g/l),  a  linear  dependence  on  this  parameter  can  be  introduced  according  to  the  following 

expression:
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where  *
,0mµ  is  the  zero  shear  viscosity  measured  at  the  xanthan  concentration  *

xc ,  and  the 

dependence on iron nanoparticles concentration is lumped inside the function  ( )M c  that can be 

derived  from  experimental  data.  Relationships  for  the  other  Cross  parameters  as  functions  of 

particle and xanthan concentration are reported elsewhere (35) and a brief description is provided in 

the Supporting Information.

The “shear rate in porous medium”, i.e. the apparent shear rate experienced by a fluid flowing 

through a porous medium (37-38) is:

m

m
m K

q
ε

αγ γ= (6)

where  mq  is the darcyan velocity [LT-1],  and the shift factor  γα  is introduced to superimpose 

rheograms obtained from rotational tests and flow through porous medium (39).

Darcy’s law. Under laminar conditions, non-Newtonian effects can be lumped into the porous 

medium  viscosity  coefficient  ( mµ ),  while  the  deposition  of  particles  over  time  modifies  the 

hydraulic conductivity. The pressure gradient is therefore related to the specific discharge of the 

fluid phase (constant during the tests) according to:

m
m

p q
x K

µ∂ = −
∂ (7)

where p  is the pressure, and  K  and mµ  are defined by eq. (3), (4), and (5) . 

Colloid  transport  equations. The  iron  particle  transport  is  governed  by  a  coupled  set  of 

equations describing the advection and dispersion phenomena in the liquid phase and the multisite 

interaction processes with the solid phase:
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where D  is the hydrodynamic dispersion [L2T-1]. 



The second equation represents the generic interaction site with the solid phase, which can model 

physico-chemical  attachment/detachment  processes  with  linear,  blocking  or  ripening  dynamics, 

straining etc.

A general formulation of reversible attachment/detachment dynamics is here proposed (Figure 1), 

which can be adapted both to blocking or ripening phenomena:

( ) iidbiiam
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where  iak ,  is  the  deposition  rate  [T-1],  idk ,  is  the  release  rate  (eventually  equal  to  zero  for 

irreversible deposition) [T-1], and  iA  [-] and  iβ  [-] are respectively the multiplier and exponent 

coefficients that define the interaction dynamics.

For  0>iA  and  0>iβ , the deposition rate increases with increasing concentration of attached 

particles, thus resulting in a ripening dynamics. Conversely, for 1=iβ , ii sA max,1−=  the blocking 

model is obtained, being ismax,  the maximum concentration of particles that can be deposited for the 

i-th interaction site. For 0=iA  the linear reversible model is found.

Non-Newtonian flow and transport model. The complete set of equations is therefore:
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where  50d  is the mean diameter of the porous material [L] and xc  is the xanthan concentration 

which is simulated as a conservative species. 

Two interaction sites  are considered:  S1,  for  deposition and release due to  physico-chemical 

phenomena  following  the  general  kinetics  (9),  and  S2,  for  a  reversible  straining  site  using 

Bradford’s approach (23, 40).

Attachment  coefficients  for  both  interaction  sites  were  calculated  according to  the  following 

expression, in order to account for transients in xanthan concentrations:
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where  0,xc  is  the  injected  xanthan  concentration  and  iaxia kk ,, =  during  injection  ( 0,xx cc = ), 

iawia kk ,, =  during flushing ( 0=xc ).  Detachment coefficients are calculated in a similar way.



Materials and methods

Detailed description of materials and methods for the column tests here simulated was provided 

in a previous work (12). See Supporting Information for further details.

Materials. Commercial  powders  of  MZVI  (BASF-HQ,  Germany)  and  suspensions  of  NZVI 

(RNIP-10DS from Toda Kogyo Corp., Japan) were used for column transport experiments with 

silica sand (Sibelco, Italy). Iron particles at a concentration of 20 g/l were dispersed in xanthan 

solution  (3 g/l,  Jungbunzlauer,  Switzerland)  in  DI  water,  or  in  xanthan solution in  water  with 

modified ionic strength (12.5 mM (41)). 

Experimental  protocol.  Iron  suspensions  were  injected  in  horizontal  sand-packed  saturated 

columns, 0.46 m long. The test protocol included a pre-conditioning with water (DI or 12.5 mM), 

an injection of 7 (or 26) PVs (pore volumes) of iron suspensions, a final flushing with 26 (or 15) 

PVs of DI (or 12.5mM) water.

Tests were named according to the injection protocol: N7X is NZVI injected for 7 PVs dispersed 

in xanthan with DI water, M26X is MZVI dispersed in xanthan and injected for 26 PVs; N7XIS is 

NZVI injected for 7 PV dispersed in xanthan with modified ionic strength, etc.

Inlet  and  outlet  iron  concentrations  were  measured  in-line  using  two magnetic  susceptibility 

sensors  (12). Also, the total iron concentration (in pore fluid and deposited on sand grains) was 

measured after slurry injection (before flushing) every 2 cm along the column using a non invasive 

coaxial susceptibility sensor. The pressure drop at the column ends was continuously monitored.

Numerical implementation and inversion of the model equations. The model equations (10) 

are  implemented  in  a  finite-difference scheme,  thereby extending to  iron slurries  the  approach 

adopted  in  previous  works  on  colloid  transport  (27,  42).  The  system  of  equations  is  solved 

iteratively using a Picard’s scheme to derive the spatial and temporal evolution of the variables. 

Pressure drop is calculated integrating the pressure gradient over the entire length of the column L:

( )
0

; , ,
L m

x mp t s c c q dx
K

µ∆ = − ∫
(12)



 For each test, the set of fitting parameters (Table 1) was determined by constrained non linear 

least  squares  fitting  of  experimental  data  using  a  large-scale  algorithm based  on  the  interior-

reflective  Newton method  (43) and  data  regularization.  Fitted  parameters  are  ρs,  , θ αγ and  the 

adhesion/release coefficients (4 coefficient for each fluid phase, plus 3 parameters common to both 

phases).  Coefficients were determined via simultaneous fitting of breakthrough curves,  pressure 

drop over time, and measured spatial distribution of total iron (Figure 3). 

Results and discussion

Experimental and model fitted breakthrough curves, and pressure drop over time are reported in 

Figure 2 for all experiments. The model proved to accurately reproduce the experimental data under 

different  conditions.  Further  confirmation  of  the  reliability  of  the  model  and  of  the  inversion 

procedure is provided by the comparison between results coming from short duration injection tests 

(M7X and N7X) and long injection tests (M26X and N26X). 

Pressure  drop  curves.  The  pressure  drop  evolution  over  time  (Figure  2d-f  and  j-l)  is 

satisfactorily  reproduced  by  the  model,  that  includes  the  constitutive  equation  for  change  in 

viscosity,  and  it  is  also  able  to  capture  the  progressive  clogging  of  the  porous  medium.  This 

phenomenon is shown by a linear increase of pressure drop during injection (especially in presence 

of nanoscale iron). The introduction of the apparent viscosity into the Darcy’s law  allows for a 

correct  simulation  of  the  stepwise  pressure  increase  during  injection,  when  xanthan  solution 

displaces water. Nevertheless, it is worth to notice that the modeled curves usually exhibit a more 

abrupt descent at the beginning of the flushing, if compared to the more smoothed profile of the 

experimental  measurements.  This is  probably due to the simple model adopted to  simulate the 

transport of xanthan gum in fast transient conditions (i.e. at the early beginning of flushing).

Deposition and release dynamics. Simulated attachment/detachment coefficients (Table 1) and the 

corresponding simulated breakthrough curves (Figure 2) highlight, as a general rule, that attachment 

is lower during injection, higher during flushing. The difference among attachment coefficients for 



particles dispersed in water (kaw,i) and xanthan (kax,i) is approximately one order of magnitude. This 

is in agreement with experimental evidence of increased stability of the suspensions provided by 

xanthan (12). Straining was included in the model based on the observation of experimental profiles 

of retained particles (Figure 3), which show the typical shape of strained deposits  (14). Xanthan 

gum, characterized by an high molecular weight, is able to adsorb on the particles generating a 

brush layer that provides steric stabilization of the suspensions,  but significantly increasing the 

overall hydrodynamic radius of the particle. No specific measurements are available in the literature 

for the thickness of the brush layer formed by xanthan molecules. However, the overall dimension 

of coated particles is likely to be in the order of few microns and therefore straining phenomena can 

occur. 

Microiron (M26X, M7X and M7XIS, Figure 2a-c) tends to reach the influent concentration at the 

column outlet during the injection phase, thus suggesting that blocking phenomena are likely to 

occur (negative values of 1A ). Both the concentration profiles of retained particles (Figure 3a) and 

mass  balances  (Supporting  Information)  confirm the occurrence  of  blocking:  the  percentage  of 

eluted particles during injection is lower for short-lasting experiments (M7X and M7XIS), higher 

for the long-lasting experiment (M26X), showing that iron particles are retained mostly in the early 

stages of the test. Conversely, breakthrough curves for nanoiron (N26X, N7X, N7XIS, Figure 2g-i) 

tend to stabilize at concentrations slightly lower than the inlet, suggesting that particle deposition 

follows a ripening dynamics mechanism (9), modeled by positive values of  1A . Ripening has a 

negative impact on the medium permeability, thus producing the slow linear increase in pressure 

drop curves during injection (Figure 2j-l).

For tests  M7XIS and N7XIS, breakthrough curves exhibit  a more complex deposition/release 

dynamics if compared to results obtained for tests undertaken in DI water (Figure 2c, and i). MZVI 

follows a blocking dynamics mechanism ( 01 <A ), NZVI a ripening one ( 01 >A ), as well as for 

tests  in  DI water,  and as  expected.  However,  in  these  cases  straining plays  a  relevant  role,  as 



suggested  by  the  fitted  coefficients  (Table  1)  and  the  concentration  profiles  (Figure  S3  in 

Supporting Information).  Particle release during flushing takes place in two steps: first,  a rapid 

release of a small amount of iron is observed, followed by a slower release of larger quantities of 

microparticles. Lower amounts of particles are deposited in the physico-chemical interaction site 

during injection (see Supporting Infortmation and Figure 3a), and are then rapidly released at the 

early stages of flushing. Conversely, larger amounts are retained on the straining site, and slowly 

released during flushing, thus producing the abovementioned tailing effect. This behavior is evident 

in N7XIS. It is likely that changes in ionic strength do not only affect the electrical interactions 

among particles, but have also an effect on the brush layer. This process results in a more delayed 

release (and the consequent tailing in the breakthrough curves) in N7XIS if compared to M7XIS, 

where the inter-particles attraction is less pronounced due to absence of magnetic interactions (12). 

Concentration and permeability profiles. 

As a  general  rule,  the  permeability  decrease  at  the  end of  the injection (Figure  3b)  is  more 

pronounced for NZVI, less pronounced for MZVI tests. The permeability reduction is modeled here 

as the result of two contributions, namely the reduction of mε , and the increase of specific surface 

area, a . For all tests the latter was found to dominate (see Supporting Information for plots of these 

contributions), which is also in agreement with the literature (28). Nevertheless, also reduction of 

mε  was  found not  to  be  negligible,  in  particular  for  NZVI experiments,  where  the  volume of 

deposited particles becomes quite relevant, due to ripening phenomena. This finding confirms that 

the  use  of  equation  (3)  is  appropriate  when  modeling  clogging  of  the  porous  medium due  to 

deposition of iron particles, including effects of changes in both porosity and specific surface area.

Environmental  implications.  The  work  herein  presented,  although  implemented  in  one 

dimensional geometry for the interpretation of laboratory experiments, can be the first step of a 



modeling  framework  for  field-scale  design  of  MZVI-  and  NZVI-  based  interventions.  The 

numerical  model,  here  implemented  for  1D-  domains,  can  be  extended  to  radial,  spherical  or 

general 3D geometries accounting for the change in velocities and shear rate over space and thus 

showing a more pronounced dependence on non-Newtonian behavior of the suspensions. 

The concentration of iron particles and xanthan gum here considered are similar to those of full-

scale applications. Field injections of iron-based slurries are usually performed with direct push 

equipments, which ensure an almost constant discharge in different lithologies and in time. The 

shear-thinning properties of xanthan gum provide colloidal stability of MZVI and NZVI slurries 

without hindering the injection, thanks to the low viscosity at high shear rates. Both experimental 

and modeling results show that MZVI stabilized using xanthan can be injected more easily, without 

significant retention in coarse sand, if compared to NZVI. However, the final choice of the particle 

size for field applications should derive from a careful balance between mobility and reactivity, 

which is likely to be on the side of NZVI.
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CAPTIONS:

Table 1: Fitted coefficients for micro- and nanoiron column tests.

Figure 1: Isotherms of colloid deposition and release for the general kinetic formulation of eq. (9).  

Curves are obtained using typical values of iron transport tests for iak , , idk , , bρ , mε . 1=iβ  in all 

cases. 0>iA  for ripening, 0=iA  for linear isotherm, 0<iA  for blocking.

Figure 2: Model fitted and experimental breakthrough curves (a-c and g-i) and pressure drop (d-f 

and j-l) at column ends as a function of time, for microiron (M26X, M7X, M7XIS) and nanoiron 

(N26X, N7X, N7XIS). Experimental breakthrough curves of colloid concentration were sampled 

with a time interval of 1 s, plotted interval was adopted purely for graphical reasons. 

Figure  3:  Total  iron  concentration  profiles  0cctot  (a)  and  normalized  permeability  coefficient 

0KK (b) along the column at the end of the injection phase. Simulated and measured profiles are 

reported  as  total  (suspended  plus  retained)  iron  concentration,  referred  to  the  initial  porosity 

according to ( ) nscc btot ρ+= .



Tables and Figures:

Table 1:

Parameter
Test

M26X M7X M7XIS N26X N7X N7XIS

ρs (kg/m3) 1.26 10∙ 3 1.26 10∙ 3 2.48 10∙ 3 3.35 10∙ 3 3.05 10∙ 3 1.13 10∙ 3

θ (-) 3.47 10∙ -2 1.68 10∙ -2 8.28 10∙ -3 1.04 10∙ -3 1.52 10∙ -3 5.63 10∙ -4

αγ (g/m3) 0.82 0.85 0.94 0.88 0.88 0.79

kax,1 (1/s) 3.53 10∙ -3 7.25 10∙ -3 1.08 10∙ -4 2.47 10-5 5.21 10∙ -5 1.00 10∙ -5

kdx,1 (1/s) 2.98 10∙ -3 6.68 10∙ -3 2.13 10∙ -3 6.11 10∙ -4 1.72 10∙ -3 1.38 10∙ -3

kaw,1 (1/s) 8.17 10∙ -2 1.68 10∙ -1 6.82 10∙ -1 4.82 10∙ -5 2.43 10∙ -4 2.22 10∙ -5

kdw,1 (1/s) 2.05 10∙ -2 4.91 10∙ -2 8.56 10∙ -4 5.06 10∙ -3 1.33 10∙ -2 4.12 10∙ -2

β1 (-) 0.25 0.28 1.09 0.55 0.58 0.79

A1 (-) -3.63 -4.40 -864.9 851.22 936.34 17652

kax,2 (1/s) 2.08 10∙ -4 2.95 10∙ -4 1.47 10∙ -3 1.79 10∙ -3 2.01 10∙ -3 8.46 10∙ -3

kdx,2 (1/s) 1.97 10∙ -4 9.54 10∙ -5 4.05 10∙ -5 1.89 10∙ -3 4.40 10∙ -3 1.35 10∙ -3

kaw,2 (1/s) 2.09 10∙ -3 3.23 10∙ -3 6.40 10∙ -4 3.48 10∙ -2 1.57 10∙ -2 4.27 10∙ -1

kdw,2 (1/s) 2.00 10∙ -3 8.00 10∙ -4 3.07 10∙ -3 1.72 10∙ -4 1.10 10∙ -3 1.64 10∙ -2

β2 (-) 0.009 0.01 0.25 0.081 0.074 0.34
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BRIEF: A flow-transport model is proposed and applied to experimental data for the simulation of 

transport in porous media of highly concentrated non-Newtonian suspensions of iron colloids for 

groundwater remediation.


