
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Locating Equivalent Servants over P2P Networks / Marchetto, Guido; Ciminiera, Luigi; PAPA MANZILLO, Marco; Risso,
FULVIO GIOVANNI OTTAVIO; Torrero, Livio. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT. - ISSN 1932-4537. - 8:1(2011), pp. 65-78. [10.1109/TNSM.2011.012111.00013]

Original

Locating Equivalent Servants over P2P Networks

Publisher:

Published
DOI:10.1109/TNSM.2011.012111.00013

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2377002 since:

IEEE

	

This is an author’s version of the paper

Marchetto G., Ciminiera L., Papa Manzillo M., Risso F., Torrero L.
“Locating Equivalent Servants over P2P Networks”

Published in

IEEE Transactions on Network and service Management, vol. 8, n. 1, pp. 65-78

The final published version is accessible from here:

http://dx.doi.org/10.1109/TNSM.2011.012111.00013

©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

1

Locating Equivalent Servants over P2P Networks
Guido Marchetto, Luigi Ciminiera, Marco Papa Manzillo, Fulvio Risso, Livio Torrero, Members, IEEE

Abstract—While peer-to-peer networks are mainly used to
locate unique resources across the Internet, new interesting
deployment scenarios are emerging. Particularly, some applica-
tions (e.g., VoIP) are proposing the creation of overlays for the
localization of services based on equivalent servants (e.g., voice
relays). This paper explores the possible overlay architectures
that can be adopted to provide such services, showing how an
unstructured solution based on a scale-free overlay topology
is an effective option to deploy in this context. Consequently,
we propose EQUATOR (EQUivalent servAnt locaTOR), an un-
structured overlay implementing the above mentioned operating
principles, based on an overlay construction algorithm that well
approximates an ideal scale-free construction model. We present
both analytical and simulation results which support our overlay
topology selection and validate the proposed architecture.

Index Terms—Distributed services, equivalent servants, peer-
to-peer overlays, scale-free topology.

I. INTRODUCTION

WHILE in the past few years the resource sharing ser-
vices across the Internet focused on generic storage

(e.g., distributed file systems, remote disks), content (e.g.,
file sharing, video streaming), and CPU cycles, the recent
emerging of the cloud computing paradigm might push this
vision even further. According to this scenario, the world
will be populated by thin and light computing devices acting
mainly as frontends, while the computation and the user’s data
reside elsewhere, in the “cloud”. In those services, two groups
of entities are defined: “users”, that ask for a given service,
and “servants” that are actually in charge of providing the
service. Servants can be composed of millions of processing
platforms either sparse across the Internet, or concentrated in
special datacenters. Users do not care about their physical
location: they are interested in getting the service, no matter
which servant is actually providing it.

At the same time, the current wave of distributed sharing
services tends to involve resources available at the edge of the
network and hence bases on the peer-to-peer (P2P) paradigm
to achieve performance, scalability, and robustness. Among
the possible examples, the Desktop Grid computing exploits
unused resources (storage, computational power, etc.) available
on widely located (home) computers, while NaDa [1] uses
P2P technologies to build “Nano Data Centers” that exploit
the DSL gateways placed in our homes. The idea is that users
owning enough resources (e.g., a DSL gateway or a home-PC,
which are unused for a great portion of time) may enter the
cloud and start offering services.

Manuscript received March 2, 2010; revised August 6, 2010 and November
4, 2010. The associate editor coordinating the review of this paper and
approving it for publication was R. Stadler.

The authors are with the Dipartimento di Automatica e Informatica,
Politecnico di Torino, 10129 Torino, Italy (email: name.surname@polito.it).

In this context, a new set of services is emerging, where
every servant is potentially able to satisfy users’ requests.
In fact, many operations delegated to the cloud (especially
by thin clients) often require “limited” resources in terms
of bandwidth, storage or CPU cycles, and therefore can be
easily handled by any of the many peers participating in the
abovementioned service-oriented overlays. We can say that
these services are based on multiple, equivalent servants. As a
few examples, we can cite the offloading of some computations
that are too expensive for mobile devices, the localization of a
relay required for anonymizing a communication (e.g., Tor [2])
or establishing a successful VoIP transfer (e.g., Skype [3]), the
necessity to keep the state of users in an online game [4], or
a Personal Video Recorder that temporarily stores TV streams
when the user is offline, not to mention new online-based
computational platforms (e.g., Google Chrome OS [5]). In this
scenario, applications require the localization of an available
servant (i.e., a node that is currently free and hence can offer
the service) in the shortest time, rather than a precise resource
localization (e.g., a precise document, or a host with a given
amount of CPU time available or at least N Megabytes of
spare space).

Existing works lack in providing adequate support to these
emerging distributed systems. In fact, most of them focus
on the development of a system supporting specific requests,
ranging from a unique specific file to a set of resources
characterized by well-defined parameters. While these systems
can also support the localization of equivalent servants, they
are not optimized for this purpose because of the different
requirements they comply with, more stringent in terms of
resource constraints, but simpler in terms of timely response.
Hence, for example, they might be unable to locate a serving
node in a very short time, such as a relay to be used in
an incoming VoIP call. Furthermore, they may insert an
unnecessary overhead in the servant lookup, due to the features
they provide to support complex queries, which are of little
help in the context of services based on equivalent servants.

This paper focuses on services provided by equivalent ser-
vants and models and analyzes the performance of structured
and unstructured overlays when used to provide such services.
We demonstrate that the architecture chosen for the P2P
network has a huge impact on the overall performance of
the service. In particular, with the support of some analytical
and simulation results, we show how an unstructured network
based on epidemic dissemination and built over a scale-free
overlay topology is an effective solution to deploy in this
context. Then, we present EQUATOR (EQUivalent servAnt lo-
caTOR), a P2P-based architecture deployable in real networks
for the provision of services based on equivalent servants.
EQUATOR aims at guaranteeing high lookup performance,
as well as high robustness to failures and churn phases, when

2

a significant number of peers joins/leaves the network.
After a brief revision of the related work concerning

the existing service-oriented overlays (Section II), the paper
introduces some possible overlay architectures that can be
adopted to support the location of equivalent servants and
shows the benefits of scale-free networks in this particular
context (Section III). Then, Section IV introduces EQUATOR
and describes its operating principles. An extensive simulation
study is presented in Section V to evaluate and validate the
proposed solution. Finally, Section VI concludes the paper.

II. RELATED WORK

During the last few years, structured (e.g., Chord [6],
Kademlia [7]) and unstructured (e.g., Gnutella [8], KaZaA [9])
P2P solutions have started to be adopted as building blocks for
the definition of more complete P2P systems able to provide
arbitrarily complex distributed services. For example, [10]
and [11] present two similar unstructured architectures for
the provision of Grid-like services. Other solutions have been
proposed in the context of video distribution (e.g., [12], [13]).
On the structured side, some example of these architectures
have been presented in [14]–[17].

However, all these proposals address a problem that is
different from the scenario we have in mind, where users
are interested in locating one of the many available servants.
Even more important, they do not investigate the effects of the
overlay topology on the performance of this type of resource
lookup in order to determine the best overlay technology for
the given service.

The equivalence of servants is considered in [18]–[20]. In
[18], the authors propose a scheme for CPU cycle sharing over
an unstructured P2P network. They consider the unbalanced
node degree distribution, which may result in real overlay
networks, as a possible obstacle to the lookup effectiveness
of the system and, consequently, they propose mechanisms
to overcome these limitations. In this paper, we show instead
how an unbalanced node degree distribution (specifically, a
scale-free topology), if properly exploited, ensures high lookup
performance. Peer-to-peer SIP (P2PSIP [19]) proposes to use
a DHT to support lookups of relay nodes among all the
equivalent participating peers, which can be done by randomly
selecting a target node and then moving over the DHT to
reach this target. Our previous work [20] explores the idea
of a service based on equivalent servants, but it limits its
application to a distributed connectivity service in a SIP
infrastructure.

This paper focuses on services based on equivalent servants
and brings several contributions to the existing work on this
topic. First, we compare the possible overlay architectures to
support our class of services and we show, through extensive
analytical and simulation studies, that an unstructured overlay
based on a scale-free topology is an interesting solution in
this context. Furthermore, we show the corresponding penalty
in case a DHT architecture is chosen, as proposed in [19].
Second, we propose a novel overlay construction algorithm
which (i) is suitable for implementation in real networks, (ii)
supports a generic service, and (iii) approximates an ideal

well-known scale-free construction model. Third, we analyze
different network scenarios by varying the servant character-
istics (e.g., their lifetime), which provides an insight of the
possible performance of different services in our context.

III. OVERLAY ARCHITECTURE OPTIONS

Since the underlying overlay architecture has a huge impact
on the performance of the offered service and on the features
that can be guaranteed to the users, this section compares the
structured and unstructured approaches with respect to their
capability to support services based on equivalent servants. In
particular, we focus on the service lookup performance (i.e.,
the capability of the system to provide a querying user with an
available servant) offered by different architectures, presenting
some analytical and simulation results which demonstrate that
an unstructured overlay based on a scale-free topology is a
good choice for handling our service. Then, we elaborate on
the other interesting properties of this solution.

A. Structured overlays

We first investigate the possibility to deploy a structured
overlay based on a general DHT, as it has been proposed in
[19] for the P2PSIP architecture.

Since in our scenario all peers provide the same functional-
ity (i.e., we have only one resource provided by many nodes),
the number of copies predominates over the number of distinct
services and therefore the ability of DHTs to locate a specific
resource is of little help. Therefore, [19] proposes to use the
DHT in a more clever way: queries are performed by randomly
selecting a target key and then moving in the overlay to reach
this target.

Since it does not cause further complexity and possibly
improves the system performance, we introduce an additional
feature to this querying mechanism: during the lookup process,
any node encountered along the path is checked for availability
and can be selected as a servant for the querying user. Notice
that this operating mode makes the approach independent of
the adopted DHT. In fact, only the overlay topology (which is
a regular graph in existing DHTs) is of interest in our context.
In other words, we adopt the topology of a generic DHT, with a
fixed number of neighbors for each node, but we use a different
routing mechanism. This solution will be however referred to
as DHT in the rest of the paper.

The idea of using a DHT for our scenario of equivalent
servants is especially interesting in case a DHT has to be
implemented anyway for some other services. For example,
P2PSIP already uses a structured overlay to index all possible
targets of a multimedia communication, i.e., all the user agents
registered in the SIP domain. Using the same DHT to locate,
if necessary, a relay node to support the communication (i.e.,
a servant among the many peers existing in the SIP domain)
may be a considerable advantage for that application, which
needs to maintain only one overlay structure that can be used
for both functions.

3

B. Unstructured overlays

An efficient unstructured overlay is characterized by high
lookup performance and small amount of traffic required to
maintain the overlay. Both parameters are influenced by the
topology and the operating principles (e.g., how nodes spread
information) of the overlay. This section elaborates on these
aspects in the context of services based on equivalent servants,
proposing to adopt a scale-free topology and motivating this
choice.

An interesting lookup solution that avoids the deleterious
traffic overhead generated by flooding-based queries is the
adoption of a service lookup based on random walks [21]
encompassing a bounded number of nodes. Within this tech-
nique, the service request is forwarded, at each node, to a peer
randomly selected among its neighbors. If the encountered
node is available or knows an available servant, the procedure
terminates. The knowledge of nodes can be improved through
proper advertisement messages containing the node itself
and/or other participating peers, thus implementing a so called
epidemic dissemination algorithm.

The effectiveness of random walks depends on the overlay
topology adopted in the system. Among other possibilities,
a scale-free topology [22] may offer interesting features. In
a scale free network, the node degree distribution follows a
power-law P (n) = cn−γ , where P (n) is the probability that
a node has n connections and c is a normalization factor.
Hence, only few nodes (usually referred to as hubs) have a
high degree, i.e., are aware of the existence of a large number
of participating peers. The idea is that directing random walks
toward hubs means looking for the service where there is
a great knowledge of servants. This ensures high lookup
performance with respect to an overlay based on a balanced
degree distribution (e.g., a random graph or a regular topology)
where service requests are randomly distributed among peers.
This result derives from a well-known property of queuing
systems, which says that a unique M/G/k/k queuing system
servicing an arrival process with rate λ performs better than
k separated M/G/1/1 systems each one servicing an arrival
process with rate λ/k. In essence, concentrating the traffic on
some nodes that have a deep knowledge of the network (i.e.,
the hubs, which know a lot of possible servants) provides
better performance than accurately distributing the requests
among all nodes, as random solutions try to do. This extends
the results obtained by Adamic et al. [23] in the context of
traditional file lookups in P2P systems, which demonstrated
the effectiveness of random walks in scale-free networks due
to the greater knowledge of resources available at the hubs.

In order to achieve high lookup performance, hubs should
have a deep knowledge about the other participating peers:
the greater the number of peers known by a given node, the
higher the probability for a user to find an available servant
in a short time. Since the epidemic dissemination is based on
flooding, the overlay topology has a deep impact not only on
peers known by each node, but also on the resulting network
efficiency. In fact, the greater the average path length between
nodes, the higher the depth of the flooding that is needed for
an adequate spread of the information, which may cause an

unsustainable load on the network. The scale-free topology
also ensures a good efficiency of epidemic dissemination
algorithms as exhibits a small average path length. In essence,
a large number of advertisement messages reach the hubs even
with a small dissemination depth (namely, the number of hops
encompassed by advertisement messages before elapsing) and
a small out-degree (representing the number of peers to which
a node directs advertisement messages).

Another interesting feature of scale-free networks is that
they can scale to an arbitrarily large network size without
modifying the degree distribution of nodes, which continues to
follow the same law. This ensures that new hubs are automat-
ically created when the network size grows, therefore main-
taining the above described properties. In essence, scale-free
networks potentially combine the advantages of centralized
indexing (where a single entity directly handles all possible
servants and consequently offers the best performance) and
totally distributed solutions (which can scale to an arbitrary
large number of participating servants and users).

One of the most popular mechanisms to build a scale-free
network was proposed by Barabási and Albert [22] and for
this reason is referred to as Barabási-Albert model. Let m
denote the out-degree of a node and d denote its in-degree.
The Barabási-Albert model requires a set of m0 nodes to be
already in the system at the beginning of the process. Then,
each entering node connects to m existing nodes, chosen
proportionally to their popularity. This process is known as
preferential attachment. This network formation algorithm
results in a scale free network characterized by a node degree
distribution P (n) = cn−3 and an average path length which
behaves as lnN

ln lnN [22]. The Barabási-Albert model is used
as a reference in the rest of the paper. Although in general
P (n) = P (m + d), in this case we are interested in the in-
degree of a node as it represents its popularity, i.e., it counts the
number of nodes that send their advertisements to it. Thereby,
without losing in significance, we consider P (n) = P (d)
— i.e., the distribution of the in-degree of nodes — in the
following.

The Barabási-Albert model is an ideal network formation
algorithm that requires a global knowledge of the existing
nodes. Clearly, this is not feasible in a real network. Hence,
while this section shows the effectiveness of a scale-free solu-
tion, Section IV will present an overlay construction algorithm
based on a limited network knowledge which approximates the
Barabási-Albert model.

C. A lookup performance model

This section compares the above architectures with respect
to their capability in locating an available servant. This result
is achieved by defining a simple analytical model that derives
the average blocking probability (i.e., the probability for a
service request to fail because no available servant is found)
achieved by each architecture.

1) Model overview: From our point of view, the length
of the path that a service request has to follow to reach a
target key in a DHT and the depth of a random walk over an
unstructured network have a similar meaning: they represent

4

the amount of hops that a service request can encompass
without success before the request has to be considered
blocked. Hence, without losing in generality, we denote these
two overlay parameters by a common variable, namely Dl,
generally defined as the maximum depth of a service lookup.
Dl is a fixed value in an unstructured network, while is
variable and O(logN) in a DHT.

For the sake of simplicity, we consider only the case Dl = 1
in this model. Within the unstructured approach, we also
assume a dissemination depth (i.e., the time-to-live of adver-
tisement messages, denoted as Td) not greater than 2 hops, as
larger values would result in an excessive dissemination traffic
overhead in the network. This assumption is confirmed by the
guidelines of the Gnutella protocol [8], in which the depth of
the dissemination algorithm is set to a maximum of 2 hops.

Let V = {v1, v2, . . . , vN} denote the set of participating
peers offering the service, and Si denote the set of servants
indexed by a given node vi (including the node itself), i.e., the
set of peers that the node vi can offer to a querying user in
the tentative of satisfying her service request. The idea is that,
whenever a service request reaches a node vi of the overlay,
such request is satisfied if a servant si ∈ Si is available.

Hence, under the assumption Dl = 1 and if service requests
are supposed to arrive at nodes according to a Poisson process,
each node can be modeled as an M/G/k/k queuing system,
i.e., a buffer-less system offering k equivalent servers, as also
briefly described in Section III-B. End-systems may be part of
the overlay if the offered service consumes a small fraction of
the available resources, so that local users are not penalized.
Hence, we suppose that a node can be a servant only for
one user at a time, i.e., for a given node vi, ki = |Si|.
This could not be the case in some scenarios, where the
offered service consumes a very low percentage of resources.
However, it is worth noticing that our model is still valid: if
each node can support n service instances, we would have
ki = n |Si|. Similarly, the analysis could be extended to the
case where each node can handle a different number of service
requests. However, this would complicate the analysis without
adding any significant contribution to the comparison among
the architectures considered in the paper.

In an M/G/k/k queuing system, the probability that a service
request fails (i.e., the blocking probability, which we denote
as Pb) can be evaluated by using the well-known Erlang B
formula. Let λi and µi denote the request arrival rate and the
service rate at node vi, respectively. For each node vi we have

Pbi
=

ρi
ki/ki!∑ki

n=0 ρ
n/n!

, (1)

where ρi = λi/µi is defined as the service request load at
node vi. Clearly, for a given node vi, Pbi

depends on ρi and
on the amount of servants the node can offer, ki.

In the next sections we will derive ρi and ki for both the
structured and the unstructured scale-free approach. This will
be used to calculate the average blocking probability of the
system, which allows us to quantitatively compare the two
approaches under examination when used to locate equivalent
servants. In particular, if ρT is the total service request load

offered to the overlay, the average blocking probability can be
evaluated as

Pb =
N∑
i=1

ρi
ρT

Pbi
. (2)

2) Structured overlay model: From our point of view, a
DHT can be modeled as a regular topology where nodes
have a fixed number of neighbors (the out-degree m) given
by the size of the tables they use to route queries in the
overlay. According to the servant lookup procedure presented
in Section III-A, each encountered node along the path toward
the target key can satisfy the service request only if the node is
available, i.e., Si = {vi} and, consequently, ki = 1, ∀vi ∈ V .
We assume that incoming queries can enter the network at
nodes selected randomly, as it may happen in real DHTs. Also
remembering our main assumption Dl = 1, we have ρi = ρT

N ,
∀vi ∈ V , where N is the overlay size, i.e., the number of peers
participating to the overlay. The average blocking probability
is obtained by substituting ki and ρi in (1) and (2).

3) Unstructured scale-free overlay model: In an unstruc-
tured scale-free overlay, the number of servants |Si| offered at
a node vi strictly depends on the amount of other peers which
advertise themselves to the node, which varies according to the
dissemination depth Td adopted in the network. We consider
a scale-free network constructed according to the Barabási-
Albert model, which represents the scale-free construction
algorithm we adopt as a reference in this paper; we consider
m0 = m for simplicity.

Let Ai denote the amount of messages arriving at node
vi in one advertisement round from peers directly connected
to node vi and from which vi is reached by a 1-hop-depth
dissemination. In this simple case, a node vi can receive ad-
vertisement messages only from its direct neighbors. Clearly,
Ai = di, where di is the in-degree of node vi. In the Barabási-
Albert model, the in-degree of a node may vary whenever a
new node joins the network. In particular, the probability Pn,i
that an entering node vn connects to an existing node vi, thus
modifying its degree, is given by

Pn,i =
di(n) +m

2n
, n > i, (3)

where di(n) is the in-degree of node vi when node vn joins the
network. This time dependence can be calculated by applying
the continuum theory, introduced in [22] for this purpose. The
outcome of this theory is that, at a given time t, di(t) =
m
√

(t/i)−m. Thereby, we can argue that, for a network size
N (i.e., at “time N”), the amount of messages arriving at node
vi in one advertisement round when Td = 1 is

Ai = m

√
N

i
−m. (4)

Analogously, let A′i denote the number of messages arriving
at node vi in one advertisement round from peers connected to
the direct neighbors of node vi and from which vi is reached
by a 2-hop-depth dissemination. We define these nodes as
“second-hop neighbors” of vi. In this case, the calculation
of the number of advertisement messages A′i is more difficult

5

as it is no longer deterministically related to the in-degree di
of the node. For this reason, we focus our analysis on the
average number of received advertisement messages, which
is more tractable and does not preclude the validity of the
model. In particular, considering that the average in-degree of
the neighbors of node vi can be evaluated as

∑N
n=i+1 c dnPn,i

and that, from the continuum theory, Pn,i = (m/2)(n i)−0.5,
we can derive the average number of advertisement messages
generated by the second-hop neighbors of vi as follows:

< A′i > = di

N∑
n=i+1

c dnPn,i ≈ di
∫ N

i+1

c dnPn,i dn

≈ di cm
2

√
N

i

[
1
2

ln
(
N

i

)
+

√
i

N
− 1
]
, (5)

adopted as an estimation of A′i in the following. The normal-
ization factor c can be evaluated by imposing

∑N
n=i+1 c Pn,i =

1.
The set Si of the servants indexed at a node vi is composed

of the node itself and the peers it discovers through the
epidemic dissemination mechanisms. The m peers a node vi
is connected to (i.e., its out-degree) are assumed to index
other servants and contacted in the case the service cannot
be satisfied at node vi. It is worth noticing that, while for a
node vi, |Si| = Ai + 1 if Td = 1 (i.e., the number of servants
indexed at the node is equal to the number of advertisement
messages received in each advertisement round, plus the node
itself) a similar consideration is in general not correct if
Td = 2, i.e., |Si| 6= Ai + A′i + 1. This is due to the fact
that, when m ≥ 1, the second-hop neighbors discovered may
be not unique and we may count the same node twice. This
may happen when two first-hop neighbors have an additional
direct connection between them (therefore they both appear as
second hop neighbors as well) or when the same second-hop
neighbor is reached through two different first-hop neighbors.

Concerning the first type of duplicated node, we can obtain
an approximate evaluation of the average number of links
among the direct neighbors of a node vi as follows:

Li ≈
1
2

∫ N

i+1

dl
∫ N

i+1

dnPl,i Pn,i Pl,n ≈
m3

16i

[
ln
(
N

i

)]2
,

derived from the definition of “average clustering coefficient”
introduced in [24] by considering that in the Barabási-Albert
model a node vn can be connected to node vi only if
n > i. Analogously, we can evaluate the average number of
duplications involving a second-hop neighbor and two direct
neighbors of a node vi as follows:

L′i ≈
∫ N

i+1

dl
∫ N

i+1

dnPl,i P(l+1),i Pn,l Pn,(l+1)

≈ m4

16i2

[
ln
(
N

i

)
+

i

N
− 1
]
.

These parameters indicate, for each node, the average
number of duplications resulting in the neighborhood of the
node, from which an estimation of the number of non-unique
discovered nodes could be derived. In particular, we have

ki = aiAi + bi(A′i − Li − L′i) + 1,

where ai, bi ∈ {0, 1}, ai = 1 iff Td ≥ 1, bi = 1 iff Td ≥ 2.
As mentioned before, we believe that a scale-free topology

is especially advantageous if we direct service requests to
hubs. Hence, we assume

ρi =
ki

N∑
n=1

kn

ρT , (6)

which corresponds to distributing incoming service requests
among nodes proportionally to their popularity.

The above derived values for ki and ρi can be used to
calculate the average blocking probability achieved in an
unstructured scale-free overlay by applying (1)1 and (2). How-
ever, it is worth noticing that, for a given node vi, if vi ∈ Si
and vi ∈ Sj , vi is a direct neighbor or a second-hop neighbor
of vj . This makes servants shared among several nodes and
then introduces correlations which are not considered in the
M/G/k/k system and in the Erlang B formula, which is not
valid in such situations. We can model these correlations by
introducing an additional load at all nodes, therefore taking
into account the service requests directed to the nodes that
share some servants. In particular, given an average service
request load ρi on a node vi, the average contribution to the
load on a node vj ∈ Si due to vi is ρij = ρi

ki
. From (6),

we can derive that this contribution is constant and equal to
ρT∑N

n=1 kn
,∀vj ∈ V . This considered, we can argue that the

additional load to consider at a node vi is ρiadd
= (m2+m)ρi,

where ρi is derived from (6). This approach for considering
correlations deriving from the sharing of servants among nodes
is approximated and, as shown in the next section, holds only
for small values of m. Specific analytical work would be
required to exactly model this phenomenon, which is however
left for future work.

D. Lookup performance comparison

The above presented analytical model is used for compar-
ing the structured and the unstructured scale-free approaches
concerning the average blocking probability they achieve. A
network size of N = 5000 nodes is considered for this
comparison. Furthermore, we assume an exponential service
time distribution with rate µn = µ, ∀n : 1 ≤ n ≤ N . In
absence of any more detailed information about the possible
service time distribution in this particular distributed service
scenario, we consider this assumption a good approximation of
the actual behavior of possible users, which could be involved
in relatively short multimedia communications with higher
probability, but also in longer sessions of video-streaming
and on-line gaming. In essence, we customize our queuing
system to an M/M/k/k. Notice how this does not influence our

1Being ki an average value, it may be non-integer. Hence, we modify (1) as
follows: Pbi = 1

ρi

∫ ∞
o
e−ρiγ(1 + γ)ki dγ

. This is known as Generalized

Erlang B formula and can be used in presence of a non-integer number of
servers.

6

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Service request load

Structured (analysis)
Structured (simulation)

Scale-free m=1 (analysis)
Scale-free m=1 (simulation)

Scale-free m=2 (analysis)
Scale-free m=2 (simulation)

Scale-free m=4 (analysis)
Scale-free m=4 (simulation)

Scale-free m=8 (analysis)
Scale-free m=8 (simulation)

Fig. 1. Average 1-hop blocking probability: comparison between structured
and unstructured scale-free overlays.

performance evaluation as the Erlang B formula is insensitive
to the service time distribution.

Fig. 1 compares the structured approach and the unstruc-
tured scale-free solution adopting an epidemic dissemination
depth Td = 2. In particular, it plots the average 1-hop blocking
probability (i.e., the average blocking probability obtained
when Dl = 1) achieved by these two types of network. Some
values of the out-degree m are considered for the unstructured
approach2. The figure shows how the unstructured scale-free
approach based on epidemic dissemination and random walks
significantly outperforms the modified DHT-based lookup over
structured overlays introduced in Section III-A.

To validate our model, we developed a custom, event-
driven simulator implementing both the structured and the
unstructured scale-free approach. The former exploits a regular
topology where service request load is randomly distributed
among peers. Concerning the unstructured scale-free approach,
the network topology is constructed according to the Barabási-
Albert model and the service request load is distributed among
peers proportionally to their in-degree, as specified by the
model itself. Fig. 1 also compares our analytical model with
the results obtained by simulation. We can observe how our
approximated approach to address the correlations emerging
from the presence of servants indexed at more than one peer,
consisting in the introduction of additional load at nodes, is
valid only for small values of m. For example, at a service
request load ρT = 0.7, the analytical model provides an
average blocking probability which is 20% higher than the
real value derived by simulation when m = 8. However, it
is worth noticing how small increments in the value of m
result in sensible improvements of the lookup performance.
This is of great importance in our unstructured context, as
the traffic overhead generated by flooding of advertisement
messages is directly proportional to the out-degree m of the
participating peers. Hence, we can concentrate on small values
of m, which guarantee small traffic overhead together with
excellent lookup performance. For this reason, we consider
m = 2 in the following.

To further extend our overlay comparison, we consider

2Notice that the structured overlay is insensitive to the out-degree value
when referring to the lookup performance.

larger values of Dl. This was not included in our model
because of the complex correlations that rise when service
requests may experience more than one hop. In fact, requests
may arrive at a node after being refused at previous hops,
making an analytical modeling difficult. Consequently, we
derive this result only by simulation. Moreover, we include
additional comparisons which may be of interest for our work.
In fact, so far we considered the utilization of the DHT as
proposed in [19]. However, a possible more effective approach
may be to include epidemic dissemination in the structured
overlay, so that nodes may increase the number of servants
they can offer to querying users. Since in our context we
are interested in the number of node edges (proportional to
the number of servants discovered), rather than in the specific
peers to which they point, such an approach is expected to have
similar performance to an unstructured overlay implementing
a random graph (also considered in this comparison for the
sake of completeness). In fact, a random graph is by definition
a quasi-regular topology where node degree assumes values
close to the average degree m with high probability [22].
Notice that this analogy does not hold in traditional file-sharing
systems, where efficient lookups over structured overlays are
guaranteed only if peers establish connections according to
well-defined rules.

Fig. 2 compares all these approaches concerning the average
blocking probability achieved at different values of Dl in the
two different service request load conditions ρT = 0.6 and
ρT = 0.9. Besides confirming that the unstructured random
solution and the structured approach enriched with epidemic
dissemination perform similarly, the figure shows how the
unstructured scale-free overlay outperforms other solutions. In
particular, Fig. 2(b) shows that the lookup performance of a
random walk does not degrade too much with the increasing
of the traffic intensity, thus being able to effectively support
also services requiring real-time lookups.

In summary, the outcome of these analytical and simulation
results is that, besides avoiding the complexity due to the
maintenance of a structured network, an unstructured overlay
based on epidemic dissemination and resulting in a scale-free
topology is also preferable for the offered lookup performance.
In particular, we observed how such a system can guarantee
good lookup performance even in presence of small values of
m and Td (Td ≤ 2 in these examples), which are instrumental
to limit the overhead in the network due to the flooding of
advertisement messages. As described in Section III-B, these
properties derive from the large availability of servants at the
hubs and the small diameter of scale-free networks.

E. Further properties of the unstructured scale-free overlay

Scale-free networks offer some other properties which could
be interesting for the deployment of service-oriented overlays.
First of all, we show how the average blocking probability
can be further lowered by reducing the number of nodes
from which users can start random walks in order to locate
a servant. In particular, since one of the key ideas under the
adoption of a scale-free topology is to preferably direct queries
toward hubs, we can force users to direct their service requests

7

1.0e-07
1.0e-06
1.0e-05
1.0e-04
1.0e-03
1.0e-02
1.0e-01
1.0e+00

1 2 3 4 5 6 7 8 9 10 11 12 13 14Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Service lookup depth [hop]

(b)

Structured
Structured with dissemination

Unstructured scale-free
Unstructured random

1.0e-07
1.0e-06
1.0e-05
1.0e-04
1.0e-03
1.0e-02
1.0e-01
1.0e+00

1 2 3 4 5 6 7 8 9 10 11 12 13 14Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Service lookup depth [hop]

(a)

Structured
Structured with dissemination

Unstructured scale-free
Unstructured random

Fig. 2. Average blocking probability as a function of the service lookup depth
Dl: comparison among structured, structured with epidemic dissemination,
unstructured scale-free, and unstructured random overlays; (a) ρT = 0.6; (b)
ρT = 0.9.

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Service request load

(a)

M = 2 (psp = 25%)
M = 3 (psp = 16%)
M = 5 (psp = 8%)
M = 7 (psp = 5%)

1.0e-08

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1 2 3 4 5 6 7

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Service lookup depth [hop]

(b)

M = 2 (psp = 25%)
M = 3 (psp = 16%)
M = 5 (psp = 8%)
M = 7 (psp = 5%)

Fig. 3. Lookup performance of a hierarchical scale-free overlay: (a) Average
1-hop blocking probability; (b) Average blocking probability as a function of
the service lookup depth Dl (ρT = 0.6).

to nodes whose in-degree is greater than a given value M .
In essence, service requests can be directed to a percentage
psp = (m2/(M + m)2) ∗ 100 of nodes, as can be derived
from the continuum theory. Fig. 3(a) and Fig. 3(b) plot the
average 1-hop blocking probability and the average blocking
probability as a function of the random walk depth Dl,
respectively, achieved by the unstructured scale-free network
for some values of M when m = 2. A service request load
ρT = 0.6 is considered in Fig. 3(b). We can observe how small
values of M , resulting in percentages psp not lower than 5%,
significantly improve the lookup performance of the scale-free
overlay. These are admissible values if we consider that very
few nodes handle lookup requests in existing hierarchical file-
sharing systems (see for example [25], which reports on a
measurement study of the KaZaA overlay). Moreover, as it
will be clearer in the following, handling a service requests
means processing a short packet and replying with some peer
descriptors (i.e., a few hundreds of bytes). This produces
even less effort than the task usually assigned to peers in
hierarchical file-sharing overlays, where they have to handle
and maintain all the shared resources.

The other interesting property of these networks is their
higher resiliency to random node deletions with respect to

overlays based on random graphs [26]. This can be explained
observing that most of the paths between nodes pass through
hubs: if a peripheral node is deleted, it is unlikely to affect
communication between other peripheral nodes. Intuitively, the
scale-free with m ≥ 2 also tolerates the (low frequent) deletion
of hubs, since most of the nodes are connected to m hubs for
construction, thus preserving service continuity. This makes a
scale-free overlay resilient to node failures, which generally
occur randomly in a network. However, this solution may
appear vulnerable to attacks specifically conducted to destroy
a great portion of hubs. This is correct for static scale-free
networks, but here we deal with a dynamic overlay where
connections among nodes periodically change, as it will be
presented in the next section. This network dynamicity leads
our scale-free solution to tolerate also these negative events,
as it will be shown in Section V-F.

IV. EQUATOR

The previous section demonstrated the effectiveness of an
unstructured network based on a scale-free topology. However,
both the Barabási-Albert model, adopted for the scale-free
construction, and the lookup mechanisms deriving from this
approach make some assumptions that cannot be satisfied in
the real world; particularly, we envision four problems in
the model that require some real-world adaptations. In fact,
the Barabási-Albert model requires (i) a global knowledge
of nodes and (ii) their popularity in order to perform the
preferential attachment; (iii) hubs are supposed to index an
arbitrarily large number of servants, which are used to satisfy
incoming service requests; finally, (iv) nodes are considered
static, i.e., the model does not consider nodes joining and
leaving the network.

This section presents EQUATOR, an unstructured overlay
based on the Barabási-Albert model (and hence on a scale-free
topology), which adopts a set of construction and operating
rules that are suitable for a real network. Furthermore, an
epidemic dissemination algorithm is used to spread the net-
work knowledge among the participating peers. A portion of
a possible EQUATOR overlay is shown in Fig. 4 (some details
will be clarified in the following), with some peers being part
of the scale-free topology and some normal users accessing
the offered service.

A. EQUATOR Bootstrap Service

In real P2P networks, entering nodes cannot have any
knowledge about the existing overlay and therefore a Bootstrap
Service is required in order to give such nodes the opportunity
to join the network. In particular, the Barabási-Albert model
requires a set of m0 peers to be available at the initial step of
the overlay setup. A simple solution (adopted in many existing
overlays such as KaZaA [9]) consists in setting up some static
peers and pre-configuring their addresses on each client.

In EQUATOR, we prefer a more flexible approach that relies
on multiple bootstrap servers reachable through appropriate
DNS records (e.g., SRV entries), thus guaranteeing redun-
dancy and load balancing. Bootstrap servers globally store
information about m0 participating peers; when a peer joins

8

EP2

EP5
EP6

EP4

EP3

EP1

Servant Cache

Node Pop

EP1
EP2
EP3
EP4
EP5

1
2
4
0
8

Overlay Cache

Node Pop

EP1
EP2
EP3
EP4
EP5

1
2
4
0
8

EQUATOR OVERLAY

U

U

U

U

U

U

Adv message in the last minute

U

EP

EP

User node

Last received adv message

Lookup message

EQUATOR Peer

EQUATOR Peer (hub)

Cache update

Fig. 4. EQUATOR architecture.

the overlay, it adds itself to the list in case the number of
entries in the bootstrap servers is n < m0. Since entries in the
bootstrap servers expire after a predefined lifetime, each peer
periodically re-contacts the bootstrap servers and potentially
adds itself to the list.

B. Node popularity

In a network based on epidemic dissemination, nodes send
advertisement messages to other nodes in order to maintain the
overlay. Although the details of this advertisement process will
be presented in Section IV-C, we need to define first a feasible
method for computing the popularity of nodes, which is one
of the crucial points of the Barabási-Albert model because it
is at the foundation of the preferential attachment policy and
hence of the scale-free construction mechanism.

In a scale-free topology the popularity is equivalent to the
in-degree of the node. Since it is unfeasible for an EQUATOR
node to be aware of its in-degree, EQUATOR adopts as pop-
ularity metric the number of advertisement messages a node
receives, which is proportional to its in-degree. In particular, a
node can estimate its popularity by maintaining statistics about
the average number of received messages per minute. The
popularity of a node is used both in the overlay construction
(to connect to the most popular nodes) and in the overlay
maintenance (to keep connections to hubs) and is propagated
in the advertisement messages, as detailed in Section IV-C.

C. Overlay knowledge and advertisement

Each node in the overlay maintains two different node
caches: a servant cache and an overlay cache. The former
contains the set Si of servants indexed by a peer vi and
it is populated by nodes that are lightly loaded with high
probability, i.e., nodes (often leaves) that are most appropriate
for satisfying an incoming service request. The latter contains
a subset of the participating peers representing the entire
overlay, among which the node selects the m peers to connect
to. Hence, it includes nodes of different popularity in order to
better represent the overlay. We denote by τsc the size of the
servant cache and by τoc the size of the overlay cache.

At each advertisement round (which we suppose to occur
every tadv minutes), an EQUATOR node sends an advertise-
ment message (i.e., it “connects”) to m peers in its overlay
cache, chosen with a probability proportional to their pop-
ularity and hence according to the preferential attachment
mechanism. These messages contain a list of tuple <node,
popularity, ttl>: nsc entries are selected as the less
popular peers present in the servant cache, while noc entries
are randomly selected from the overlay cache. This is done
to give nodes the opportunity to learn both servants that
are available with high probability (i.e., the leaves) and a
set of nodes of different popularity to improve their local
representation of the overlay. In fact, nodes that receive the
message insert the nsc entries in the servant cache and the
noc entries in the overlay cache. When caches are full, the
nsc entries replace the most popular peers of the servant cache,
while the entries replaced by the new noc nodes in the overlay
cache are chosen randomly. Notice that the removal of oldest
entries (as proposed in CYCLON [27]) is not a good policy in
EQUATOR as it is necessary to maintain the above popularity
distributions in the caches. However, entries expire after ttl
seconds in order to purge old nodes from the cache (if not
refreshed) and avoid zombies.

When the dissemination depth Td > 1, nodes along the
dissemination path also insert themselves in the advertisement
messages before forwarding the message to the next hop. Since
these nodes are highly popular peers with high probability (for
scale-free construction), this slightly biases the overlay cache
with highly popular nodes, with the aim of favoring hubs to
be contacted and hence promoting preferential attachment.

An example of the cache update process is shown in Fig. 4,
when the EQUATOR peer EP6 receives an advertisement
message from EP3 (the solid arrow in the figure). In the
figure, a peer announces two peers it knows, one picked from
the servant cache and one picked from the overlay cache (in
addition to the node itself). We also suppose a cache size
τsc = τoc = 4 peers and only one entry of each cache to
be empty when the advertisement message arrives. The most
popular peer of the servant cache and a randomly selected
peer from the overlay cache are removed to accommodate the
newly discovered peers.

D. Cache refresh

In EQUATOR, the knowledge of the network at any time
t is limited to a few nodes, i.e., the ones that are in the two
caches. Apparently, this is a radical departure from the scale-
free model in which nodes have the knowledge of the entire
network. However, the advertisement policies implemented
in EQUATOR allows a frequent update of the two caches,
therefore changing the known peers over time. In fact, each
node periodically advertises itself and some peers contained in
its two caches, so that peers receiving advertisement messages
can update their knowledge of the network by filling up, and
possibly refreshing, their caches.

Refresh is the key technique that allows the deployment
of small caches, which limits overheads due to both cache
management and advertisement and lookup traffic (all nodes

9

in the servant cache have to be contacted during the lookup
procedure, as described in Section IV-E). Furthermore, it
reduces the possibility to have an old servant, which may be
dead or currently unavailable (actually servicing a request) in
the servant cache. In fact, a frequent cache refresh ensures
the set of indexed servants changes frequently, resulting in
a sort of round robin among them. Since the cache refresh
rate at a node is proportional to the number of advertisement
messages received and, consequently, to its popularity, this
effect is maximized at the hubs, which have the opportunity
to virtually offer a large number of servants, notwithstanding
the limited size of the servant cache.

Frequent entry refresh is also important for the overlay
cache to allow the overlay to be dynamic and hence more
robust. When a new peer joins, its overlay cache only contains
the bootstrap nodes retrieved from the EQUATOR Bootstrap
Service. Thanks to the refresh, nodes can insert new peers in
their overlay cache and update the popularity information of
the peers they already knows. This increasing knowledge of
the network allows nodes to incrementally contribute to the
construction of the scale-free topology as they can apply a
more and more accurate preferential attachment. Hence, the
overlay results in a scale-free topology, although variable over
time. Furthermore, a frequent refresh ensures nodes are aware
of live peers and hence well connected to the rest of the
overlay.

E. Service lookup procedures from normal users

While the overlay contains all the peers that are available to
offer some of their resources (i.e., are potential servants), many
hosts may join the system as normal users in order to simply
exploit the overlay services and without taking an active part
in the overlay.

Users are most interested in service lookup functionalities
and therefore have an advantage at connecting to peers that
know many servants. In fact, in our model service requests
are distributed among the participating peers proportionally to
their popularity, i.e., requests are preferably directed to hubs.
Consequently, preferential attachment is beneficial also for
users and therefore we need to implement an approximation
of this algorithm also with respect to these nodes.

The service lookup procedure we defined for normal users
works as follows. Each user maintains a node cache, referred
to as lookup cache. Whenever a user logins in EQUATOR,
her EQUATOR instance connects to the Bootstrap Service
and retrieves the initial m0 nodes. The user node selects
one of them randomly and downloads its overlay cache.
This procedure is repeated periodically in order to guarantee
both the user node to have up-to-date knowledge of existing
peers and service lookups to be well distributed among the
peers. In fact, simply populating the lookup cache with nodes
retrieved from the Bootstrap Service would possibly result
in concentrating the lookup traffic among a few peers, with
possible congestions.

Whenever the user needs to start a service lookup, she picks
one node from the lookup cache, selected with a probability
proportional to its popularity, and sends the service request

to it. If available, the contacted peer itself satisfies the service
request, otherwise replies with a message containing its servant
and overlay caches. Peers in the servant cache are contacted in
parallel, asking them for the service, while peers in the overlay
cache are used to refresh the lookup cache, so that a second
round of search can be possibly performed (if no positive
response is received). Notice that the algorithm implements
a random walk encompassing Dl nodes, in accordance with
our model.

F. Complementary issues

This section focuses on some complementary issues that are
common to many service-oriented overlays, including EQUA-
TOR. Since these problems are rather general, the solutions
that can be implemented in EQUATOR are usually the same
already proposed in other systems. However, EQUATOR-
specific optimizations may be available in some cases. Those
are briefly analyzed and constitute possible future work on the
EQUATOR architecture.

First, the problem of limiting the damage caused by ma-
licious nodes is definitely a challenge as in EQUATOR, like
in many other distributed systems, peers are not under the
control of a central authority. Some solutions (e.g., [19], [28],
[29]) have been proposed and can be seamlessly applied in
EQUATOR. For example, in [19] public key certificates are
distributed among users to allow them to verify the origin
and the integrity of messages, hence limiting the operation
of malicious peers as they can be easily traceable. Similarly,
certificates can be used in EQUATOR to authenticate adver-
tisement messages, so that they can be considered trusted. We
will further discuss the robustness of EQUATOR in the next
section.

Furthermore, a service-oriented overlay often requires to
enable a proximity-aware service selection. In EQUATOR,
this can be done by using well-known techniques (e.g., Vi-
valdi [30]), as well as by modifying the proposed construction
algorithm in order to build a locality-aware scale-free overlay
(e.g., by customizing the approach proposed in [31]).

A third possible issue is the definition of mechanisms for
encouraging users to enter the EQUATOR overlay and share
some of their resources. Existing solutions (e.g., [32]–[34]) can
be adapted to operate in the EQUATOR scenario. However,
a precise definition of mechanisms and protocols to provide
incentives in the EQUATOR overlay is left for future work.

V. EQUATOR SIMULATION RESULTS

This section presents some simulation results on the EQUA-
TOR architecture. We first validate our overlay construction
algorithm, which we show to result in a scale-free topology.
We also show how EQUATOR is comparable to the ideal
Barabási-Albert network in terms of lookup performance. We
then elaborate on the system parameters, also focusing on
the lookup and advertisement overhead at nodes. Finally, we
investigate the behavior of our solution in different scenarios
triggered by different kinds of peers.

10

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

 1 10 100

Fr
ac

tio
n

of
 n

od
es

Node popularity [discovered servants per minute]

5000 nodes EQUATOR overlay
10000 nodes EQUATOR overlay

Power law, P(n) ~ n-3

Fig. 5. Node popularity distribution.

A. Simulation background

To perform our simulations, we developed a custom, event-
driven simulator implementing the EQUATOR algorithms pre-
sented in the previous section. The simulator considers two
types of nodes: participating peers and user nodes. The former
are part of the EQUATOR overlay, while the latter represent
the customers that need to exploit the offered service. Partici-
pating peer arrivals are modeled using a Poisson process, while
we consider several distributions for peer lifetimes in order to
investigate the behavior of EQUATOR in different scenarios.
User node arrivals are modeled using a Poisson process,
while user node lifetimes are assumed to be exponentially
distributed. Once entered the network, user nodes run the
lookup cache population algorithm presented in Section IV-E.

We model service requests with a further Poisson process.
Whenever a service request is scheduled, it is randomly
associated with one of the user nodes currently present in
the network, which immediately starts a lookup procedure.
To be compliant with the assumptions introduced in Sec-
tion III-C, the service duration is exponentially distributed.
We consider several service request rates, ranging from 50 to
150 requests/min. These values result in a service request load
ρT = 0.3÷ 0.9.

A single Bootstrap Server is adopted for simplicity. Incom-
ing nodes, either they are participating peers or users, contact
this server and retrieve the m0 registered peers. Different
values for the overlay size N are considered, obtained by
adopting a proper average peer arrival rate which, coupled
with the average peer lifetime, results in an overlay of about
N peers in the steady-state. Concerning the other system
parameters, we set τsc = τoc = 20 nodes and tadv = 30
min, which Section V-D will show to be proper values for the
EQUATOR overlay. Moreover, we set nsc = noc = 3 nodes,
m0 = 20 nodes. Finally, we set m = 2, Td = 2, and we
assume that each peer can handle only one session at a time,
as explained in Section III.

B. Overlay construction

Our first simulations aim at validating our overlay construc-
tion algorithm. We assume node lifetimes to be exponentially
distributed for simplicity, with an average node lifetime equal

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Service request load

Barabási-Albert model (M = 3)
Barabási-Albert model (M = 5)
Barabási-Albert model (M = 7)

5000 nodes EQUATOR overlay
10000 nodes EQUATOR overlay

5000 nodes random overlay

Fig. 6. 1-hop average blocking probability.

to 500 min. Different node dynamicity levels will be analyzed
in the following.

Fig. 5 plots the popularity distribution of nodes, measured as
the average number of different servants per minute (including
the node itself) that a node can offer to querying users. Two
overlay sizes N = 5000 and N = 10000 are considered to
verify the scalability properties of the network3. The solid
line represents a power law distribution P (n) ∼ n−3, i.e.,
the node popularity distribution in a Barabási-Albert network.
The figure shows how the EQUATOR overlay assumes a scale-
free topology which well approximates the Barabási-Albert
network for both values of N . A certain discrepancy exists be-
tween EQUATOR and the theoretical curve for high popularity
values. However, it is worth noticing how these differences are
amplified by the log-log scale of the graph. Since values are
related to very small portions of the entire overlay population,
differences are actually of little significance. Furthermore, they
are mainly due to the difficulty in collecting adequate statistics
because of the low number of nodes involved.

Besides the degree distribution, it is necessary to study the
clustering coefficient of the EQUATOR network in order to
complete the validation of our overlay construction algorithm.
In EQUATOR, the overlay is dynamic and hence links between
nodes change frequently. Consequently, we evaluate this pa-
rameter as the average value among the clustering coefficients
periodically observed in the network. We consider that, at a
given instant of time, a node is connected to another if it
sent an advertisement message to that node during the last
advertisement round. Table I reports on the average clustering
coefficient evaluated for different overlay sizes and compares it
with the theoretical value [24] of the Barabási-Albert network.
We can observe how EQUATOR reasonably approximates the
Barabási-Albert model also concerning this parameter, which
is slightly higher than the theoretical value, but significantly
lower than the clustering coefficient of highly clustered scale-
free networks, e.g., the World Wide Web, whose clustering
coefficient is about 0.1 [35].

These results validate the overlay construction algorithm
deployed in EQUATOR, as also confirmed by the results

3These values of N guarantee the significance of the obtained results and
meet our memory and CPU constraints.

11

TABLE I
AVERAGE CLUSTERING COEFFICIENT

Network size EQUATOR BA model
5000 0.0084 0.0036
10000 0.0072 0.0021

TABLE II
SAMPLED CUMULATIVE DISTRIBUTION FUNCTION OF THE

LOOKUP/ADVERTISEMENT MESSAGES RECEIVED BY NODES

Lookup messages Portion Adv messages Portion
(percentage of msg) of nodes (number of msg/min) of nodes

≤ 0.01% 0.60 ≤ 0.001 0.69
≤ 0.1% 0.62 ≤ 0.01 0.76
≤ 1% 0.93 ≤ 0.1 0.94
≤ 10% 0.99 ≤ 1 0.98
≤ 100% 1 ≤ 7 1

presented in the following.

C. Lookup performance

To validate the effectiveness of the EQUATOR overlay when
providing lookup services, we consider the 1-hop average
blocking probability (i.e., the probability that a user does not
find an available servant when Dl = 1). Coherently with the
assumptions of Section III-C, we consider a lookup hop to be
exhausted when that node (that receives a service request) and
all the servants it knows have been asked for the service.

We use as a reference the lookup performance obtained
over a Barabási-Albert network where lookup procedures start
only at nodes whose in-degree is greater than a given value
M . We consider values for M ranging from 3 (corresponding
to a percentage of nodes involved in the lookup procedures
psp = 16%) to 7 (corresponding to psp = 5%) a good trade-
off between lookup performance and lookup load distribution
among nodes, as discussed in Section III-E. Fig. 6 shows how
EQUATOR and this ideal network achieve comparable results.
In particular, EQUATOR behaves similar to a Barabási-Albert
overlay where M = 5 (corresponding to psp = 8%).

Given the limited size of caches in EQUATOR, this result is
obtained thanks to the policies adopted in advertising peers and
in handling such caches. These tend to favor the selection of
popular nodes, thus approximating the behavior of a Barabási-
Albert network where M assumes values reasonably greater
than 1. This is confirmed by the cumulative distribution of the
average percentage of lookup messages per minute received
by nodes when Dl = 1, presented in Table II for the case
N = 5000. Although about 40% of participating peers are
target of lookups from users, about 7% of nodes handle 99%
of service requests, i.e., psp ≈ 7%, with a consequent high
lookup performance.

For the sake of completeness, Fig. 6 also considers the
lookup performance of EQUATOR when nodes select their
neighbors randomly among peers in the overlay cache and
users start lookup procedures from a node selected randomly
among peers they know. These mechanisms emulate the behav-
ior of existing hierarchical overlays (e.g., KaZaA), where super

nodes are sparsely and randomly connected and ordinary nodes
(the users in our case) do not implement any degree-driven
selection of the super nodes to contact during searches [25].
The figure shows the better performance of EQUATOR with
respect of this randomized overlay, thus confirming the effec-
tiveness of our scale-free approach.

D. Effect of cache size and advertisement rate

In order to justify our design choice concerning the cache
size and the advertisement rate adopted to derive the above
results, in this section we elaborate on the effect of these
parameters on the system performance. In particular, Fig. 7
plots the blocking probability achieved in EQUATOR as
a function of these parameter values. To obtain the three
curves, each parameter is varied separately, while the others
are kept constant and equal to the abovementioned values
(τsc = τoc = 20 nodes and tadv = 30 min). A service request
load ρT = 0.9 is considered to analyze a critical scenario.
Furthermore, we set N = 5000.

In Fig. 7(a), we can observe how values of a few tens for
τsc and τoc are sufficient to ensure a low blocking probability,
which does not decrease significantly with a further increase
of these values. In essence, a proper cache refresh, coupled
with a limited cache size, allows EQUATOR to emulate an
ideal system where each node has an arbitrary number of
neighbors and a global knowledge of the network. To complete
this analysis, Fig. 7(b) shows how an advertisement interval
tadv of a few tens of minutes is sufficient to ensure a good
cache refresh. Lower values of tadv are not necessary and do
not provide a significant performance increase. This is due
to the scale-free nature of the EQUATOR overlay: the shape
and the short average path length it exhibits ensure a good
refresh rate of the hub caches, thus leading to high lookup
performance.

A higher advertisement rate may be necessary in order to
use EQUATOR in different contexts, e.g., to locate specific
resources. However, this is not the purpose of the system,
which has been designed for locating equivalent servants.
Adamic et al. [23] demonstrated the effectiveness of un-
structured scale-free overlays when adopted to locate specific
resources. However, this use of the scale-free topology requires
different overlay maintenance, resource discovery, and lookup
techniques that better support the offered service.

E. Message overheads

The above presented results prove the effectiveness of
EQUATOR. In particular, they show how the scale-free topol-
ogy ensures overlay efficiency with a limited advertisement
rate (tadv = 30 min), a small dissemination-depth (Td = 2),
and a limited cache size (τsc = τoc = 20 nodes). This results
in a reduced per-node-overhead, as confirmed by Table II,
which also includes the cumulative distribution of the average
number of advertisement messages per minute processed at
nodes when N = 5000. We can observe how 98% of nodes
process less than 1 advertisement messages per minute and
remaining 2% process always less than 7 messages per minute.

12

1.0e-02

1.0e-01

1.0e+00

 1 10 100

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Cache size

(a)

Servant Cache
Overlay Cache

1.0e-02

1.0e-01

1.0e+00

 0.01 0.1 1 10
Bl

oc
ki

ng
 P

ro
ba

bi
lit

y
Advertisement rate [h]

(b)

Fig. 7. Effect of parameters on the system performance: (a) cache size; (b)
advertisement rate.

Concerning the lookup overhead, studied at the reasonable
service request rate of 100 requests/min (i.e., ρT = 0.6) and for
a network size N = 5000, we observed a maximum average
service request rate at a single node of 5 messages/min. Fur-
thermore, we observed a pick rate of about 20 messages/min,
registered in about 1% of the total number of simulated
minutes. This pick is mainly due to both the dynamics of
request arrivals, which are modeled with a Poisson process.
A hypothetical centralized solution would register an average
request load on the central server of 100 messages/min (i.e.,
all requests would be directed to the server). This value is 20
times greater than the maximum average value observed in
EQUATOR. Furthermore, also in this case we would register
picks due to the characteristics of the request arrival process.

When the network size grows, the network maintains its
scale-free topology. Consequently, the number of nodes with
an adequate popularity, which are likely to be contacted during
lookup procedures, increases. Hence, although on equal load
conditions the number of requests at the hubs increases, this
value will not increase linearly with the size. For example, we
also simulated a 50000 node overlay, where we did not see
the maximum average request rate per node growing linearly
from 5 to 50 messages/min. We registered instead a maximum
value of 30 messages/min.

F. Failure probability

So far we considered the average blocking probability as a
performance metric of EQUATOR, and compared it with the
results obtained over a Barabási-Albert network. However, in
a dynamic scenario such as EQUATOR, users can perceive
service degradation also when an available servant is found,
but then suddenly leaves the network before the service ends.
This problem is common to all service-oriented overlays and
can be mitigated in several ways, depending on the specific
service deployed. Possible solutions are the utilization of
backup nodes [20], the adoption of intelligent node selection
and service migration policies [36], or the creation of appli-
cation checkpoints [37]. The development of novel solutions
in this context is outside the scope of the paper; however, we
investigate for completeness how the EQUATOR architecture
performs when different node lifetime distributions are used.

TABLE III
FAILURE PROBABILITY

Number of Highly Moderately Quasi-static
backup nodes dynamic dynamic overlay

overlay overlay
0 0.1762 0.0167 0.0012
1 0.1031 0.0066 0.0006
2 0.0543 0.0028 0.0003
3 0.0296 0.0012 0.0001

Among all possible countermeasures against unexpected node
departures, we analyze the utilization of backup nodes, located
during the exploitation of the service on the first servant. We
assume for simplicity that a peer can be a backup node for an
arbitrarily number of users.

We consider three different network scenarios, characterized
by different participating peer behaviors: a highly dynamic
overlay, exemplified as a P2P-based Voice-over-IP network,
a moderately dynamic overlay, exemplified as a P2P-based
file-sharing network, and a quasi-static overlay, where partic-
ipating peers are quasi-static nodes such as set-top-boxes, DSL
gateways, data-centers, or various kinds of servers. Concerning
the first scenario, the node lifetime distribution is obtained
empirically after analyzing Skype traffic coming from/to the
network of the University campus [38]. Node lifetimes are
instead modeled as a Weibull distribution (shape = 0.2, scale
= 1200) in the moderately dynamic overlay, as resulting in
[39] for a file-sharing network. The third scenario is obtained
by considering node lifetime exponentially distributed with an
average node lifetime of 2 months (significantly longer than
the average service duration). Table III reports on the overall
failure probability (defined as the probability for the service
to be disrupted, due to either a lookup failure or the servant
node departure during the service exploitation) achieved in
EQUATOR when ρT = 0.6. An overlay size N = 5000 is
considered for these tests. Notice that the more dynamic the
overlay, the higher is the failure probability, although backup
nodes improve the overall performance. These results confirm
how quasi-static nodes (such as the DSL gateways of NaDa or
geographically distributed data-centers) are interesting poten-
tial peers that can be used to build service-oriented overlays,
and in particular EQUATOR.

In these tests we set Dl = 4, which allowed us to
isolate the contribution of leaving servants from the overall
failure probability, because the probability for a lookup to
fail can be considered negligible (in fact, we did not observe
lookup failures during simulations). Notice how this further
confirms the effectiveness of overlay construction algorithm of
EQUATOR as the system performs similarly to the Barabási-
Albert network when Dl > 1 (see Fig. 3).

It is also interesting to investigate how node sudden and
massive failures affect the overall failure probability. We
defined a failure event in the EQUATOR simulator that pe-
riodically replaces a given percentage pf of peers (selected
randomly) with new ones. Fig. 8 shows the evolution of the
overall failure probability over time in the quasi-static scenario
when pf = 0 (i.e., no cancellation occurs), pf = 10%, and

13

pf = 20%. A service request load ρT = 0.9 is considered
and no countermeasures for node departures are adopted to
analyze the worst-case scenario. Notice how replacing 10%
of peers (Fig. 8(b)) has almost no effect on the EQUATOR
performance, which, excluding a brief transitory which follows
the replacement events, is comparable to that obtained during
normal operation. The failure of 20% of the participating
peers (Fig. 8(c)), although unlikely to occur, is considered for
completeness. Such an event affects the system performance,
which degrades with respect to the previous cases. However,
we can observe how the overlay takes a reasonable time to
almost completely recover from the failure and starts again to
provide high lookup performance.

An even more catastrophic event for a scale-free topology
is the removal of hubs, possibly due to attacks. Hence, we
repeated the last experiment by replacing the 20% most
popular peers (i.e., the peers that received the greatest number
of advertisement messages). This is deleterious for a Barabási-
Albert network, which has been proved to collapse when
about 3% most connected nodes are removed [40]. Fig. 8(d)
reports on the obtained results concerning the evolution of
the failure probability in such a scenario. As expected, the
failure probability rapidly increases when the replacement
occurs because the overlay topology is damaged and, conse-
quently, lookups fail. However, also in this case the network
automatically recovers in a reasonable amount of time. This is
a major advantage of EQUATOR with respect to static scale-
free networks and is due to both the policy adopted to populate
the overlay cache and the dynamicity of links among nodes.
The presence of lowly popular peers (which are not targets of
the attack) in the overlay cache allows nodes to continue the
advertisement and hence avoids the complete destruction of the
network. This is in line with the theoretical results presented
in [41], which demonstrates that the insertion of additional
links among lowly connected nodes significantly increases
the robustness of scale-free networks to hub deletions. The
network dynamicity ensures nodes reconstruct the topology as
highest popular peers are likely to be contacted during each
advertisement round, thus further gaining in popularity and
hence becoming the new hubs.

These results confirm the effectiveness of EQUATOR,
which couples a high lookup performance with an adequate re-
silience to failures and intentional attacks, even when massive
node deletions occur.

VI. CONCLUSION

This paper focuses on service-oriented overlays where users
are interested to locate any of the many available overlay
peers in the shortest time, i.e., the offered service is based
on equivalent servants. Existing solutions, either structured or
unstructured, can support these services but are not optimized
for this purpose, which however is growing in importance due
to the spread of many applications which need these specific
features (e.g., a proxy node to anonymize a communication).
This paper compares structured and unstructured overlays,
demonstrating through analytical and simulation results how
an unstructured solution relying on a scale-free topology is

0.0e+00
1.0e-01
2.0e-01
3.0e-01
4.0e-01
5.0e-01
6.0e-01
7.0e-01
8.0e-01

 0 500 1000 1500 2000 2500 3000 3500

Fa
ilu

re
 P

ro
ba

bi
lit

y

time [min]

(d)

Node cancellation event

0.0e+00
1.0e-01
2.0e-01
3.0e-01
4.0e-01
5.0e-01
6.0e-01
7.0e-01
8.0e-01

 0 500 1000 1500 2000 2500 3000 3500

Fa
ilu

re
 P

ro
ba

bi
lit

y

time [min]

(c)

Node cancellation event

0.0e+00
1.0e-01
2.0e-01
3.0e-01
4.0e-01
5.0e-01
6.0e-01
7.0e-01
8.0e-01

 0 500 1000 1500 2000 2500 3000 3500

Fa
ilu

re
 P

ro
ba

bi
lit

y

time [min]

(b)

Node cancellation event

0.0e+00
1.0e-01
2.0e-01
3.0e-01
4.0e-01
5.0e-01
6.0e-01
7.0e-01
8.0e-01

 0 500 1000 1500 2000 2500 3000 3500

Fa
ilu

re
 P

ro
ba

bi
lit

y

time [min]

(a)

Fig. 8. Time evolution of the failure probability in a quasi-static overlay
scenario for different node cancellation patterns: a) pf = 0; b) pf = 10%;
c) pf = 20%; d) pf = 20% (most popular peers).

an effective option to deploy for offering services based on
equivalent servants. On the basis of this result, we proposed
the EQUivalent servAnt locaTOR (EQUATOR) architecture,
which overcomes the issues related to the deployment of a
scale-free topology for service location in a real network,
mainly due to the static nature of the ideal scale-free con-
struction algorithm and the lack of a global knowledge of
the participating peers. Simulation results confirmed the ef-
fectiveness of EQUATOR, showing how it offers good lookup
performance in conjunction with low message overhead and
high resiliency to node churn and failures. Some possible
future works are introduced in Section IV-F and are related to
some complementary issues ranging from the proximity-aware
selection of servants to the introduction of proper incentives
to encourage nodes to join the EQUATOR overlay and offer
their resources.

REFERENCES

[1] V. Valancius, N. Laoutaris, L. Massoulie, C. Diot, and P. Rodriguez,
“Greening the internet with nano data centers,” in Proc. ACM CoNEXT,
2009.

[2] “Tor: anonymity online.” [Online]. Available: http://www.torproject.org
[3] “Skype: Free internet telephony that just works.” [Online]. Available:

http://www.skype.com
[4] P. Bettner and M. Terrano, “1500 archers on a 28.8: Network program-

ming in age of empires and beyond,” in Proc. Game Develop. Conf.,
2001.

[5] S. Pichai and L. Upson, “Introducing the google chrome os,”
2009. [Online]. Available: http://googleblog.blogspot.com/2009/07/
introducing-google-chrome-os.html

[6] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. Netw., vol. 11,
no. 1, pp. 17–32, 2003.

14

[7] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer informa-
tion system based on the XOR metric,” in Peer-to-Peer Systems, 2002,
pp. 53–65.

[8] T. Klinberg and R. Manfredi, “Gnutella 0.6,” Jun. 2002. [Online].
Available: http://groups.yahoo.com/group/the_gdf

[9] “Kazaa media desktop,” 2001. [Online]. Available: http://www.kazaa.
com/

[10] A Peer-to-Peer Approach to Resource Location in Grid Environments,
vol. 0. Los Alamitos, CA, USA: IEEE Computer Society, 2002.

[11] D. Puppin, S. Moncelli, R. Baraglia, N. Tonellotto, and F. Silvestri, “A
grid information service based on peer-to-peer,” in Euro-Par, 2005, pp.
454–464.

[12] D. Tran, K. Hua, and T. Do, “A peer-to-peer architecture for media
streaming,” IEEE J. Sel. Areas in Comm., vol. 22, no. 1, pp. 121–133,
Jan. 2004.

[13] T. Do, K. Hua, and M. Tantaoui, “P2vod: providing fault tolerant video-
on-demand streaming in peer-to-peer environment,” in Proc. IEEE Int.
Conf. Comm., vol. 3, June 2004, pp. 1467–1472.

[14] MAAN: A Multi-Attribute Addressable Network for Grid Information
Services, vol. 0, 2003.

[15] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting
scalable multi-attribute range queries,” SIGCOMM Comput. Commun.
Rev., vol. 34, no. 4, pp. 353–366, 2004.

[16] Y. Zhu and Y. Hu, “Ferry: A p2p-based architecture for content-based
publish/subscribe services,” IEEE Trans. Par. Distrib. Systems, vol. 18,
no. 5, pp. 672–685, May 2007.

[17] J. Albrecht, D. Oppenheimer, A. Vahdat, and D. A. Patterson, “Design
and implementation trade-offs for wide-area resource discovery,” ACM
Trans. Int. Technol., vol. 8, no. 4, pp. 1–44, 2008.

[18] A. Awan, R. A. Ferreira, S. Jagannathan, and A. Grama, “Unstructured
peer-to-peer networks for sharing processor cycles,” Parallel Comput.,
vol. 32, no. 2, pp. 115–135, 2006.

[19] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne,
“Resource location and discovery (reload) base protocol,” Internet Engi-
neering Task Force, Internet Draft draft-ietf-p2psip-base-06, Nov. 2009,
(Work in progress).

[20] L. Ciminiera, G. Marchetto, F. Risso, and L. Torrero, “Distributed
connectivity service for a sip infrastructure,” IEEE Network, vol. 22,
no. 5, pp. 33–40, 2008.

[21] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” SIGMETRICS Perform. Eval.
Rev., vol. 30, no. 1, pp. 258–259, 2002.

[22] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Rev. Mod. Phys., vol. 74, pp. 47–97, Jan. 2002.

[23] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman,
“Search in power-law networks,” Phys. Rev. E, vol. 64, no. 4, pp.
046 135+, Sep 2001.

[24] K. Klemm and V. M. Eguíluz, “Growing scale-free networks with small
world behavior,” Phys. Rev. E, vol. 65, 2002, 057102.

[25] J. Liang, R. Kumar, and K. W. Ross, “The kazaa overlay: A measurement
study,” Comp. Netw., vol. 49, no. 6, 2005.

[26] R. Cohen, K. Erez, D. B. Avraham, and S. Havlin, “Resilience of the
internet to random breakdowns,” Phys. Rev. Lett., no. 21, pp. 4626–4628,
Nov.

[27] S. Voulgaris, D. Gavidia, and M. van Steen, “Cyclon: Inexpensive
membership management for unstructured p2p overlays,” J. Netw. Syst.
Manag., vol. 13, no. 2, 2005.

[28] W. Yeager and J. Williams, “Secure peer-to-peer networking: The jxta
example,” IEEE IT Profess., vol. 4, no. 2, pp. 53–57, 2002.

[29] E. Tamani and P. Evripidou, “Applying trust mechanisms in an agent-
based p2p network of service providers and requestors,” in Proc. IEEE
Int. Symp. Cluster Comp. and the Grid, 2006, p. 13.

[30] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decentral-
ized network coordinate system,” SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 4, pp. 15–26, 2004.

[31] G. P. Jesi, A. Montresor, and O. Babaoglu, “Proximity-aware superpeer
overlay topologies,” IEEE Trans. Netw. Serv. Manag., vol. 4, no. 2, pp.
74–83, Sep. 2007.

[32] F. Hong, Y. Feng, M. Li, and Z. Guo, “Constructing incentive oriented
overlay on mobile peer-to-peer networks,” in Proc. IEEE Int. Conf. Par.
Process., 2007, p. 52.

[33] G. Tan and S. Jarvis, “A payment-based incentive and service differen-
tiation scheme for peer-to-peer streaming broadcast,” IEEE Trans. Par.
Distr. Syst., vol. 19, no. 7, pp. 940–953, July 2008.

[34] A. T. S. Ip, J. C. S. Lui, and J. Liu, “A revenue-rewarding scheme of
providing incentive for cooperative proxy caching for media streaming

systems,” ACM Trans. Multim. Comput. Commun. Appl., vol. 4, no. 1,
pp. 1–32, 2008.

[35] L. A. Adamic, “The small world web,” in Proc. Springer-Verlag Europ.
Conf. Res. and Adv. Techn. for Dig. Libr. London, UK: Springer-Verlag,
1999, pp. 443–452.

[36] Node selection for a fault-tolerant streaming service on a peer-to-peer
network, vol. 2. Los Alamitos, CA, USA: IEEE Computer Society,
2003.

[37] R. de Camargo, F. Kon, and R. Cerqueira, “Strategies for checkpoint
storage on opportunistic grids,” IEEE Distrib. Syst. Online, vol. 7, no. 9,
pp. 1–1, Sept. 2006.

[38] D. Bonfiglio, M. Mellia, M. Meo, and D. Rossi, “Detailed analysis of
skype traffic,” IEEE Trans. Multim., vol. 11, no. 1, pp. 117–127, 2009.

[39] V. Aggarwal, O. Akonjang, A. Feldmann, R. Tashev, and S. Mohr,
“Reflecting P2P user behaviour models in a simulation environment,”
in Proc. Euromicro Conf. Par., Distr. and Netw.-Based Process., 2008,
pp. 516–523.

[40] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, “Breakdown of the
internet under intentional attack,” Phys. Rev. Lett., vol. 86, pp. 3682–
3685, Apr. 2001.

[41] J. Zhao and K. Xu, “Enhancing the robustness of scale-free networks,”
J. Phys. A: Mathem. and Theor., vol. 42, no. 19, p. 195003, May.

Guido Marchetto is a post-doctoral fellow at the Department of Control and
Computer Engineering of Politecnico di Torino. He got his Ph.D. in Computer
Engineering in April 2008 and his laurea degree in Telecommunications
Engineering in April 2004, both from Politecnico di Torino. His research
topics are peer-to-peer technologies, distributed services, and Voice over IP
protocols. His interests include network protocols and network architectures.

Luigi Ciminiera is professor of Computer Engineering at the Dipartimento
di Automatica e Informatica of Politecnico di Torino, Italy. His research
interests include grids and peer-to-peer networks, distributed software systems,
and computer arithmetic. He is a coauthor of two international books and
more than 100 contributions published in technical journals and conference
proceedings. He is a member of the IEEE.

Marco Papa is a Ph.D. student in Computer and System Engineering at the
Department of Control and Computer Engineering of Politecnico di Torino
(Technical University of Turin), Italy. He holds a B.S. Degree and M.S.
Degree both in Computer Engineering. His research interests include quality
of service, privacy and peer-to-peer technologies.

Fulvio Risso is Assistant Professor at the Department of Control and
Computer Engineering of Politecnico di Torino. He is author of several
papers on quality of service, packet processing, network monitoring, and
IPv6. Present research activity focuses on efficient packet processing, network
analysis, network monitoring, and peer-to-peer overlays.

Livio Torrero is a post-doctoral fellow at the Department of Control and
Computer Engineering of Politecnico di Torino. He got his Ph.D. in Computer
Engineering in April 2009 and his laurea degree in Computer Engineering
from Politecnico di Torino in November 2004. His research topics include
the Voice over IP protocols, the IPv6 protocol, peer-to-peer technologies and
their NAT/firewall related issues.

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Service request load

Structured (analysis)
Structured (simulation)

Scale-free m=1 (analysis)
Scale-free m=1 (simulation)

Scale-free m=2 (analysis)
Scale-free m=2 (simulation)

Scale-free m=4 (analysis)
Scale-free m=4 (simulation)

Scale-free m=8 (analysis)
Scale-free m=8 (simulation)

1.0e-07
1.0e-06
1.0e-05
1.0e-04
1.0e-03
1.0e-02
1.0e-01
1.0e+00

1 2 3 4 5 6 7 8 9 10 11 12 13 14Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Service lookup depth [hop]

(b)

Structured
Structured with dissemination

Unstructured scale-free
Unstructured random

1.0e-07
1.0e-06
1.0e-05
1.0e-04
1.0e-03
1.0e-02
1.0e-01
1.0e+00

1 2 3 4 5 6 7 8 9 10 11 12 13 14Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Service lookup depth [hop]

(a)

Structured
Structured with dissemination

Unstructured scale-free
Unstructured random

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Service request load

(a)

M = 2 (psp = 25%)
M = 3 (psp = 16%)
M = 5 (psp = 8%)
M = 7 (psp = 5%)

1.0e-08

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1 2 3 4 5 6 7

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Service lookup depth [hop]

(b)

M = 2 (psp = 25%)
M = 3 (psp = 16%)
M = 5 (psp = 8%)
M = 7 (psp = 5%)

EP2

EP5
EP6

EP4

EP3

EP1

Servant Cache

Node Pop

EP1
EP2
EP3
EP4
EP5

1
2
4
0
8

Overlay Cache

Node Pop

EP1

EP2
EP3
EP4
EP5

1
2
4

0
8

EQUATOR OVERLAY

U

U

U

U

U

U

Adv message in the last minute

U

EP

EP

User node

Last received adv message

Lookup message

EQUATOR Peer

EQUATOR Peer (hub)

Cache update

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

 1 10 100

Fr
ac

tio
n

of
 n

od
es

Node popularity [discovered servants per minute]

5000 nodes EQUATOR overlay
10000 nodes EQUATOR overlay

Power law, P(n) ~ n-3

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Service request load

Barabási-Albert model (M = 3)
Barabási-Albert model (M = 5)
Barabási-Albert model (M = 7)

5000 nodes EQUATOR overlay
10000 nodes EQUATOR overlay

5000 nodes random overlay

1.0e-02

1.0e-01

1.0e+00

 1 10 100

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Cache size

(a)

Servant Cache
Overlay Cache

1.0e-02

1.0e-01

1.0e+00

 0.01 0.1 1 10

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Advertisement rate [h]

(b)

0.0e+00
1.0e-01
2.0e-01
3.0e-01
4.0e-01
5.0e-01
6.0e-01
7.0e-01
8.0e-01

 0 500 1000 1500 2000 2500 3000 3500

Fa
ilu

re
 P

ro
ba

bi
lit

y

time [min]

(d)

Node cancellation event

0.0e+00
1.0e-01
2.0e-01
3.0e-01
4.0e-01
5.0e-01
6.0e-01
7.0e-01
8.0e-01

 0 500 1000 1500 2000 2500 3000 3500

Fa
ilu

re
 P

ro
ba

bi
lit

y

time [min]

(c)

Node cancellation event

0.0e+00
1.0e-01
2.0e-01
3.0e-01
4.0e-01
5.0e-01
6.0e-01
7.0e-01
8.0e-01

 0 500 1000 1500 2000 2500 3000 3500

Fa
ilu

re
 P

ro
ba

bi
lit

y

time [min]

(b)

Node cancellation event

0.0e+00
1.0e-01
2.0e-01
3.0e-01
4.0e-01
5.0e-01
6.0e-01
7.0e-01
8.0e-01

 0 500 1000 1500 2000 2500 3000 3500

Fa
ilu

re
 P

ro
ba

bi
lit

y

time [min]

(a)

	TNSM
	camera_ready_HardCopy

