
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A seamless services migration framework with JVM Tool Interface / Dai, Jia; Morisio, Maurizio; MEJIA BERNAL, JOSE
FELIPE. - (2010), pp. 106-110. (Intervento presentato al convegno Proceeding of the 5th International Conference on
Computer Science and Education tenutosi a Hefei (China) nel 24-27 August).

Original

A seamless services migration framework with JVM Tool Interface

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2378342 since:

IEEE

A Seamless Services Migration Framework With
JVM Tool Interface

Jia Dai
Dipartimento di Automatica e

Informatica
Politecnico di Torino

Torino, Italy
jia.dai@polito.it

Maurizio Morisio
Dipartimento di Automatica e

Informatica
Politecnico di Torino

Torino, Italy
maurizio.morisio@polito.it

Jose F. Mejia Bernal
Dipartimento di Automatica e

Informatica
Politecnico di Torino

Torino, Italy
jose.mejiabernal@polito.it

Abstract—Services migration is becoming more and more
important due to the flexibility of the complex distributed
systems. In the Java environment, the problem may not be solved
without modification on JVM or bytecode in existing solutions.
This paper presents a migration framework extended by IBM
Service Management Framework; then it provides an experiment
analysis and evaluation on a typical use case. Moreover, it shows
a new approach for Java thread migration by using JVM Tool
Interface in order to realize a transparent migration at a
combination of application and thread level for enhancing
capability of the framework. Our solution is implemented and
evaluated to show the functionality of the prototype.

Index Terms—Service Oriented Architecture, service
migration, IBM Service Management Framework, JVM Tool
Interface

I. INTRODUCTION
Due to the rising interests in these service oriented

architectures and flexibility of the complex distributed systems,
a seamless and transparent service migration has become an
important topic. The service migration can be used to balance
the load between nodes [1], to reduce network traffic by
moving clients closer to the accessed servers [2] or to cluster
and scheduling [3]. Obviously, a good migration approach
should enhance the performance of the SOA system.

In this context, the object paradigm has proven to be well
suited to distributed applications development and the Java
Virtual Machine (JVM) is now considered as a reference
platform. JVM provides many services for distributed
applications development. One of the most important aspects of
Java (regarding distribution) is mobility. Java allows instances
and code to be moved between machines. Java provides a
serialization mechanism [4] which allows the capture and
restoration of objects’ states and therefore the migration of
objects between machines. It also allows classes to be
dynamically loaded and therefore to be moved between nodes.
All these features lead to the development of mobile agent
systems, whose main advantage is to provide agent migration
between machines.

However, one mechanism is missing. Java does not provide
any mechanism for capturing and restoring the thread state. The

stack of Java threads is not accessible directly. That is, in order
to capture the state of an application, Java only grants access to
its objects and classes, the stack of the thread remaining
inaccessible [14].

II. RELATED WORK
Many researchers focus on the migration topic. We intend

to split the service migration problem into two parts, or levels:
the process level and thread level. For the process level, it can
be solved by using Java serialization mechanism. We focus on
the thread level.

Several projects have addressed the issue of Java thread
migration, such as Sumastra [5], Merpati [6], CIA [7],
JESSICA2 [8], LAOVM [9], Wasp [10], Brakes [11], JavaGo
[12] and M-DSA [13]. The problem is that they are based on a
pre-processor that changes the code in order to add statements
which capture and restore the state of thread before its
execution. However, they cannot get the whole state of a Java
thread, because the state is internal to the JVM. The migration
results are incomplete [14].

To realize a seamless and transparent service migration, we
propose our solution as follows:

First of all, we present our service migration framework,
Mobile Services Framework (MoSeF) based on IBM Service
Management Framework (SMF), to realize the migration on the
process level. Then we present a generic approach to realize a
transparent Java thread migration by implementing JVM Tool
Interface for enhancing the MoSef framework’s capability.

The paper is organized as follows: Section 3 explains the
design of the framework analyzes a typical scenario and
presents the results. Section 4 explains the approach of Java
thread migration. Finally, section 5 presents conclusions and
future work descriptions.

III. MOSEF - EXTENSION FRAMEWORK OF RE-
LOCATABLE SERVICES

IBM Service Management Framework (SMF), an
implementation of the OSGi Service Platform specification
[15], provides for the network delivery and management of
applications and services independent of operating system and

978-1-4244-6005-2/10/$26.00 ©2010 IEEE

The 5th International Conference on
Computer Science & Education
Hefei, China. August 24–27, 2010

 106

WeM4.5

instruction set architecture (ISA). Our framework, called
Mobile Services Framework (MoSeF), is an extension of SMF,
which gives a solution of service migration with service’s state.

A. Architecture

Figure 1. Architecture

MoSeF is built on SMF [16] and strengthens SMF by
providing better availability and scalability to the services
running on it. MoSeF is deployed as a service bundle within
SMF environment. The Fig. 1 shows the logical component
architecture of MoSeF.

A SMF bundle becomes a Mobile Service Bundle (MSB)
by extending the GenericMsbActivator class, which is provided
as a part of MoSeF implementation. This class has various
callback methods that are intercepted by the MoSeF container
hosted on the same SMF node and it takes control of the life-
cycle of the MSB. Thus not only these bundles are able to use
of the services provided by the MoSeF, but MoSeF can also act
upon them.

Lifecycle of a MSB is a super set of the life cycle of a
normal bundle, i.e. a MSB will have all the possible states that
a SMF bundle has, but in addition it can also be in some other
well defined states specific to MoSeF context.

There are two ways to create a new instance of a MSB. The
first one is to instantiate a completely new MSB from class
definitions/template available either locally or remotely.
Another one is to create a clone of an existing MSB. That we
use for migration.

The cloned MSB has the same state as the original one but
has a distinct identity of its own. Once created, a MSB can be
dispatched to and/or retracted from a remote location,
deactivated and placed in secondary storage, then activated
later. And this cycle may continue in forward or backward
direction. MoSeF is the main component which brings
relocatability as an add-on feature to the SMF bundles. It
comprises of four sub-components, showed by Table 1.

TABLE I. MoSeF componets’ functions

MSB Relocation
Manager

Handles the stateful relocation and clones
MSBs across the MoSeF node

MSB
Communication

Manger

Enables communication between
� MSB instances
� MSBs and Registries

Host Registry Maintains a record of the currently active
MoSeF nodes. The following operations
are supported by Host Registry:

� Register: to register a MoSeF node
� Unregister: to unregister a MoSeF

node
� Query: to query for a matching

MoSeF node for a required node
profile (properties like CPU,
Memory)

� Update Property: to update the
properties associated with a
registered MoSeF node

Service Registry Hosts a record of all the services and their
location in the MoSeF domain

B. Typical Scenario
Location transparency is a key feature by which client

applications are kept transparent of service migration activities.
We will demonstrate it with a sample. There are two parts in
the sample: a service provider MSB and a client to this MSB.

In this sample, client accesses the service from the IP
obtained from the Service Registry and submits job to the
MSB. After the job is completed the client can obtain the result
from the MSB by accessing it from the same URI, as shown in
Fig. 2.

Figure 2. Scenario of no Service Migration in MoSeF

If in the meantime the MSB has moved to another location
then the Client faults and again accesses the Service Registry to
obtain the new location of the MSB. Since the MSB moves
with all its state it will still have the results of the job submitted
by this client. Now the client accesses the MSB from the new
location and obtains the result of the job submitted earlier. All
of them are done transparently to the user, as shown in Fig.3.

 107

WeM4.5

Figure 3. Scenario of Service Migration in MoSeF

C. Case Study
Let’s take a distributed factorial calculation application for

example. After installing the calculation service MSB in our
framework, we could start running the client from another PC.
It will launch a simple GUI that is used to transfer the numbers
to the server, receive the result and show it, as shown in Fig.4.

Figure 4. Interface of Factorial Calculation Client API
In order to simulate the migration, we move the service

from one server to another. And we find that each movement
of service will cause the source node to generate a new .jar file
under the working directory of SMF, and the destination node
will also receive the same .jar file under the working SMF
directory, demonstrating the service name and the source
node’s IP address. Unzip this .jar file, we will find out it
includes the following files: two serialized byte stream files,
ended with .ser, and the source code file of the service. By
using Java deserialization program, we can understand that
each of them includes an object of hash table that stores all the
requests from client, and also some user interface objects in
corresponding with the special interface of this application
program.

MoSeF in fact realizes the stateful relocation of service
instances in an upper level. It packs the service class files with
the relative request variables and then moves the package
among nodes when interruption occurs during service
execution. And with the help of SMF, it can be reinstalled and
restarted on the new destination nodes. The process is
transparent to the client, because the service updates all the
information by itself after migration. So in the client’s point of
view, there are no changes about the service.

However, when we move the running service, problems
occur. We cannot get result after the movement. It shows that,
although the service is well migrated and restarted
successfully on the new node, the interrupted calculation
thread cannot be resumed because of the lack of the running
context. We need a new approach for Java thread migration.

IV. JAVA THREAD MIGRATION
As we mentioned before, Java virtual machine (JVM) does

not allow threads to be migrated directly. To solve the problem,
firstly, we capture the execution context and source code. Then

we reproduce the context at the destination. At the end, we
resume the execution of the thread.

Based on the analysis of JVM’s structure and mechanism of
Java thread, we conclude that the thread’s state is fully stored
in the Java Method Frame (JMF), and as if we can froze this
state and transport it together with the service source code and
the service state, we can recover not only the service and the
client request, but also the thread. Then the thread continues its
execution at the destination node.

The JVM Tool Interface (JVMTI) is a programming
interface used by development and monitoring tools. It
provides both methods to inspect the state and control the
execution of applications running on the JVM. A client of
JVMTI, hereafter called an agent, can be notified of interesting
occurrences through events. JVMTI can query and control the
application through many functions, either in response to
events or independent of them. Agents run in the same process
and communicate directly with the virtual machine. This
communication is through a native interface (JVMTI). The
native in-process interface allows maximal control with
minimal intrusion on the part of a tool. Typically, agents are
relatively compact. They can be controlled by a separate
process which implements the bulk of a tool's functions without
interfering with the target application's normal execution.

A. Agent Initialization
The agent must contain a function called Agent_OnLoad,

which is invoked when the library is loaded. The
Agent_OnLoad function is used to set up functionality that is
required prior to initializing the JVM. We must enable several
capabilities for the JVMTI functions and events that we will
use later.

It is generally desired, and in some cases required, to add
these capabilities in the Agent_OnLoad function. For example,
to use the InterruptThread function, the can_signal_thread
capability must be true. In addition, the Agent_OnLoad
function is often used to register for notification of events.
Each event for which we register must also have a designated
callback function, which will be called when the event occurs.

For example, if a JVMTI Event of Exception occurs, our
example agent sends it to the callback method,
callbackException(). The jvmtiEventCallbacks structure and
SetEventCallbacks function will be used:

jvmtiEventCallbacks callbacks;
(void)memset(&callbacks, 0, sizeof(callbacks));
callbacks.VMInit = &callbackVMInit; /*

JVMTI_EVENT_VM_INIT */
callbacks.VMDeath = &callbackVMDeath; /*

JVMTI_EVENT_VM_DEATH */
callbacks.Exception = &callbackException;/*

JVMTI_EVENT_EXCEPTION */
callbacks.VMObjectAlloc = &callbackVMObjectAlloc;/*

JVMTI_EVENT_VM_OBJECT_ALLOC */
error = (*jvmti)->SetEventCallbacks(jvmti,

&callbacks,(jint)sizeof(callbacks));
check_jvmti_error(jvmti, error, "Cannot set jvmti

callbacks");

 108

WeM4.5

In the Agent_OnLoad function, we perform the following
setup:

static GlobalAgentData data;
(void)memset((void*)&data, 0, sizeof(data));
gdata = &data;
...
/* Here we save the jvmtiEnv* for Agent_OnUnload(). */
gdata->jvmti = jvmti;
We create a raw monitor in Agent_OnLoad(), then wrap the

code of VM_INIT, VM_DEATH and EXCEPTION with
JVMTI RawMonitorEnter() and RawMonitorExit() interfaces.

B. Analyzing Threads By JVMTI
As discussed before, when the JVM starts, the startup

function Agent_OnLoad in the JVMTI agent library is
invoked. During the JVM initialization, a JVMTI Event of
type JVMTI_EVENT_VM_INIT is generated and sent to the
callbackVMInit routine in our agent. Once the JVM
initialization event is received (that is, the VMInit callback is
invoked), the agent can complete its initialization. Now, the
agent is free to call any Java Native Interface (JNI) or JVMTI
function.

After that, we enable the Exception events
(JVMTI_EVENT_EXCEPTION) in the VMInit callback
routine. We can get information about the monitors owned by
the specified thread by using the JVMTI method:
GetOwnedMonitorInfo. This function does not require the
thread to be suspended. We can also get state information for a
thread by using the JVMTI method: GetThreadState.

C. Obtaining a JVM Thread Stack Trace
The JVMTI method GetStackTrace can be used to get

information about the stack of the thread. If max_count is less
than the depth of the stack, the number of deepest frames is
returned, otherwise the entire stack is returned. The thread is
not suspended when we invoke the method.

The JVM Object Allocation event is useful for determining
information about objects allocated by the JVM. In the
Agent_OnLoad method, we registered callbackVMObjectAlloc
as the function to be called when the JVM Object Allocation
event is sent. The parameters of callback method contain the
information about the objects that have been allocated, such as
the JNI local reference to the class of the object and the object
size. With the jclass parameter, object_class, we can use the
GetClassSignature method to obtain the information about the
names of the classes.

We use the GetStackTrace method to print the stack trace of
the threads that is allocating the object. As that section
describes, we obtain frames with a specified depth. The frames
are returned as jvmtiFrameInfo structures, which contain each
frame's jmethodID (that is, frames[x].method). The
GetMethodName method can map the jmethodID to that
particular method's name. Finally, we use the
GetMethodDeclaringClass and GetClassSignature methods to
obtain the names of the classes from which the method was
invoked.

D. Analyzing the Heap Using JVMTI
In addition, some iteration methods in JVMTI allow you to

iterate over the entire heap (both reachable and unreachable
objects). That means we will cover the root objects and all
objects that are directly and indirectly reachable from the root
objects, and all objects in the heap that are instances of a
specified class. During the execution of these functions, the
state of the heap is not changed: no objects are allocated, no
objects are garbage collected, and the state of objects
(including held values) is not changed.

Generally speaking, we use the related functions in JVMTI
in order to control the threads’ execution. When threads are
migrated, we use JVMTI to suspend threads firstly, analyze the
running states and then serialize them. After finishing the
service migration, we reproduce the running context and
resume the threads by JVMTI.

V. CONCLUSION AND FUTURE WORK
MoSeF is an extension for SMF, which aims to provide a

seamless service migration. With the support of the SMF,
MoSeF succeeds in serializing the services’ state, packaging it
with services’ source files, transporting and restoring the
service at the destination node. However, it cannot recover the
threads’ execution state and restart the already executing
threads at the destination node. In this case, MoSeF can hardly
provide uninterrupted user experience.

To solve this, our solution is that move threads’ states
together with service and restart the threads corresponding to
certain client’s request at the destination node. The solution is
a finer-granularity service migration and would provide more
reliable and transparent service on service oriented
architecture. Since JVMTI provides both ways to inspect the
state and control the execution of applications running in
JVM, it is a possible way to realize thread migration in our
solution. We make no changes to JVM, no modification on
bytecodes and transmit the complete running state.

We implemented and evaluated the functionality of our
prototype by applying it to thread migration and thread
persistency. The future work is to compare the performance,
effects and cost of different levels of service migration.

REFERENCES
[1]. D.A. Nichols. Using Idle Workstations in a Shared Computing

Environment. Proceedings of the 11th ACM Symposium on Operating
Systems Principles, pages 5-12, ACM 8-11, November 1987.

[2]. F. Douglis et B. Marsh. The Workstation as a Waystation: Integrating
Mobility into Computing Environments. The 3rd Workshop on
Workstation Operating System (IEEE), april 1992.

[3]. D. Chess, C. Harrison et A. Kershenbaum. Mobile Agents: Are They a
Good Idea?. IBM ResearchReport. IBM Research Division, T.J. Watson
Research Center, Yorktown Heights, New York, march
1995.http://www.research.ibm.com/iagents/publications.html

[4]. R. Riggs, J. Waldo, A. Wollrath, K. Bharat. Pickling State in the Java
System. USENIX Conference on Object-Oriented Technologies
(COOTS), Ontario, Canada, 1996.

[5]. Acharya, A., Ranganathan, M., and Salz, J., Sumatra: A Language for
Resource-aware Mobile Programs, Mobile Object Systems: Towards
the Programmable Internet, Lecture Notes in Computer Science,
Number 1222, April 1997.

[6]. Suezawa,T., Persistent Execution State of a Java Virtual Machine,
Proceedings of the ACM 2000 Java Grande Conference, San Francisco,

 109

WeM4.5

California, USA,June 2000
[7]. Illmann, T., Krueger, T., Kargl F., Weber, M., Transparent Migration of

Mobile Agents Using the Java Debugger Architecture, Proceeding of
the Fifth IEEE International Conference on Mobile Agents (MA 2001),
Atlanta, Georgia, USA, December 2 - 4, 2001.

[8]. W. Zhu, C.-L. Wang, and F. C. M. Lau. JESSICA2: A Distributed Java
Virtual Machine with Transparent Thread Migration Support. In IEEE
Fourth International Conference on Cluster Computing, Chicago,
September 2002.

[9]. X. Liao, Y. Yue, H. Jin and H. Liu. LAOVM: Lightweight Application-
Oriented Virtual Machine for Thread Migration. icis, pp.882-887, 2009
Eigth IEEE/ACIS International Conference on Computer and
Information Science (icis 2009), 2009

[10]. Funfrocken, S., Transparent Migration of Java-based Mobile Agents
(Capturing and Reestablishing the State of Java Programs), Proceeding
of Second International Workshop Mobile Agents 98 (MA 98), Stuttgart,
Germany, September 9 – 11, 1998.

[11]. Truyen, E., Robben, B., Vanhaute, B., Coninx, T., Joosen, W., and

Verbaeten, P., Portable Support for Transparent Thread Migration in
Java, Proceeding of the the Fourth International Symposium on Mobile
Agents 2000 (MA 2000), Zurich, Switzerland, September 13 – 15, 2000.

[12]. Sakamoto, T., Sekiguchi, T., and Yonezawa, A., Bytecode
Transformation for Portable Thread Migration in Java, Proceeding of
the Fourth International Symposium on Mobile Agents 2000 (MA
2000), Zurich, Switzerland, September 13 – 15, 2000.

[13]. S. Fu and C.-Z. Xu. Service migration in distributed virtual machines
for adaptive grid computing. Technical report, Department of Electrical
and Computer Engineering, Wayne State University, March 2004.

[14]. Sara Bouchenak and Daniel Hagimont, Zero Overhead Java Thread
Migration, Technical Report 0261, INRIA, 2002.

[15]. The Open Service Gateway initiative (OSGi) website.
http://www.OSGi.org

[16]. The IBM Service Management Framework is an implementation of
OSGi Service Platform specification that provides network delivery and
management of services. Homepage: http://www-
306.ibm.com/software/wireless/smf

n

 110

WeM4.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

