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Abstract

This work presents a fully-automated membrane segmentation technique for immunohistochemical tissue
images with membrane staining, which is a critical task in computerized IHC. Membrane segmentation is par-
ticularly tricky in immunohistochemical tissue images because the cellular membranes are visible only in the
stained tracts of the cell, while the unstained tracts are not visible. Our automated method provides accurate
segmentation of the cellular membranes in the stained tracts and reconstructs the approximate location of the
unstained tracts using nuclear membranes as a spatial reference. Accurate cell-by-cell membrane segmentation
allows per cell morphological analysis and quantification of the target membrane proteins, that is fundamental
in several medical applications such as cancer characterization and classification, personalized therapy design,
and for any other applications requiring cell morphology characterization. Experimental results on real datasets
from different anatomical locations demonstrate the wide applicability and high accuracy of our approach in the
context of IHC analysis.
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Figure 1: a: example of immunohistochemical tissue image; b: membrane approximation obtained through
standard Voronoi tessellation; ¢: membrane approximation obtained through our proposed labelling procedure
(see Section 2.1); d: cellular membranes manually traced by a pathologist.

1 Introduction

Directly monitoring the activity of proteins that are involved in the genesis and development of multi-factorial
genetic pathologies is a very useful diagnostic tool which leads to the assessment of the characteristics of the
pathology. For example, EGFR/erb-B family of receptors plays an important role for a number of cancers,
including lung, breast, colon, gastric cancer, etc.: quantifying and classifying the EGFR expression and activity
with special regards to the assessment of the prevalence of FGFR mutations as well as to ligand-receptor
interactions leads to new insights into the modulation of the receptor in individual carcinomas.

Moreover, the quantitative analysis of protein expression in situ in pathological tissues opens new oppor-
tunities for the design of novel targeted therapies through the definition of a group of potential candidates to
protein family-inhibiting therapies. Thus, it is important to extract protein expression information by using
methodologies that give quantifiable and standardized measurements [1].

One of the most prominent techniques in this field is immunohistochemistry (IHC) [2], that uses specific
marked antibodies to stain proteins in situ, thus allowing the identification of many cell and sub-cell types that
could be visualized by microscopy. The analysis of stains’ intensity and distribution at the specific location of
interest targeted by the receptors (i.e. nuclei, cellular membranes or cytoplasm of the cells, depending on the
receptors) allows to extract localized and highly specific protein expression information that is extremely useful
for the assessment of the pathology. [1].

In the last few years immunohistochemistry has acquired a central role in the field of pathology thanks to its
several advantages over alternate bioimaging techniques (e.g. fluorescence in situ hybridization, FISH); these
advantages include its wide availability, relatively low cost, easy and long preservation of the stained slides [3].
With the goal of making pathologic examinations less subjective, the widespread use of immunohistochemistry
initially assisted pathologists only in making diagnoses, adding to or complementing morphological information
with molecular information. More recently, it has been used to predict response to targeted therapy and to
correlate protein and genetic expression data for improving therapies’ accuracy [1] (see Fig. 1.a for an example
of THC tissue image).

This new role of THC is placing new demands on the reproducibility, accuracy and specificity of the extracted
information [5]. In fact THC analysis has been traditionally performed by pathologists through direct visual
inspection of micrographs of the specimens, which is extremely time-consuming, error-prone and highly affected
by inter- as well as by intra-operator variability [6], [7]; only recently the growing demand for automatization is
being addressed by the main providers of systems for digital pathology, with dedicated software integrated to
the THC acquisition systems [3], [3], [9].

As recently aknowledged by modern pathology, for maximum relevance immunohistochemistry should ad-
dress per cell rather than per tissue analysis of the target proteins [10]: in fact, cells have been ultimately
recognized as the fundamental units of behaviour in multiple molecular pathways at the basis of pathology
and cancer biology, so that the relevant metric in cancer development relies on their specific individual pheno-
types [10]. This implies that the analytes are assessed in identifiable individual cells rather than on average in
the whole side of tissue, which is not compatible with traditional visual evaluation. For this purpose, there is
a growing demand for automated techniques able to identify cell by cell the specific location of interest of the
studied receptors.

In this paper we present an automated method for the cell-by-cell segmentation of cellular membranes in
immunostained tissues, which is is a highly critical task, especially in chromogenic IHC.

The most challenging issue is related to the reconstruction of the membranes in the portions that are negative
to the target receptors (i.e. where protein activity is not present), that are not revealed by the stain and then
not visible. The lack of intensity or gradient magnitude variations in the unstained parts of the membranes as
well as the staining heterogeneity that is instrinsic of IHC imaging invalidate segmentation methods detecting



intensity or gradient variations between the background and the pattern to be segmented [13]. Active contours
approaches [14], [15], [L6] overcome the problem of connecting broken contour lines by modeling the target
pattern with a closed curve, but on the other hand they are extremely sensitive to initialization as well as to
staining artifacts which may attract them far from the target membrane.

The largest amount of literature in the field of cellular membrane segmentation addresses fluorescence or
confocal microscopy images, where most of the challenges are related to the nonuniformity of the fluorescence
signal, which may create variations and gaps in the membrane continuity. Interesting approaches have been
proposed in this field: [17] presented a method based on Voronoi regions with a metric controlled by local image
properties; [18] recently presented a generalized version of the Subjective Surfaces technique, while [19] used
iterative tangential voting to enhance the protein bound signal followed by evolving fronts.

Very fewer techniques deal with automated membrane segmentation in chromogenic IHC, where different
challenges arise due to the presence of unstained portions of the tissues (i.e. where the cells are negative to the
target receptor and the membranes are not visible at all) and to the noise generated by the superposition and
diffusion of different stains over the sample. Most of the recent works have been proved to be effective with
nuclear segmentation but do not address cellular membranes’ segmentation [20], [21], [22] or are semi-automated
in that they need a certain amount of user-intervention to add control points close to the target membrane
boundary [23], [24]. Other recent works rely on elliptic approximation of the target membranes [25], [26], which
does not reflect much the real morphology of several pathological tissues (see Fig. 1 for examples).
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Figure 2: Scheme of labelling procedure for the computation of approximate cell membranes. a: regions are
initialized with the points enclosed by the nuclear membranes; each region is characterized by a region-label
(1, 2 and 3 in this case) and represented by a different color; b: each point P in the image is given the label of
the closest nuclear membrane (in this case, label=1); c: final labelled regions; d: approximate cell membranes
obtained by outlining the labelled regions.

In this work we present a method that provides fully-automated segmentation of the cellular membranes in
chromogenic THC images, based on accurate detection of the stained tracts of the membranes and biologically
realistic reconstruction of the unstained tracts using nuclear membranes as a spatial reference.

The paper is organized as follows. In Section 2 we describe our fully-automated procedure for cellular
membrane segmentation. Section 3 reports the implementation details. In Section 4 we show experimental
results which demonstrate the accuracy of our technique on real ITHC images. Section 5 concludes the paper.

2 Materials and Methods

We analyzed histopathology images characterized by a blue stain (Hematoxylin, H) as background colour and
a brown stain (Diaminobenzidine, DAB) revealing the areas of the tissue where the target receptor as well a
ligand of the target receptor family is detected; nevertheless, as explained later in Section 2.2, our technique
can be easily applied to IHC images with different histological stains. The images were acquired from different
anatomical locations (i.e. lung, liver, prostate cancer tissue). In particular, our experimental dataset included
eight specimens acquired by different patients with resolutions spanning from 0.15 to 0.6 pum/px and with
membrane protein activation spanning from weak to very strong (see Section 4 and Table 2 for a complete
characterization). All the images were analyzed by a pathologist, that provided manually segmented cellular
membranes as ground truth to validate our procedure.

As outlined in Section 1, computer-aided immunohistochemical analysis ideally requires to identify cell by
cell the regions of the tissue that are targeted by the analyte (e.g. nuclei, cytoplasm or cellular membranes);
subsequently, it is possible to quantify the brown coloured areas at the identified location of interest.

In case of images with membrane staining, this implies the accurate cell-by-cell segmentation of the cellular
membranes in the tissue, which is the task addressed by our technique.

The brown stain reveals only the parts of the membranes that are positive to the target receptors, therefore
some cellular membranes may be totally unstained or either stained only in some tracts; only the stained tracts
are visible and distinguishable from the background (see Fig. l.a for an example). The amount of stained



membranes as well as the continuity of the staining over the membranes are related to the characteristics and
to the status of the pathology [27] and are not predictable a priori; in particular, in order to be able to quantify
the continuity if the staining in terms of amount of stained membrane the cellular membranes have to be
reconstructed in both the stained (brown-colored) and the unstained tracts.

This calls for non-standard segmentation techniques working in absence of intensity information coming from
the unstained membranes’ tracts (either absolute or in terms of gradient variation) and able to adress staining
inhomogeneity as well as non-predictable shape variations of the cells; these variations may be induced by the
pathology or by the mechanical and thermal stresses of the sample preparation [10]. These critical conditions
invalidate the efficiency of popular segmentation methods in Computer Vision such as watersheds [28] and active
contours [29], as well as any other method based either on intensity variations or fixed geometrical models of
the patterns.

In our technique we exploit the detection of cellular membranes by firstly reconstructing their approximate
locations starting from nuclear membranes’ profiles. This procedure, namely computation of approximate cell
membrane, allows to locate the most likely profiles of the cellular membranes in the tissue. Then we detect
the brown parts of the membranes through color filtering and we connect them to the approximate cellular
membranes in those regions of the cell that are negative to receptor reaction and then not visible. This
procedure, namely detection of final cellular membranes, reconstructs cellular membranes even in absence of
intensity information, i.e. when membranes are partially or completely not visible in the image.

In the following subsections we provide a detailed description of our automated technique for membrane
segmentation.

2.1 Computation of approximate cell membranes

Approximate cell membranes are closed curves that resemble the locations of cellular membranes in the tissue;
they are computed following a minimum distance criterion from nuclear membranes’ profiles. This assumption
is the most realistic from a biological point of view since nuclei are generally located in the middle of the cell.
On top of that, when the membrane is unstained, the location of the membrane can only be inferred from the
position of the nuclei of the cells, therefore the minimum distance criterion appears to be the most reasonable
solution.

As shown in Fig. 1.a, unlike cellular membranes, the profile of nuclei is completely visible and delineated, so
it can be used as a reliable spatial reference for cellular membranes detection. In our previous works addressing
the problem of nuclear segmentation we described and validated a fully-automated morphology-based method
that provides nuclear profiles in THC tissue images; in this work we used the nuclear profiles as a starting point
for cellular membrane segmentation (see [30], [31] for more details).

Literature reports several well known tessellation approaches which partition a given image into regions in-
cluding points that are closer to a specific object, for example Voronoi diagrams [32] and Delaunay triangulation
[33]; these approaches have been used in many different biological fields including models of cell growth as well as
protein molecule volume analysis [34]. Standard Voronoi methods fix a discrete sets of points (e.g. the nuclei’s
barycenters) as the centers of tessellation, returning polygonal regions delimited by a number of edges dependent
on the number and distribution of the nearest centers; in case the centers are few and regularly distributed, the
polygonal regions are simple and delimited by few straight edges, as in the example of Fig. 1.b. Although the
reference nuclei are the same as for standard Voronoi, the tessellation method used in our technique calculates
distances from a set of smoothed curves rather than from individual centers, thus returning complex-shaped
profiles that are a more realistic approximation of the cellular membranes (see Fig. 1.c for examples).

In our tessellation approach the minimum distance criterion from nuclear boundaries is exploited as follows
(see Fig. 2): the image is partitioned in as many regions as the number of nuclei in the tissue. These regions are
initialized by the set of pixels bounded by the nuclear membranes and are univocally identified by a region-label
(see Fig. 2.a). Then a labelling procedure assigns each pixel in the image to one of the regions; in particular
each pixel is given a region-label depending on the minimum distance between that pixel and the membranes
of the surrounding nuclei, so that the pixel is finally assigned to the region having the closest nucleus in it (see
Fig. 2.b). Approximate cellular membranes are then obtained by outlining the boundaries of the final regions
(see Fig. 2.c-d).

The labelling process is based on detecting for each pixel in the image the closest nucleus, which requires
to compute distances between points and nuclear membranes’ profiles. Since a typical cancer tissue image may
contain several hundreds of nuclear membranes with highly irregular profiles, this task may be computationally
very intensive. In order to speed up this process we implemented an optimized procedure which detects the
closest nucleus to a given input point in the image in two sequential steps. In the first step we perform a
nearest-neighbours search to find the set of n nuclei closest to the input point. In particular we approximate
the nuclear membranes with their minimum bounding rectangles and we select the closest n nuclei based on
the Euclidean distance between the input point and the vertices of the rectangles. See Section 3 for details
about parameter n. In the second step we select the closest nucleus among the previous n, this time based on



the Euclidean distances calculated between the input point and all the points of nuclear membrane’s profile.
Therefore the computation of Euclidean distance between points and curves is limited to a small number of
nuclei in the image, thus decreasing significantly the computational complexity of the labelling process.

2.2 Detection of final cellular membranes

The main steps of the final cellular membranes’ detection are summarized by Fig. 3, where the approximate cell
membrane and the final cellular membrane are represented in yellow and in red, respectively: i) in the stained
portions (labelled by a) we compute the red membrane as the barycenter curve of the brown-colored area; i) at
fork regions of the brown membrane (labelled by b) we force the red membrane to lie on the path that is closer to
the nucleus of the cell through specific weighting coefficients in the barycenter’s equation; i) in the unstained
portions of the membrane (labelled by ¢) we force the red membrane to coincide with the approximate cell
membrane; iv) we refine the connection of the stained and the unstained portions by calculating a best fitting
curve and removing outliers.

Figure 3: Scheme of detection of final cellular membranes. The final membrane is computed as the barycenter
curve of the brown-colored area (a) and forced to lie on the path that is closer to the nucleus in order to handle
forks (b). In the unstained regions the final membrane is forced to coincide with the approximate cell membrane,
in yellow (c). Stained and unstained tracts of the final membrane are connected by a best fitting curve, in red.

A detailed description of the procedure is provided as follows.

First of all, reactive membranes are detected through color filtering, highlighting the only brown colored
areas in the image. For this purpose, we used a specific color deconvolution algorithm [35] that was shown to
achieve better results than other color segmentation methods, especially in THC applications [12]. This method
allows the separation not only of H and DAB (as in the case presented in this paper) but of all the standard
histological stains (e.g. H-E, H AEC, etc.) as well as of any other stains, provided that their RGB vectors are
experimentally determined and given as an input to the method (see [35], [12] for details).

Then brown-colored membranes are connected to the approximate cell membranes in the non-reactive re-
gions. For this purpose, the area across the approximate membrane, whose width w in pixels depends on image
resolution (see Section 3 for details), is scanned by a scan line having one end on the pixel at the center of the
nucleus and the other one on the pixel at the external border of the scanned area. (see Fig. 4); the cellular
membrane is then reconstructed one pixel at a time as the weighted barycenter B of the brown pixels among
the scan line, as in the following equation:

> ;6159
B==477 (1)

> ¢l
where j is the pixel’s coordinate along the scan-line. This coordinate is 0 on the approximate membrane,
negative in the inner part of the scanned area and positive in the outer part. I; is the intensity value of pixel j,
calculated as the complementary of the average RGB values and ¢; is a coefficient for barycenter computation,

calculated as follows: . <o
o1
Cj_{l—k;j if >0 (2)
where k is a coefficient experimentally tuned (see Section 3 for details).

As shown in (2), ¢; is equal to 1 for pixels with negative coordinate (i.e. closer to nucleus with respect to
the approximate membrane); on the contrary, for pixels with positive coordinate ¢; decreases linearly as the
coordinate (i.e. the distance from the nucleus of the cell) increases. In this way, when the brown stain forks the
membrane contour is forced to follow the path closest to the nucleus.

The intensity values of the background pixels are set to 0, whereas the intensity values of the scan-line’s
pixels that belong to or touch the approximate membrane are set to 1. In this way, in absence of brown pixels
along the scan-line, the barycenter B is forced to lie on the approximate membrane. As a consequence, the
final cellular membrane coincides with the approximate membrane in the non-reactive (unstained) regions of



the tissue. On the contrary, in the reactive regions of the tissue, brown pixels have intensity values much higher
than 1 (ranging from 70 to 255), which always prevails in the computation of the barycenter. Therefore the
final cellular membrane is forced to lie on the pixels where the brown stain is more intense. Fig. 4 shows a
picture of the scanning procedure.

Figure 4: Trace of scanning procedure. Non reactive regions which are not of interest are shown in black;
reactive brown-colored membranes are shown in gray; the area scanned by the scan-line is shown in blue and
green (in blue regions already scanned, in green regions to be scanned). In the middle of this area there is the
approximate cellular membrane. At each scanning step the barycenters of the brown pixels along the scan-line
are computed. These barycenters, that compose the contour of the final cellular membrane, are shown in red.
In the non-reactive regions the final cellular membrane is forced to coincide with the approximate membrane.

Figure 5: Example of membranes detection on non-small cell lung carcinoma (NSCLC) tissue immunohisto-
chemical image. The final cellular membranes provided by our automated technique are highlighted in blue

Figure 6: Examples of immunohistochemical images used to validate our method (details).

The second step of final cellular membranes’ segmentation after the scanning procedure consists of an iterative
fitting procedure which refines the connection between stained and unstained tracts of the cellular membrane
and iteratively deletes outlier pixels in the curve, which may be present due to local inhomogeneities of the
brown stain. Outliers are pixels whose distance from the best fitting curve is more than three times the standard
deviation, as in the traditional definition in statistics [36]. After removing the outliers, third-degree polynomial
fitting is applied. Examples of final cell membrane detection are shown in Fig. 5.



3 Implementation

The algorithm has been implemented in C++ inheriting the whole class hierarchy of the open-source Cimg public
library [37]. The main parameters’ values are reported in Table 1. The width w of the area of the scanning
procedure (see Section 2.2) is related to the thickness of membrane staining in chromogenic IHC images; its
value has been derived from the pathologists’ observations and it is provided in pgm in order to be resolution-
independent. The number of nuclei n in the nearest-neighbours search for the calculation of the distances
between points and nuclear membranes’ profiles (see the labelling procedure in Section 2.1) was tuned in order
to speed up the procedure for approximate cell membranes’ computation without compromising the accuracy
of membranes’ approximation. Finally, the coefficient k of (2) (see scanning procedure for the detection of final
cellular membranes in Section 2.2) was empirically tuned in order to handle forks of the cellular membrane’s
profile and does not have to be adjusted by the user. All the values of the parameters reported in Table 1 are
independent from image resolution as well as from image content.

Table 1: Parameters’ and coefficients’ values.

Parameter value

number of nuclei in nearest neighbour search (n) 4
width of the scanned area (w) 5.5 pm
coefficient of equation (2) (k) 0.0018

4 Experimental Results and Discussion

We tested our membrane segmentation technique for computer-aided protein activity quantification on eight
datasets of real IHC images showing membrane stained cancer tissues from different anatomical locations,
including lung (Non Small Cell Lung Carcinoma, NSCLC), prostate and liver tissue. The eight datasets showed
tissue specimens extracted from different patients and stained by H-DAB (see Fig. 6 for examples), including
almost 400 cells. The images were acquired through brightfield digital microscopy at different enlargements; a
complete characterization of the datasets, including the IHC score as provided by a pathologist according to
the standard guidelines reported in [27], is provided in Table 2.

Table 2: Characterization of the validation datasets.

dataset tissue IHCscore | resolution size cells
1 lung 2+ 0.6 um/px | 541x210 116
2 lung 2+ 0.3 um/px | 279x237 38
3 lung 1+ 0.3 um/px | 202x293 50
4 lung 1+ 0.15 um/px | 345x236 27
5 lung 3+ 0.3 um/px | 249x274 31
6 lung 1+ 0.15 um/px | 507x609 46
7 liver 3+ 0.4 um/px | 259x277 63
8 prostate 3+ 0,15 um/px | 566x306 25

We had all the cellular membranes in our datasets manually traced by a pathologist and we used manual
segmentations as the ground truth to validate our segmentation method. We performed both a direct validation
based on a pixel-wise distance metric between the automated and manual membranes and an indirect vali-
dation based on the concordance between protein expression measures obtained from automated and manual
membranes.

The direct validation is based on the computation of the Hausdorff distance [38], a well-known distance
metric that measures the proximity between two sets of points by calculating the maximum distance between
the first set and the nearest point of the second set: it is a severe metric that takes into account the maximum
span between the two trajectories, instead of the average distance; moreover it has been already used to validate
membrane segmentation accuracy [18]. In our experiments we calculated the Hausdorff distance between each
automated membrane and the corresponding manual membrane, as follows:

du(A, M) = max(:gg Jnf d(a,m),yig% inf d(a,m)), (3)

where a and m are respectively the pixels belonging to the automated membrane A and the manual membrane
M, and d(a,m) is the Euclidean distance between a and m.



The results obtained in each validation dataset are reported in the boxplots of Fig. 7. It is a widely
used representation technique in descriptive statistics where the boxes have horizontal lines at the three data
distributions quartiles (the median value is highlighted in red) and the vertical dotted lines show the extent of
the data distribution.
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Figure 7: Boxplot of Hausdorff distances between automated and manual membranes.

We obtained distances between automated and manual membranes with a median value spanning between
1 and 2.2 pum, and with a mean standard deviation of 0.95 pym.

For a correct interpretation of the results, the intrinsic variability of the ground truth should be taken into
account. In fact, the Hausdorff distance is extremely influenced by localized variations of the curve, which makes
it a good metric of segmentation accuracy, provided that the reference curve is reliable enough. Therefore it
works well for applications where the manual operator is able to identify and trace the trajectory of cellular
membranes with a high precision, as in [18]. In the specific applicaton of chromogenic IHC, on the contrary, the
Hausdorff distance may be strongly biased by the subjectivity and variability of the manual tracement. The
reason of this variability is twofold: i) in the stained portions of the tissue, the brown stain can be diffused
over a large area over the cellular membrane, about 1-1.5 pum thick (see Fig. 8, cell 1, as an example); ii) in the
unstained portions of the tissue, the membranes are not visible; as a consequence, the manual tracement, besides
being a realistic approximation derived from the experience of the pathologist, may be even more variable (see
Fig. 8, cell 2).

In order to evaluate the variability of manual segmentations and its influence on the Hausdorfl measure, we
asked several operators (fifteen) to manually trace the cellular membranes of two sample cells, the former one
with a well-delineated cellular membrane and the latter with a mostly unstained cellular membrane (shown in
Fig. 8). Then we calculated the Hausdorff distance between each couple of manually traced membranes, and
reported the results in the boxplots of Fig. 8.

We obtained that manual measurements had a median Hausdorff distance of 1 pm and 1.9 pum respectively
in the stained and unstained cell, with standard deviations of 0.57 and 0.97 pym, which shows that the intrinsic
variability of manual segmentations is comparable with the variability of the segmentations provided by our
proposed automated approach.

Since we verified that the pixel-wise evaluation is extremely biased by the variability of the manual tracement,
especially in the unstained tracts, in our experiments we exploited also an indirect validation that relies on
the concordance between the protein expression evaluated along automated and manually traced membranes,
respectively. This metric does not rely on a pixel-by-pixel coincidence of the two trajectories and therefore it
is less influenced by the intrinsic variability of the manual membrane; nevertheress, it is the best indicator of
the similarity of the automated and manual membrane in the context of immunohistochemical analysis, which
is the main target of membrane segmentation.

According to the recent guidelines by [27], membrane stained tissues are assigned a IHC score (from 0
negative to 3+ positive) depending on the overall intensity of the stain and on the staining continuity along
the membrane. The latter feature, which is computed as the percentage of stained pixels along the cellular
membrane (i.e. number of stained pixels divided by total number of pixels), is highly dependent on membrane
segmentation: thus, in our work we used staining continuity as an indirect indicator of membrane segmentation
accuracy.

More specifically, for each dataset we performed a linear regression between measurements of staining con-
tinuity computed respectively along automated and manually traced membranes (taken as a reference) and we
evaluated the statistical significance of the regression coefficient through Student’s t-test [39]. Then we com-
puted the average error (E4y ) and the root mean square error (Erpysg) incurred by our automated approach
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Figure 8: Variability of manual-trace membranes in two sample cells, the former with diffused brown staining
(cell 1), the latter with unstained membrane (cell 2). The manual tracements provided by fifteen operators are
shown in black superimposed on the original image; the Hausdorff distances between each couple of manual-trace
curve are reported in the boxplots below the images.

with respect to ground truth consisting on the same measurements of staining continuity along manual-trace
membranes, as follows:

1
EAVG - N Z | Cauto — Cmanual | (4)

1
ERMSE - \/N Z(Cauto - Cmanual)27 (5)

where cqyuto and Cpanuar are the staining continuity calculated along automated and manual membranes, re-
spectively, and N is the number of cellular membranes of the dataset.

Moreover we computed the coefficient of correlation between the two sets of measurements by dividing the
covariance of the two variables cquto and Cpanuar by the product of their standard deviations, as reported in

the following equation:

Cov(auto, manual)

Pauto,manual = (6)
Oauto * Omanual

This validation procedure evaluates the statistical equivalence of the two variables cuuro and Cpmanuar and
quantifies the statistical significance of this equivalence; the statistical equivalence of the two variables is an
indirect indicator of the accuracy of membrane segmentation.

The results obtained in each validation dataset are reported in Table 3: in particular, the second column
reports the coefficient of correlation between automated and manual-trace measurements as in (6); third and
fourth columns report the coefficient of the linear regression line and its region of statistical deviation with a
99% confidence level, respectively. The last two columns report the average of differences between automated
and manual-trace measurements (namely, average error) and the root mean square error (RMSE), respectively,
calculated as in 4 and 5.

As shown in Table 3, we obtained similar results in all the tested datasets. In particular we found that our
automated measurements were highly correlated with manual-trace measurements, with average coefficient of
correlation 0.95. Moreover we proved that automated and manual measurements were linearly correlated, with
a regression coefficient close to 1 in six datasets out of eight and close to 0.9 in the remaining two datasets,
and a narrow range of deviation. Average and root mean square error with respect to manual measurement of
staining continuity were below 3.82 and 5.80% respectively, which is much below the resolution achievable by
visual evaluation.

At last, we obtained that automated and manual-trace measurements were statistically equivalent in each
of the validation datasets. This was proved by performing Student’s t-tests on the difference between the two
samples with a 99% confidence level.

As it is shown by the examples reported in Fig. 5, the segmentations provided by our automated technique are
accurate. Minor deviations from the stained boundary may arise due to local superposition of the reference nuclei




Table 3: Experimental results on computation of staining continuity along cellular membranes.

dataset | Corr Coeff | Regr Coeff | Accept Reg | Av Err | RMSE
1 0.99 0.97 + 0.34 0.38 3.29
2 0.98 0.96 =+ 0.096 0.14 2.68
3 0.88 0.94 + 0.20 2.57 5.64
4 0.98 0.96 + 0.108 0.77 3.3
5 0.97 0.85 + 0.11 0.25 1.58
6 0.98 0.96 +0.09 0.04 4.00
7 0.94 0.88 +0.12 3.82 5.80
8 0.90 1.02 +0.36 0.09 5.35

with the target membrane or due to missing reference nuclei (e.g. left tract of cell in Fig. 5(c)); these artifacts
may be generated by the superposition of different tissue layers, diffusion of the dye partially or completely
hiding the nuclei and tissue deformations happening during the preparation of the sample. Nevertheless, our
quantitative validation demonstrates that our technique copes well with all the issues of IHC segmentation and
provides results that are statistically comparable with manual segmentations.

345%236 pixels; B-bit, 79K
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Figure 9: Example of membranes detection using active contours approach.

In order to compare the results obtained by our technique with other popular automated approaches, we
made additional experiments with active contours, a well established segmentation method in Computer Vision
as well as in medical imaging that addresses gradient as well as spatial intensity information [29]. Active
contours have the inherent capability of modelling the target object through a closed curve: thus they overcome
the problem of connecting broken contour lines, that is a major limitation in other widespread edge-based
or region-based segmentation techniques. In fact, as anticipated in Section 1 several formulations of active
contours have been applied to the task of cell segmentation. Nevertheless, active contours’ performance is
extremely affected by curve initialization, as well as by heterogeneous staining and presence of foreign particles
in the tissue which may attract the curve far from the target membrane.

In this work, we implemented a semi-automated segmentation technique using the active contours presented
by [11], that were initialized by an operator close to the targeted cellular membranes. Moreover, in order to
decrease the influence of wrong curve attractors in the images, we preventively performed both noise and color-
filtering. More details about the implementation of the active contours for ITHC image segmentation are provided
in our previous work [31]. We run experiments in a lung cancer tissue dataset, measuring the performance of
the automated segmentation versus manual segmentation through the aforementioned indirect validation based
on the staining continuity. The results obtained by active contours approach and the results obtained in the
same dataset by our automated technique are reported in Table 4 for comparison.

Table 4: Experimental results on computation of staining continuity along cellular membranes in a lung cancer
tissue sample. The results obtained by active contours and by our proposed technique are reported in the first
and second row, respectively.

Corr Coeff | Av Err | RMSE
active contours 0.629 23.44 26.44
proposed 0.98 0.14 2.68

In Fig. 9 we show examples of cell membrane detection obtained by active contours approach. The segmen-
tation provided by our proposed method on the same cellular membranes was already shown in Fig. 5. The
superiority of our method over active contours approach is fairly evident from the quantitative results as well
as from visual evaluation.



5 Conclusions

We presented a fully-automated membrane segmentation approach that allows the quantification of the ex-
pression of membrane receptors in cancer tissue images, which is usually performed by pathologists via visual
inspection of the samples. Our techniques streamlines this error-prone and time-consuming process, thereby
facilitating analysis and diagnosis as well as the design of novel targeted therapies. The automated segmenta-
tion of cellular membranes as provided by our method leads to the analysis of membrane protein activity in
situ on a cell-by-cell basis, which is critical for the accurate assessment of a number of important pathologies;
moreover it allows any other application that relies on accurate tissue and cell exploration in IHC tissue images.
In particular, our technique overcomes the limitations of traditional segmentation techniques based on local or
spatial intensity information as well as gradient magnitude variation. The effectiveness and robustness of the
proposed method has been tested on real immunohistochemical images from several tissue locations, including
lung, prostate and liver tissue. Results of comparison with ground truth provided by pathologists on several
real-life datasets demonstrate the high accuracy of our approach in the context of IHC analysis.
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