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Abstract. We investigate the behaviour of an electron population during the evolution of a
spontaneous collisionless magnetic reconnection event, reproduced by a two-dimensional ver-
sion of a Hamiltonian gyrofluid model. This model can be applied in electromagnetic problems
where nonlinear effects are important, such as the sawtooth crash in the core of fusion devices.
The electron dynamics in the presence of the reconnection fields is reconstructed by means of a
test particle code, based on a relativistic Hamiltonian guiding centre formulation of the electron
motion. The moments of the electron distribution function and the effects determined by the
peculiar structure of the parallel electric field on the electron temperature in the reconnection
region are reconstructed and compared with the corresponding quantities evolved by the fluid
reconnection model.

1. Introduction

One of the main features of magnetic reconnection is that a local relaxation of the topological
magnetic structure is accompanied by a local fast release of magnetic energy, that can be
converted into heating of the plasma and particle acceleration. Thermal electrons can be
accelerated by the strong electric fields formed during magnetic reconnection, thus becoming
suprathermal or even relativistic [1]. Electron acceleration following sawtooth crashes and
disruptions has been observed in laboratory tokamak experiments [2], [3], as well as during solar
flares [4] and in diffusion regions of the Earth’s magnetotail [5]. The theoretical and numerical
investigation of the electron acceleration mechanism has considered various models of magnetic
reconnection in different parameter regimes [6], [7], [8], [9], [10]. As these works have pointed
out, the structure and, when considered, the evolution of the reconnection electric field play a
significant role in determining the energy and the amount of energetic electrons generated.
In the rarefied, high temperature plasmas that characterize many configurations of interest,
collisions are so rare that they do not represent an efficient mechanisms for breaking the magnetic
field lines. Moreover, the electron-ion collision time can be longer than the observed relaxation
time as is the case, for instance, of sawtooth crashes occurring in Tokamak esperiments.
In a fluid representation of magnetic reconnection in such collisionless plasmas, the finite electron
mass can account for reconnection on so fast relaxation times (see [11] and references therein).
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In our work, we reconstruct the response of a population of thermal electrons to the fields
characterizing an inertial magnetic reconnection process where a strong guide field is present.
This process is described by a gyrofluid model where finite ion Larmor radius effects are retained.
The resulting electric field exhibits a structure considerably different with respect to the electric
field arising in the two-fluid, cold-ion model that represents the limit of the gyrofluid model
for ρi → 0 [12], [13]. In the cold-ion limit, the parallel electric field has a monopole structure,
peaked in the X-point region, that significantly accelerates the electrons during the nonlinear
phase of the process, although even at this stage neither highly energetic nor relativistic tails
are observed in the electron distribution function [14]. Aim of our investigation is to determine
whether a more significant amount of energetic electrons is generated by the finite-ρi electric
field and how the electron distribution function and the kinetic moments are distorted with
respect to the corresponding fluid quantities.
The gyrofluid model of magnetic reconnection and the equations reproducing the dynamics of
the electron guiding centers in the presence of the reconnection fields are introduced in Section 2
and in Section 3, respectively. The results of the numerical simulations performed with the code
where these equations have been implemented are presented in Section 4. Finally, conclusions
are drawn in Section 5.

2. The gyrofluid reconnection model

In our investigation, we follow the evolution of the reconnection fields evolved by a Padé
approximant version of a Hamiltonian gyrofluid model introduced in Ref. [15]. This model,
that has been investigated in Ref. [16], can describe both the “inertial” (βe ≪ me/mi) and
the “kinetic” (βe ≫ me/mi) regimes of the Alfvén wave (βe is the ratio of the electron kinetic
pressure to the magnetic pressure) and extends the models adopted in Refs. [17] and [18] by
additionally evolving the ion guiding center density. In particular, we focus on a two-dimensional
configuration, where the effects related to the curvature of the magnetic field lines and the
dependence of the fields on z are neglected. The density of the ion guiding centers, ni, the
electron density, ne, and the magnetic flux, ψ = Az, are evolved according to the equations

∂ni

∂t
+ [Φ, ni] = 0 , (1)

∂ne

∂t
+ [φ, ne] − [ψ,∇2ψ] = 0 , (2)

∂(ψ − d2
e∇2ψ)

∂t
+ [φ,ψ − d2

2∇2ψ] + ρ2
s[ψ, ne] = 0 , (3)

where Az is the z−component of the vector potential, ρs =
√

Temi/(eB2) is the sound Larmor
radius, related to the electron temperature, Te, de =

√

me/(µ0ne2) is the electrons skin depth,
φ is the electrostatic potential, Φ = 1/(1 − ρ2

i∇2)φ is the gyroaveraged electrostatic potential,
ρi =

√

Ti/Teρs is the ion Larmor radius, Ti, mi and me represent the ion temperature, the ion
and the electron masses, respectively, and [A,B] = ez ·∇A×∇B. Moreover, the electron density
is related to the ion density and to the electrostatic potential

ne =
ni

1 − ρ2

i

2

+
∇2

1 − ρ2
i∇2

φ . (4)

Equations (1)-(4) have been normalized according to

(t, x, de, ni, ne, ψ, φ) = (
vA
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n0
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ρ̂2

s
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di

eφ̂

Te
) (5)
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where vA = L/τA, L is the macroscopic scale length and τA =
√
nML/By0 is the Alfvén time.

The fluid fields characterizing the magnetic reconnection process are calculated considering
an equilibrium magnetic flux function, ψeq = 0.1/ cosh2 x, unstable to perturbations around
the rational surface located at x = 0 and chosen in such a way as to avoid too early cross-
talking between magnetic islands. In particular, the analytical equilibrium flux function is
approximated up to 11 modes by a truncated Fourier series, since we impose double periodic
boundary conditions. The ion and the electron densities are assumed to be uniform at the
equilibrium, and the temperatures for both the ions and the electrons are taken to be constant
throughout the reconnection process. The initial perturbation is applied on the ion density,
ñi ∝ cos(x+ y) − cos(x− y).

3. The electron equations

The dynamics of the electron guiding centers in the presence of the reconnection fields has
been reconstructed in the same geometry of the gyrofluid model introduced in Sec. 2. In
order to take into account the eventuality of a very large increase in the electron velocity,
we adopted a relativistic Hamiltonian formulation [19]. The unperturbed relativistic guiding-
centre phase-space Lagrangian is expressed in terms of the guiding-centre coordinates as

L ≡ (p||b − eA) · Ṙ − m
e µθ̇ −W , where b = B/B, p|| ≡ µ0γv · b, γ ≡

√

1 + (p2
|| + p2

⊥)/(m2
0c

2),

m ≡ m0γ, R denotes the guiding-centre position, (p||, µ, θ) are the guiding-centre momentum
coordinates, and (t,W ) are the guiding-centre time and energy coordinates. The usual procedure
yields the equations of motion from the relativistic Hamiltonian, i.e.

ẏ = ∂H/∂py , ż = ∂H/∂pz , (6)

ṗy = −∂H/∂y , ṗz = −∂H/∂z , (7)

where H =
√

p2
||c

2 + 2µBm0c2 +m2
0c

4 − eΦ, µ = p2
⊥/(2m0B) is the magnetic momentum,

W = eΦ is the energy, c is the speed of light, and the conjugate momenta to the y and z
coordinates are given by

py = p||by − eAy , pz = p||bz − eAz . (8)

The resulting set of equations describes the evolution in time of the (x, y, p||) guiding-centre
coordinates [14]

ẋ =
1

(bygz − bzgy)
{by[ṗz + e(

∂ψ̃

∂t
+
∂ψ̃

∂y
ẏ) − p||(

∂bz
∂t

+
∂bz
∂y

ẏ)] − bz[ṗy − p||(
∂by
∂t

+
∂by
∂y

ẏ)]} , (9)

ẏ =
p2
||

∂bz

∂x − p||e
∂Az

∂x −mbz(µ
∂B
∂x − e∂Φ

∂x )

m(gzby − gybz)
, (10)

ṗ|| =
1

(bygz − bzgy)
{gz ṗy−gyṗz +gy[p||(

∂bz
∂t

+
∂bz
∂y

ẏ)−e(∂ψ̃
∂t

+
∂ψ̃

∂y
ẏ)]−gzp||(

∂by
∂t

+
∂by
∂y

ẏ)} , (11)

where the two quantities gy and gz are defined as

gy = (p||
∂by

∂x − e∂Ay

∂x ) , gz = (p||
∂bz

∂x − e∂Az

∂x ) .

and the components of the vector potential can be expressed in terms of the magnetic field
components as Ax = 0, Ay = B0x, and Az = (ψeq + ψ̃).
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3.1. Kinetic moments in the δf approach

The behaviour of the electron guiding-centers has been reconstructed by means of a test particle
code, where Eqs. (9)-(11) have been implemented and a Maxwellian distribution function
has been assumed for the electrons at the equilibrium. We adopted a δf technique, which
has the advantage of reducing the number of particles required in order to adequately fill
the four-dimensional phase space (x, y, p||, p⊥) while resolving small fluctuation in the electron
distribution function [20]. The δf algorithm assigns to each particle (marker), whose dynamics
is described by the equations introduced in Sec. 3, a weight, expressing the number of particles
represented by the marker itself. The kinetic momens are then derived in each cell (labelled by
i) of the real space by summing the contribution expressed by the weight of the markers, wj .
This yields to the following expressions for the perturbed density

(ñe)i =
∑

j∈i

(wj∆Γ
(c)
j )/(∆Γ

(p)
i ) , (12)

and the current density

J̃ =
∑

j∈i

(ep||jwj∆Γ
(c)
j )/(mγ∆Γ

(p)
i ) , (13)

where Γ
(c)
j represents the volume in canonical space occupied by marker number j, and Γ

(p)
i is

the volume of the i− th cell in the real space. By the same way, the electron temperature can
be obtained as Te ≡ pe/(n0 + ñe), where pe is the trace of the pressure tensor.

4. Numerical results

Fluid simulations were performed using a grid of 1024×128 points. Periodic boundary conditions
along x and y have been imposed both to the fluid and to the test particle codes. In order to
carry out a comparison with the cold-ion limit of the reconnection model, we ran two fluid
simulations characterized by different values of the (normalized) parameter ρi = 0.2, 0, 4, while
the values of the two parameters de and ρs have been kept fixed and chosen in such a way
to correspond to typical fusion devices parameters. Thus, assuming a characteristic length
L = 10−2 m, simulations were performed for the (un-normalized) values de = 0.002 m and
ρs = 0.004 m, corresponding to an equilibrium density n0 = 0.71019 m−3 and an electron
thermal temperature, Te ≈ 1.53 keV, respectively. According to the characteristic evolution
time derived from the linear growth rate calculated in the simulations, which is in agreement
with the asymptotic formula γ ≈ 2(2deρ

2
τ/π)1/3 (ρ2

τ = ρ2
i +ρ2

s) [21], the fluid fields are adequately
sampled by saving the output data each 7 Alfvén times for the ρi = 0.2 simulation and each 5
Alfvén times for the ρi = 0.4 simulation. With the amplitude of the perturbation adopted in
the simulations (10−6), the time required in order to reach the nonlinear phase varies between
110 τA for ρi = 0 and 50 τA for ρi = 0.4, while the saturated phase of the process is attained
after 270 τA when ρi = 0 and 190 τA when ρi = 0.4.
The perturbed magnetic flux and the electrostatic potential calculated by the reconnection code
are then read by the electron code, which evolves the spatial position, the parallel velocity and
the weight of the markers. The results of the electron simulations presented in this paper have
been obtained by loading 1 × 107 particles.
A first comparison between the moments provided by the electron simulations and the
corresponding fluid quantities confirm a good agreement of the linear growth rate, as shown
for the current density in fig. 1.
Similarly to the case ρi = 0, in the linear phase of the process the parallel electric field provided
by the fluid simulations, E|| = −∇||Φ̃ − ∂ψ̃/∂t, exhibits a structure peaked in the X-point
region also when ρi > 0. Differences arise during the nonlinear phase. As shown in fig. 2, when
ρi = 0 the electric field has a positive peak still located at the X-point, whereas it is negative
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elsewhere. In the case ρi 6= 0, instead, the electric field structure exhibits highly positive values
along fine spirals inside the magnetic island as well as all along the magnetic island separatrix
(fig. 3). This difference suggests that the amount of thermal electrons that could be accelerated
by the parallel electric field in the latter case could be larger than the number of accelerated
particles in the case ρi = 0 . In the cold-ion limit, in fact, we found that electrons crossing
the X-point region start becoming significantly accelerated by the electric field at the end of
the nonlinear stage, although this acceleration is not so important as to produce either highly
energetic tails or relativistic ones in the electron distribution function [14]. Also for the two
considered values of ρi 6= 0, no energetic electrons are observed during the linear phase and
the parallel electron temperature, reconstructed according to the procedure described in Sec.
3.1, remains constant until the beginning of the nonlinear phase. At this step, hotter regions
appear along the separatrix close to the X-point first, and then elongate along the separatrix,
according to the positive electric field, as plotted in figs. 4 and 5. When the process approaches
saturation, significantly accelerated electrons are visible also in the denser regions inside the
magnetic island. Such a behaviour of the temperature can be related to the positive structures
of the electric field that characterize also the inner regions at this step of the process, as shown
in figs. 6 and 7. This evolution of the electron temperature, that increases in ≈ 50% in the
hottest regions of the magnetic island both for ρi = 0.2 and ρi = 0.4, corresponds to a different
deformation of the electron distribution function for the two values of ρi, drawn in figs. 8 and 9.
While the bulk of the electron distribution is considerably smoothed in both cases, the amount
of thermal electrons that increase their parallel velocity is larger when ρi = 0.4, thus giving
a more significant contribution to the high energy slopes of the distribution. Although the
maximum value of the parallel electric field is similar for both values of ρi m, in fact, in the
case ρi = 0.4 this value is nearly uniform along the fine positive spirals inside the island, as well
as along the island separatrix, while it characterizes only the region surrounding the X-point
when ρi = 0.2, as can be seen in fig. 10. Therefore, in the latter case only electrons crossing the
X-point region undergo the same relevant acceleration that affects all electrons streaming along
the highly positive electric field structures when ρi = 0.4.

5. Conclusions

We have numerically investigated the response of a thermal electron population to the fields
developed during collisionless reconnection in plasma regimes where the effects of the electron
and ion temperatures are important. In particular, the presence of a finite ion temperature
affects the evolution of the electric field parallel to the magnetic field lines during the nonlinear
stage of the reconnection process, when highly positive fine structures develop not only along
the magnetic separatrix, but in all the area enclosed by the magnetic island. Since this feature
becomes more distinct for higher values of the ion temperature, and in order to compare the
effects of such structures with those related to the cold-ion limit of the reconnection model, we
considered two different values of the ion Larmor radius, corresponding to a ratio between the
ion and the electron temperatures equal to 1 and 1/4, respectively. Similarly to the cold-ion
case, also for ρi 6= 0 a visible electron acceleration can be observed after the beginning of the
nonlinear phase, when the regions characterized by a larger density and by positive values of the
electric field become rapidly hotter than the surrounding areas. This effect is more pronounced
towards the saturated stage, when the fine positive structures of the electric field accelerate also
the electrons streaming inside the magnetic island. As a result, the distribution function of the
electron parallel velocities, initially set as a Maxwellian, is considerably deformed, with a larger
amount of energetic electrons produced for the larger value of the ion temperature. Furthermore,
the electron temperature, set by the (constant) electron skin depth at the beginning of the
simulations, varies up to the 50% of its initial value in the hottest regions of the magnetic
island. Although a more refined reconstruction of the electron temperature behaviour would be
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obtained only if the kinetic code would feed back its quantities to the fluid reconnection code,
these results show that the isothermal assumption is respected during the linear phase of the
reconnection process, while the higher the ion temperature is, the most it is violated during the
nonlinear phase.

6

Rettangolo

Rettangolo



Figure 1. Growth in time of the fluid current density (continuous line) and of the kinetic
current density (stars) at the X − point during the linear phase of the reconnection process.

Figure 2. Contour plot of the
parallel electric field for ρi = 0 m.

Figure 3. Contour plot of the
parallel electric field for ρi = 0.004 m.
The figure is taken at a step of the
nonlinear phase of the reconnection
process characterized by a width of
the magnetic island close to the
island width in fig. 2.
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Figure 4. Contour plot of the par-
allel electron temperature during the
nonlinear phase of the reconnection
process (ρi = 0.004 m).

Figure 5. Contour plot of the
parallel electric field taken at the
same time step of the nonlinear phase
of the reconnection process as fig. 4
(ρi = 0.004 m).

Figure 6. Contour plot of the
parallel electron temperature at the
saturated stage of reconnection (ρi =
0.004 m).

Figure 7. Contour plot of the
parallel electric field taken at the
same time of the saturated stage of
reconnection as fig. 6 (ρi = 0.004 m).
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Figure 8. Profile of the distribution
function of electrons as function
of their parallel velocity normalized
to the speed of light (continuos
line). The dashed line represents the
distribution function at t = 0 m.
The distribution function refers to
the case ρi = 0.002 m.

Figure 9. Profile of the distribution
function of electrons as function
of their parallel velocity normalized
to the speed of light (continuos
line) The dashed line represents the
distribution function at t = 0 m. The
figure refers to the case ρi = 0.004
m. As in fig. 8, the distribution
function has been normalized to the
total number of particles.
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Figure 10. Contour plot of the parallel electric field taken at a step of the reconnection process
characterized by an island width close to the island width in fig. 7 (ρi = 0.002 m).
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