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a b s t r a c t

The present work evaluates the effect of thickness stretching in plate/shell structures made by materials
which are functionally graded (FGM) in the thickness directions. That is done by removing or retaining
the transverse normal strain in the kinematics assumptions of various refined plate/shell theories. Vari-
able plate/shell models are implemented according to Carrera’s Unified Formulation. Plate/shell theories
with constant transverse displacement are compared with the corresponding linear to fourth order of
expansion in the thickness direction ones. Single-layered and multilayered FGM structures have been
analyzed. A large numerical investigation, encompassing various plate/shell geometries as well as various
grading rates for FGMs, has been conducted. It is mainly concluded that a refinements of classical theories
that include additional in-plane variables could results meaningless unless transverse normal strain
effects are taken into account.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are multiphase compos-
ites with the volume fraction of phases varying through a direction.
One advantage of FGMs compared to laminated composites is that
the material properties continuously vary in the thickness direc-
tion, as opposed to being discontinuous across adjoining layers as
they are in laminated composites. Such a peculiarities of FGM is in
contrast with well know Kirchhoff–Love type plate/shell theories
in which thickness stretching �zz is neglected and transverse dis-
placement is considered independent by thickness coordinates.
So called Koiter’s Recommendation, see the discussion below,
needs to be reconsidered. The numerical analysis of such a contrast
is the topic of the present paper. However a general overview on
FGM is for sake of completeness given along with the discussion
plate/shell contribution which are relevant to this paper aims.

FGMs were first proposed in Japan, by materials scientists in the
Sendai area, in 1984 [1], as thermal barrier materials. Since then,
high-performance heat resistant barriers in FGMs have been devel-
oped. The FGM concept has also been considered to improve
energy conversion efficiency. For other application fields, readers
can refer to the excellent review by Koizumi [2].

Many topics are of interest for a better understanding of the use
of FGMs: – improved production techniques; – extension of the
applications to new fields; – introduction of effective microme-

chanical models; – development of accurate structural models:
beam, plate and shell refined theories. The attention of the present
paper is therefore focused on the latter aspect. An accurate kine-
matic description of FGM plates and shells, with variable proper-
ties in the thickness direction, appears to be a key point for the
analysis of their mechanical response. Many papers on FGM mod-
eling have recently appeared. An interesting review paper has been
provided by Birman and Byrd [3].

A three-dimensional solution for FGM plates, subjected to a
transverse mechanical load, has been proposed by Kashtalyan [4]
and this solution has been extended to a sandwich panel with a
functionally graded core by Kashtalyan and Menshykova [5].
Zenkour [6] accounted for the static response of a simply sup-
ported functionally graded rectangular plate subjected to a
transversal mechanical load. A generalized shear deformation
theory, which neglects the transversal normal strain, has been
used. In [7], Batra and Jin considered FGM plates which are
obtained by changing the fiber orientation along the thickness
coordinate z. A free vibration problem has been investigated via
the Finite Element (FE) method. A first order shear deformation
theory has been applied and different boundary conditions have
been investigated. Qian et al. [8] analyzed the static deformations
and free and forced vibrations of a thick rectangular functionally
graded elastic plate using a high-order shear and normal deform-
able plate theory and a meshless local Petrov–Galerkin method;
the effective material moduli have been computed using the
Mori–Tanaka homogenization technique [9]. Ramirez et al. [10]
presented a static analysis of an anisotropic, elastic plate composed
of functionally graded materials. The solution was obtained using a
discrete layer theory in combination with the Ritz method. The FE
solution has been compared with the exact solution by Pan [11] for
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a functionally graded rectangular composite laminate under sim-
ply supported edge conditions; Pan’s solution extends Pagano’s
3D solution [12,13] to functionally graded materials. A three-
dimensional exact solution has been presented for free and forced
vibrations of simply supported FGM rectangular plates in [14].
Thick and thin plates have been analyzed for arbitrary variations
of the material properties in the thickness direction. Exact natural
frequencies, displacements and stresses are used to assess the
accuracy of the Classical Lamination Theory (CLT), the first-order
shear deformation theory (FSDT) and a third-order shear deforma-
tion theory. An analytical solution for thermo-mechanical defor-
mations of a simply supported FGM plate subjected to time-
dependent thermal loads at the top and/or bottom surfaces is illus-
trated in [15]. In [16], a third-order shear deformation theory has
been applied to the static analysis of an FGM plate. The plate mate-
rial is made of two isotropic constituents with their volume frac-
tions varying only in the thickness direction. The aspect ratio
effects of the plate and the volume fractions of the constituents
on the centroidal deflection have been scrutinized. An elastic, rect-
angular and simply supported, functionally graded material plate
of medium thickness subjected to a transverse loading has been
investigated in [17]. Three evaluations have been considered in z
for the FGM properties: the volume fraction can be defined by a
power-law, sigmoid or exponential function. The model is based
on CLT and Fourier series expansion. A closed form solution has
been given in Part I, while a comparison between FE and analytical
solutions has been given in Part II. The free vibration problem of
FGM plates has been presented in the case of magneto–electro-
elastic fields in [18]. Bayat et al. [19] analyzed functionally graded
rotating disks with variable thickness: they presented an elastic
solution, and the material properties and disk thickness profile
are assumed as two power-law distributions. The effects of the
material grading index and the geometry of the disk on the stresses
and displacements have been investigated. Chiba [20] studied the
stochastic heat conduction analysis of a functionally graded annu-
lar disk with spatially random heat transfer coefficients, where the
mean and variance of the temperature are analytically obtained on
the upper and lower surfaces. Recently, carbon nanotubes have
been applied in ceramic FGMs [21]. Multiwalled carbon nanotubes
are considered as unique agents to fabricate nanostructure-con-
trolled functionally graded alumina ceramics, where the FGM con-
cept offers the potential of successfully linking conventional
ceramics to their nanocomposites which contain a high concentra-
tion of carbon nanotubes. Haddadpour et al. [22] made a super-
sonic flutter prediction of functionally graded cylindrical shells
using the Love shell theory and von Karman–Donnell type non-lin-
earity, coupled with a linearized first-order piston theory. They
investigated the effects of internal pressure and temperature rise
on the flutter boundaries of a simply supported FGM cylinder with
different values of the power-law index. Na and Kim [23] have
studied the optimization of volume fractions for functionally
graded panels, considering stress and critical temperature and
using an 18-node solid element.

An accurate kinematic description of the problem variables in
the thickness direction appears to be a key point for the analysis
of the mechanical behavior of FGM plates. Carrera’s Unified Formu-
lation (CUF), proposed in [24–26], has been extended to FGMs in
[27–30]. The generalized expansion, upon which the CUF is based,
relies on a set of functions herein indicated as thickness functions.
In this manner, CUF reduces a three-dimensional problem to a bi-
dimensional one. At the same time, the order of expansion along
the thickness of the plate is taken as a free parameter of the prob-
lem and it can be changed in a 1–4 range. As a result, an exhaustive
variable kinematic model is obtained. Refined displacement mod-
els (both layer wise and equivalent single layer descriptions) have
been developed in [27] for FGM plate geometries. In [28] advanced

mixed models have been extended to FGM plates by including
transverse stresses as primary variables as the displacements. In
[29] the models developed in [27,28] have been employed to ana-
lyze multilayered plates embedding FGM layers, in particular the
effects of an FGM core have been investigated in classical sandwich
structures. Finally, CUF (both refined and mixed models) has been
extended to FGM shell geometries in [30]. In [27–30] refined and
advanced models have been compared with available 3D solutions
and with classical two-dimensional models (CLT and FSDT), but no
comparisons with higher-order models discarding transverse nor-
mal strain have been performed.

The previous review shows that most FGM structures are ana-
lyzed by referring to three-dimensional solutions, or to classical
and higher-order two-dimensional theories which neglect thick-
ness stretching. In these latter theories, the transverse displace-
ment is considered constant in the thickness direction, as in
Kirchhoff–Love type thin plate/shell theories. This appears quite
inappropriate since FGM structures are characterized by a strong
variation of properties in the thickness direction. To further
substantiate this fact, Koiter’s recommendation [31] is here
proposed:

a refinement of Love’s first approximation theories is indeed mean-
ingless, in general, unless the effects of transverse shear and normal
stresses are taken into account at the same time.

Such a recommendation, which was originally given for plates
and shells made of traditional metallic isotropic materials, should
play a more relevant role in the case of FGM structures which
are graded in the transverse thickness direction.

No works are available that make the role played by the trans-
verse normal strain ’thickness stretching’ in FGM plates/shells
evident. The present paper aims to fill this gap. To do this, the
CUF, developed in previous papers, is applied to various plate/
shell problems, and equivalent single layer (ESL) theories (linear
up-to fourth order of expansion in the thickness directions z)
are compared by including and discarding the transverse normal
strain �zz effect, as was done in [32,33] for traditional layered
structures.

The paper has been organized as follows: the geometry of the
plates and shells is given in Section 2; Hooke’s law for FGMs is dis-
cussed in Section 3; theories discarding and including thickness
stretching are described in Section 4; the numerical discussion is
given in Section 5 and the conclusions are summarized in Section
6. The whole numerical analysis has been conducted by using
MUL2 software which is available at the Aeronautics and Space
Engineering Department of Politecnico di Torino.

2. Geometry

Plates and shells are bi-dimensional structures in which one
dimension, the thickness, is negligible with respect to the other
two in-plane dimensions. A shell geometry is shown in Fig. 1; X
is the reference shell surface with the two in-plane orthogonal cur-
vilinear coordinates a and b, z is the thickness coordinate. Ra, Rb are
the curvature radii. By introducing a subscript k, the shell geometry
related to a given kth layer is considered.

The plate coincides with the flat shell case; the Cartesian coor-
dinate system is employed in this case:

a ¼ x; b ¼ y; z ¼ z; Ra ¼ Rb ¼ 1: ð1Þ

A plate geometry is shown in Fig. 2. In the case of shells, ua, ub and
uz are the displacement components in the a, b and z directions,
respectively. For plates, the three displacement components in the
x, y and z directions are ux, uy and uz, respectively.
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3. Hooke’s law for FGMs

Hooke’s classical law for a layer k embedded in a multilayered
structure is:

rk
p ¼ Ck

pp�
k
p þ Ck

pn�
k
n; ð2Þ

rk
n ¼ Ck

np�
k
p þ Ck

nn�
k
n; ð3Þ

where Ck
pp; C

k
pn;C

k
np;C

k
nn are [3 � 3] sub-arrays containing the elastic

coefficients for an orthotropic layer in the structure reference
system [32–34]. The in-plane and out-plane stresses and strains,
are rk

p ¼ ðraa;rbb;rabÞk;rk
n ¼ ðraz;rbz;rzzÞk and �k

p ¼ ð�aa; �bb; cabÞ
k
;

�k
n ¼ ðcaz; cbz; �zzÞk, respectively.

In the case of FGM layers, the coefficients in Eqs. (2) and (3) vary
in the thickness direction z, according to a given law:

CðzÞ ¼ C0 � gðzÞ; ð4Þ

where C0 is the reference stiffness matrix and g(z) gives the varia-
tion along z. For convenience, the expansion in z is written as
follows:

CðzÞ ¼ FbðzÞCb þ FtðzÞCt þ FcðzÞCc ¼ FrðzÞCr with r

¼ 1; . . . ;10; ð5Þ

where Cr are constant in z and the thickness functions Fr are a com-
bination of Legendre polynomials [25,26]. Fb and Ft are the bottom
and top values, respectively. Fc are the higher-order terms. Fr coin-
cide with those used in the Carrera’s Unified Formulation for the
Layer-Wise expansion cases [32–34].

4. Considered theories

Classical theories and higher-order theories including and dis-
carding the transverse streching �zz are here presented for the most
general case of shells including FGM layers. They simply degener-
ate into those for plates, as discussed in Section 2.

4.1. Theories discarding the transverse normal strain �zz

The thin plate/shell theory (or Classical Lamination Theory, CLT,
for plates), based on assumptions made by Cauchy [35], Poisson
[36] and Kirchhoff [37], discards transverse shear and through-
the-thickness deformations. The displacement field related to this
model is given in the form:

ua ¼ u0a � z
@u0z

@a
;

ub ¼ u0b � z
@u0z

@b
;

uz ¼ u0z; ð6Þ

where u0a, u0b and u0z are the displacements of the mid-reference
surface in the a, b and z directions, respectively, and @

@a and @
@b are

the partial derivatives with respect to the a and b directions, respec-
tively. This displacement field states that the section remains plane
and orthogonal to the shell reference surface X.

Transverse shear deformations are introduced according to the
Reissner–Mindlin kinematic assumptions [38,39]:

ua ¼ u0a þ zu1a;

ub ¼ u0b þ zu1b;

uz ¼ u0z: ð7Þ

Fig. 1. Geometry and reference system for a multilayered shell.

Fig. 2. Geometry and reference system for a multilayered plate.

E. Carrera et al. / Composites: Part B 42 (2011) 123–133 125

Rettangolo



Author's personal copy

This theory is also called the first-order shear deformation theory,
FSDT. Transverse shear stresses show an a priori constant piecewise
distribution. u1a and u1b are two additional degrees of freedom with
respect to the model in Eq. (6). In both the CLT and FSDT cases, the
Poisson locking phenomena is contrasted by means of the plane-
stress conditions, as indicated in [40,41].

Higher-order theories (HOTs) which discard transverse normal
strain, consider the same order of expansion in the thickness direc-
tion for the displacement components ua and ub:

ua ¼ u0a þ zu1a þ z2u2a þ . . .þ zNuNa;

ub ¼ u0b þ zu1b þ z2u2b þ . . .þ zNuNb;

uz ¼ u0z; ð8Þ

where N is the order of expansion, which is taken as a free param-
eter. In the numerical investigation, N is considered to be as low as 1
and as high as 4. HOTs are indicated with the acronyms N = 1 to
N = 4, and it is specified that the transverse normal strain �zz is dis-
carded. Poisson locking phenomena must be corrected as in the CLT
and FSDT cases [40,41].

4.2. Theories including the transverse normal strain �zz

In HOTs which include transverse normal strains, the higher-or-
der terms are introduced in the kinematic assumptions for the

three displacement components. The third line of Eq. (8) is modi-
fied in order to consider the transverse normal strain:

uz ¼ u0z þ ziuiz; with i ¼ 1; . . . ; N: ð9Þ

In the considered implementation, the order of expansion N goes
from 1 to 4, and the relative theories are indicated as N = 1 to N = 4.

5. Numerical results and discussion

Various FGM plates and shells with different geometry and
material properties are here investigated in order to analyze the ef-
fects of discarding and including the transverse normal strain �zz:

� one-layered FGM plates and shells with elastic properties vary-
ing along the thickness direction z by a polynomial law, as pro-
posed by Zenkour [6];
� one-layered FGM plates with elastic properties varying in z by

an exponential-law, as given by Kashtalyan [4];
� sandwich plates and shells with an FGM core and two isotropic

faces, where the FGM properties are those given by Zenkour [6].

In each case, transverse normal strain effects have been explic-
itly evaluated. Errors with respect to the three-dimensional solu-
tions are given. For those problems in which the 3D solution is
not available, the related quasi-3D results have been provided by

Table 1
FGM isotropic plate with polynomial material law [6]. Effect of transverse normal strain �zz for a bending problem.

a/h �zz �rxxðh=3Þ �uzð0Þ

4 10 100 4 10 100

j = 1 Ref. [27] –0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
CLT 0 0.8060 2.0150 20.150 0.5623 0.5623 0.5623
FSDT(v = 5/6) 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625
GSDT [6] 0 – 1.4894 – – 0.5889 –
N = 1 –0 0.8452 2.0311 20.151 0.6985 0.5844 0.5625
Err% (35.86) (34.83) (34.62) (2.59) (0.53) (0)
N = 1 0 0.8059 2.0150 20.150 0.7013 0.5845 0.5625
Err% (29.54) (33.76) (34.61) (2.20) (0.51) (0)
N = 4 –0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
Err% (0) (0 ) (0) (0) (0) (0)
N = 4 0 0.7856 2.0068 20.149 0.7289 0.5890 0.5625
Err% (26.28) (33.22) (34.60) (1.64) (0.25) (0)

j = 4 Ref. [27] –0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
CLT 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281
FSDT(v = 5/6) 0 0.6420 1.6049 16.049 1.1125 0.8736 0.8286
GSDT [6] 0 – 1.1783 – – 0.8651 –
N = 1 –0 0.6816 1.6213 16.051 1.0593 0.8659 0.8285
Err% (39.76) (35.43) (34.62) (8.56) (1.84) (0.01)
N = 1 0 0.6420 1.6049 16.049 1.0651 0.8660 0.8285
Err% (31.64) (34.06) (34.60) (8.06) (1.82) (0.01)
N = 2 –0 0.4950 1.1998 11.923 1.1032 0.8729 0.8286
N = 2 0 0.6336 1.6014 16.049 1.0947 0.8710 0.8286
N = 3 –0 0.4694 1.1895 11.922 1.1562 0.8816 0.8286
N = 3 0 0.5946 1.5856 16.047 1.1645 0.8823 0.8286
N = 4 –0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
Err% (0) (0) (0) (0) (0) (0)
N = 4 0 0.5986 1.5874 16.047 1.1673 0.8828 0.8286
Err% (22.74) (32.60) (34.59) (0.76) (0.08) (0)

j=10 Ref. [27] –0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361
CLT 0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354
FSDT(v = 5/6) 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360
GSDT [6] 0 – 0.8775 – – 1.0089 –
N = 1 –0 0.5117 1.2124 11.992 1.2475 0.9862 0.9359
Err% (38.48) (26.05) (34.62) (9.24) (2.08) (0.0002)
N = 1 0 0.4796 1.1990 11.990 1.2541 0.9864 0.9359
Err% (29.79) (33.74) (34.60) (8.76) (2.06) (0.0002)
N = 4 –0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
Err% (0) (0) (0) (0) (0) (0)
N = 4 0 0.4345 1.1807 11.989 1.3925 1.0090 0.9361
Err% (17.59) (31.70) (34.59) (1.31) (0.001) (0)
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a discrete model with mathematical layers already developed in
[27–30] to validate the refined and mixed models for FGM plates
and shells. These discrete-layer approaches are however very
expensive from a computational point of view. CLT and FSDT re-
sults given in Tables 1–5 are obtained from CUF models as partic-
ular cases by a typical penalty technique (the same MUL2 in-house
academic software introduced in Section 1 has been used).

Attention has been restricted to simply supported FGM multi-
layered plate/shell geometries loaded by a bi-sinusoidal pressure,
where m and n indicate the number of waves along the a and b
directions, respectively. Closed form solution of the proposed gov-
erning differential equations have been derived according to the
solution strategies (based on Navier type-solutions) described in
the previous authors’ papers [26,27].

Table 2
FGM isotropic plate with exponential material law [4]. Effect of transverse normal strain �zz for a bending problem. Exponential c equal to 0.1.

a/h �zz �ux � h
4

� �
�ux � 10�2 � h

4

� �
�ux � 10�4 � h

4

� � �uzð0Þ �uz � 10�3ð0Þ �uz � 10�6ð0Þ

3 20 100 3 20 100

3D[4] 0 n.d. n.d. n.d. 1.4146 n.d n.d.
Ref. [27] –0 0.2453 0.7356 0.9198 1.4145 1.8363 1.1340
CLT 0 0.2483 0.7358 0.9197 0.9180 1.8133 1.1333
FSDT(v = 5/6) 0 0.2483 0.7358 0.9197 1.4929 1.8388 1.1339
N = 1 –0 0.2749 0.7377 0.9198 1.3955 1.8346 1.1338
Err% (12.07) (0.28) (0) (1.34) (0.10) (0.15)
N = 1 0 0.2483 0.7358 0.9197 1.3971 1.8345 1.1338
Err% (1.22) (0.03) (0) (1.23) (0.10) (0)
N = 2 –0 0.2684 0.7370 0.9198 1.3480 1.8330 1.1338
N = 2 0 0.2486 0.7358 0.9197 1.3972 1.8346 1.1338
N = 3 –0 0.2458 0.7356 0.9197 1.4167 1.8361 1.1339
N = 3 0 0.2274 0.7343 0.9197 1.4889 1.8388 1.1339
N = 4 –0 0.2453 0.7356 0.9198 1.4145 1.8363 1.1340
Err% (0) (0) (0) (0) (0) (0)
N = 4 0 0.2273 0.7343 0.9197 1.4889 1.8388 1.1339
Err% (7.34) (0.18) (0.01) (5.26) (0.14) (0.07)

Table 3
Sandwich plate embedding an FGM core with polynomial material law [6]. Effect of transverse normal strain �zz for a bending problem.

a/h �zz �rxzðh=6Þ �uzð0Þ

4 10 100 4 10 100

j = 1 Ref. [29] –0 0.2613 0.2605 0.2603 0.7628 0.6324 0.6072
CLT 0 0.0000 0.0000 0.0000 0.6070 0.6070 0.6070
FSDT(v = 5/6) 0 0.2458 0.2458 0.2458 0.7738 0.6337 0.6073
N = 1 –0 0.2059 0.2050 0.2048 0.7429 0.6292 0.6072
Err% (21.20) (21.30) (21.32) (2.61) (0.51) (0)
N = 1 0 0.2048 0.2048 0.2048 0.7429 0.6292 0.6072
Err% (21.62) (21.38) (21.32) (2.61) (0.51) (0)
N = 4 –0 0.2604 0.2594 0.2593 0.7628 0.6324 0.6072
Err% (0.34) (0.42) (0.38) (0) (0) (0)
N = 4 0 0.2596 0.2593 0.2593 0.7735 0.6337 0.6072
Err% (0.65) (0.46) (0.38) (1.40) (0.20) (0)

j = 4 Ref. [29] –0 0.2429 0.2431 0.2432 1.0934 0.8321 0.7797
CLT 0 0.0000 0.0000 0.0000 0.7792 0.7792 0.7792
FSDT(v = 5/6) 0 0.1877 0.1877 0.1877 1.0285 0.8191 0.7796
N = 1 –0 0.1561 0.1564 0.1564 0.9814 0.8123 0.7795
Err% (35.73) (35.66) (35.69) (10.24) (2.38) (0.02)
N = 1 0 0.1564 0.1564 0.1564 0.9869 0.8124 0.7795
Err% (35.61) (35.66) (35.69) (9.74) (2.37) (0.02)
N = 2 –0 0.1719 0.1721 0.1722 1.0383 0.8227 0.7796
N = 2 0 0.1598 0.1599 0.1599 1.0271 0.8192 0.7796
N = 3 –0 0.2575 0.2589 0.2592 1.0872 0.8308 0.7797
N = 3 0 0.2570 0.2588 0.2592 1.0916 0.8296 0.7797
N = 4 –0 0.2400 0.2398 0.2398 1.0930 0.8307 0.7797
Err% (1.20) (1.35) (1.40) (0.04) (0.17) (0)
N = 4 0 0.2400 0.2398 0.2398 1.0977 0.8308 0.7797
Err% (1.20) (1.35) (1.40) (0.39) (0.16) (0)

j = 10 Ref. [29] –0 0.2150 0.2174 0.2179 1.2232 0.8753 0.8077
CLT 0 0.0000 0.0000 0.0000 0.8070 0.8070 0.8070
FSDT(v = 5/6) 0 0.1234 0.1234 0.1234 1.1109 0.8556 0.8075
N = 1 –0 0.1028 0.1028 0.1029 1.0537 0.8473 0.8074
Err% (52.18) (52.71) (52.77) (13.85) (3.19) (0.04)
N = 1 0 0.1028 0.1028 0.1077 1.0602 0.8475 0.8074
Err% (52.18) (52.71) (52.80) (13.32) (3.18) (0.04)
N = 4 –0 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077
Err% (10.14) (10.58) (10.69) (0.49) (0.15) (0)
N = 4 0 0.1935 0.1944 0.1946 1.2240 0.8743 0.8077
Err% (10.00) (10.58) (10.69) (0.06) (0.11) (0)
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5.1. One-layered FGM plate

In the case of one-layered FGM plates, two different assess-
ments are provided: an isotropic FGM plate with a polynomial
material law, as given by Zenkour [6], and an isotropic FGM plate
with an exponential material law, as given by Kashtalyan [4].

First, a square plate with a = b = 1 m is considered. It is simply
supported with a bi-sinusoidal transverse mechanical load, of
amplitude �pz ¼ 1 Pa and m = m = 1, applied to its top. The consid-
ered thickness ratios a/h are 4, 10 and 100, which means thickness
h equals 0.25 m, 0.1 m and 0.01 m, respectively. The plate is graded
from aluminum (bottom) to alumina (top). The following func-
tional relationship is considered for Young’s modulus E(z) in the
thickness direction z [6]:

EðzÞ ¼ Em þ ðEc � EmÞ
2zþ h

2h

� �j

; � h
2
6 z 6

h
2
; ð10Þ

where Em = 70 GPa and Ec = 380 GPa are the corresponding proper-
ties of the metal and ceramic, respectively; j is the volume fraction
exponent which is a positive number. The Poisson ratio is consid-

ered constant and equal to 0.3. The results, in this case, are given
in terms of the following non-dimensional parameters:

�uz ¼
10h3Ec

a4�pz
uz; �rxx ¼

h
a�pz

rxx; �rxz ¼
h

a�pz
rxz; �rzz ¼ rzz:

The results for various theories are given in Table 1. The effect of �zz

is evident for each proposed plate theory. Three values of the FGM
exponent j are treated. The reference solution is obtained by means
of a discrete model, as described in [27]. GSDT is the Generalized
Shear Deformation Theory, as proposed by Zenkour [6], FSDT is
the first-order shear deformation theory obtained with CUF [34]
with a shear correction factor v = 5/6. The N = 1(�zz = 0) theory is
the FSDT theory with v = 1.

The following remarks can be made:

� results related to theories that discard transverse normal strains
merge with those that retain transverse normal deformations;
this happens for any order of expansion as well as for any
FGM exponent j; however, the error is almost zero for thin
plates in the case of displacement evaluation;

Table 4
FGM isotropic shell with polynomial material law [6]. Effect of transverse normal
strain �zz for a bending problem.

Ra/h �zz uz � 10�11(0)

4 10 100 1000

j = 1 Ref. [30] –0 0.0131 0.1696 52.745 4201.4
CLT 0 0.0042 0.0611 40.445 4201.6
FSDT(v = 5/6) 0 0.0649 0.2049 52.863 4201.7
N = 1 –0 0.0281 0.1619 52.978 4419.9
Err% (55.55) (4.54) (0.44) (4.94)
N = 1 0 0.0549 0.1810 52.680 4201.7
Err% (>100) (6.72) (0.12) (0.007)
N = 2 –0 0.0063 0.1595 52.653 4201.4
N = 2 0 0.0557 0.1858 52.728 4201.7
N = 3 –0 0.0082 0.1690 52.743 4201.4
N = 3 0 0.0596 0.2016 52.866 4201.7
N = 4 –0 0.0027 0.1671 52.745 4201.4
Err% (83.33) (1.47) (0) (0)
N = 4 0 0.0598 0.2016 52.867 4201.7
Err% (>100) (18.86) (0.23) (0.007)

j = 5 Ref. [30] –0 0.0227 0.3416 82.643 7648.6
CLT 0 0.0064 0.0929 80.185 7648.7
FSDT(v = 5/6) 0 0.1178 0.3582 82.296 7648.9
N = 1 –0 0.0480 0.2751 82.339 8039.7
Err% (>100) (19.46) (0.37) (5.11)
N = 1 0 0.993 0.3141 81.945 7648.9
Err% (>100) (8.05) (0.84) (0.003)
N = 2 –0 0.0216 0.3039 82.151 7648.6
N = 2 0 0.1031 0.3343 82.153 7648.9
N = 3 –0 0.0206 0.3433 82.626 7648.6
N = 3 0 0.1187 0.3995 82.753 7649.0
N = 4 –0 -0.0011 0.3370 82.642 7648.6
Err% (95.15) (1.35) (0) (0)
N = 4 0 0.1193 0.3996 82.769 7649.0
Err% (>100) (16.98) (0.15) (0.004)

j = 10 Ref. [30] –0 0.0225 0.4054 92.014 9373.1
CLT 0 0.0070 0.1018 88.974 9373.3
FSDT(v = 5/6) 0 0.1461 0.4316 91.648 9373.6
N = 1 –0 0.0705 0.3392 91.580 9846.7
Err% (>100) (16.33) (0.47) (4.81)
N = 1 0 0.1230 0.3768 91.203 9373.5
Err% (>100) (7.05) (0.88) (0.004)
N = 2 –0 0.0315 0.3501 91.302 9373.0
N = 2 0 0.1256 0.3888 91.321 9373.6
N = 3 –0 0.0316 0.4118 92.010 9373.1
N = 3 0 0.1478 0.4810 92.187 9373.7
N = 4 –0 -0.0099 0.3980 92.012 9373.1
Err% (>100) (1.82) (0) (0)
N = 4 0 0.1497 0.4823 92.191 9373.7
Err% (>100) (18.97) (0.19) (5.68)

Table 5
Sandwich shell embedding an FGM core with polynomial material law [6]. Effect of
transverse normal strain �zz for a bending problem.

Ra/h �zz uz � 10�11(0)

4 10 100 1000

j = 1 Ref. [30] –0 0.0175 0.1748 56.393 4224.0
CLT 0 0.0046 0.0661 55.428 4223.3
FSDT(v = 5/6) 0 0.0659 0.2099 56.530 4224.5
N = 1 –0 0.0242 0.1648 56.351 4445.1
Err% (38.28) (5.72) (0.07) (4.97)
N = 1 0 0.0557 0.1860 56.699 4224.5
Err% (>100) (6.41) (0.54) (0.01)
N = 2 –0 0.0049 0.1660 56.347 4224.2
N = 2 0 0.0569 0.1928 56.420 4224.5
N = 3 –0 0.0061 0.1734 56.417 4224.3
N = 3 0 0.0604 0.2064 56.533 4224.5
N = 4 –0 0.0019 0.1721 56.417 4224.3
Err% (89.14) (1.54) (0.04) (0)
N = 4 0 0.0608 0.2065 56.534 4224.5
Err% (>100) (18.13) (0.25) (0.01)

j = 5 Ref. [30] –0 0.0275 0.3123 75.947 6581.9
CLT 0 0.0061 0.0864 73.651 6578.3
FSDT(v = 5/6) 0 0.1020 0.3129 75.437 6582.7
N = 1 –0 0.0345 0.2387 75.540 6921.4
Err% (25.45) (23.56) (0.53) (4.90)
N = 1 0 0.0860 0.2753 75.141 6582.7
Err% (>100) (11.85) (1.06) (0.01)
N = 2 –0 0.0168 0.2799 75.463 6582.5
N = 2 0 0.0914 0.3042 75.438 6582.7
N = 3 –0 0.0151 0.3154 75.898 6582.5
N = 3 0 0.1060 0.3648 75.988 6582.7
N = 4 –0 0.0008 0.3125 75.941 6582.5
Err% (>100) (0.06) (0.007) (0)
N = 4 0 0.1063 0.3658 76.031 6582.7
Err% (>100) (17.13) (0.11) (0.01)

j = 10 Ref. [30] –0 0.0262 0.3622 79.092 7506.7
CLT 0 0.0062 0.0884 76.235 7505.5
FSDT(v = 5/6) 0 0.1169 0.3496 78.346 7507.6
N = 1 –0 0.0441 0.2658 78.350 7889.8
Err% (56.87) (26.61) (0.94) (5.10)
N = 1 0 0.0985 0.3062 77.982 7507.6
Err% (>100) (15.46) (1.40) (0.01)
N = 2 –0 0.0237 0.3101 78.305 7507.4
N = 2 0 0.1040 0.3339 78.259 7507.6
N = 3 –0 0.0217 0.3706 79.038 7507.5
N = 3 0 0.1272 0.4290 79.135 7507.7
N = 4 –0 -0.0037 0.3628 79.040 7507.5
Err% (>100) (0.16) (0.06) (0.0001)
N = 4 0 0.1286 0.4291 79.137 7507.7
Err% (>100) (18.47) (0.06) (0.01)
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� as stated in Koiter’s recommendation, the transverse strain
error is almost independent of the order of the expansion N
used by the implemented higher-order theory: there is no sense
in increasing (refining) the order of the expansion of the in-
plane displacements ux and uy, without including transverse
normal strains;
� the �zz effect is much more significant in the stress evaluation

with respect to the transverse displacement components; in
the stress evaluation, the error is independent of the considered
thickness ratio;
� the �zz effect is slightly dependent on exponent j.

The distributions of stress and displacement components
through the plate thickness direction z are given in Fig. 3 in the
case of a thick plate (a/h = 10). Linear and the fourth-order theories
are compared. It is evident that the transverse normal strain effects
depend on the position in the z direction: for particular values of z,
the error is larger, and this aspect is fundamental for a better
understanding of Table 1. In Fig. 3 the plate is thick, so in the first
picture the hypothesis of constant transverse displacement is com-
pletely wrong and a linear expansion in the thickness direction for
this displacement component is also inappropriate. The considered
FGM material uses isotropic constitutive equations and for this
reason in the in-plane stress rxx the contribution of in-plane strains
is more important than that of the transverse normal strain, even if
this last one gives a perceptible difference (see second picture). In
the third picture the transverse shear stress rxz depends on the
strain cxz ¼ @w

@x þ @u
@z, and this means that higher orders of expansion

in the thickness direction are requested for the in-plane displace-

ment components and not for the transverse displacement compo-
nent. Finally, the last picture demonstrates as for the transverse
normal stress rzz the contribution of the transverse normal strain
�zz is fundamental.

The second case is a simply supported FGM plate with an expo-
nential material law, as indicated in [4] by Kashtalyan. A transverse
bi-sinusoidal pressure (m = n = 1) of amplitude �pz ¼ 1 Pa is applied
to its top. The square plate (a = b) has dimensions 3 m, 20 m and
100 m, and thickness h equal to 1 m, which means thickness ratios
a/h equal to 3, 20 and 100, respectively. According to [4], the shear
modulus G(z) is assumed to vary exponentially through the thick-
ness z (the Poisson ratio is considered to be constant) according to:

GðzÞ ¼ G1ecðz=h�1Þ; G1 ¼
E1

2ð1þ mÞ ; 0 6 z 6 h; ð11Þ

where E1 = 73 GPa and m = 0.3. The exponential c is equal to 0.1, and
c = 0 means homogeneous material.

The in-plane displacement �ux ¼ ux
G1
�pzh in z ¼ � h

4 and the out-
of-plane displacement �uz ¼ uz

G1
�pzh in z = 0 are given in Table 2. The

3D solution is given by Kashtalyan [4] for a/h = 3, while for the
other thickness ratios, a quasi-3D solution is provided, as described
in [27]. Higher-order theories (N = 4) which neglect the transverse
normal strain give a larger error than 5% for both in-plane and out-
of-plane displacements; the error disappears for thin plates (a/
h = 100). Fig. 4 shows the variation along thickness z for displace-
ments and stresses (rxx, rxz and rzz). The comments made for the
previous plate case are confirmed for this different thickness law:
the employed constitutive equations are also isotropic in this case.
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Fig. 3. FGM isotropic plate with polynomial material law [6], thickness ratio a/h = 10. Displacement and stresses through the thickness direction z for different values of j.
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In Fig. 4, it is clear how HOTs discarding �zz have a larger error near
the top and bottom than in the middle of the plate. This fact is very
useful to discuss some results in Table 2.

5.2. Sandwich plate with an FGM core

A simply supported square sandwich plate (a = b = 1 m) is con-
sidered, with a total thickness h equal to 0.25 m, 0.1 m, 0.01 m,
which means a thickness ratio a/h equal to 4, 10, 100, respectively.
The bi-sinusoidal load is the same as the one-layered FGM cases.
The two external faces are in aluminium at the bottom (Em =
E1 = 70 GPa and h1 = 0.1h), and in alumina at the top (Ec = E3 =
380 GPa and h3 = 0.1h). The internal core is in FGM (h2 = 0.8h)
according to the polynomial law in Eq. (10). The Poisson ratio is
constant for each layer and is equal to 0.3. Several thickness ratios
and exponential j in Eq. (10), are investigated in Table 3, in terms
of transverse displacement �uz ¼ uz

10Ec h3

a4 �pz
and transverse shear stress

�rxz ¼ rxz
h

a�pz
. The reference solution is a quasi-3D one, as proposed

in [29]. For thickness ratio a/h = 10 and exponential j = 4, displace-
ments and stresses through thickness z are given in Fig. 5
ð�rxx ¼ rxx

h
a�pz
; �rzz ¼ rzzÞ. The explanation of these pictures is the

same given in the previous section for the one-layered FGM plates,
even if the differences for the multilayered plate are larger because
of the bigger transverse anisotropy. Further comments, with re-
spect to those given in Section 5.1 for one-layered plates, can be
made:

� in the case of transverse shear stress evaluation, the error is lar-
ger with respect to the displacement evaluation and it is not
reduced by increasing the thickness ratio; in this case, the use
of layer wise theories is mandatory;

� for displacements, the error is smaller and a higher order theory
(N = 4) including �zz is sufficient;
� in Table 3, the values of displacements and stresses seem very

close for both models including and discarding �zz, but it is clear
from Fig. 5 that such a difference is much larger in some other
points along the thickness.

5.3. One-layered FGM shell

The considered shell is an isotropic FGM with a polynomial
material law [6] as previously given in Section 5.1. The bi-sinusoi-
dal load is applied to the top (amplitude �pz ¼ 1 Pa and waves num-
ber m = n = 1). A simply supported Ren shell geometry is
considered. The curvature radii are Ra = 10 m in the a direction
and Rb =1 in the b direction. The dimension b is equal to 1 m,
the dimension in the a direction is a ¼ p

3 Ra ¼ 10:471975513 m.
The considered thickness h is 2.5 m, 1 m, 0.1 m and 0.01 m, which
means a thickness ratio Ra/h equal to 4, 10, 100 and 1000, respec-
tively. The transverse displacement uz in z = 0 is given in Table 4 for
several thickness ratios Ra/h and exponential j. The reference qua-
si-3D solution for a shell geometry is calculated as described in
[30] by means of a discret model. Only displacement uz and trans-
verse shear normal stress rzz along the z direction of the consid-
ered shell are given in Fig. 6 (for Ra/h = 10 and j = 5) because the
introduction of the curvatures does not modify the conclusions al-
ready given for the correspondent plate cases. However, larger val-
ues of error in percentage are observed. It is clearly indicated in
Fig. 6, for both displacements and stresses, how larger errors ap-
pear near the top and bottom of the structure when the �zz effect
is discarded.
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5.4. Sandwich shell with an FGM core

The considered sandwich shell has the same geometrical prop-
erties as the one-layered shell presented in Section 5.3; in this case
the total thickness h is 2.5 m, 1 m, 0.1 m and 0.01 m. The loading
conditions have already been discussed in the previous sections.
Like the plate geometry in Section 5.2, the two external faces are
in ceramic (top) and metallic (bottom); the core is in FGM, accord-
ing to Zenkour’s law in Eq. (10). The core has a thickness h2 = 0.8 h

and the two faces have h1 = h3 = 0.1 h. The transverse displacement
uz in z = 0 is given in Table 5 for several thickness ratios Ra/h and
different exponential j for Zenkour’s law. A quasi-3D solution, like
the one obtained in [30], is used as a reference. Fig. 7 gives the
transverse displacement and the transverse normal stress through
z for Ra/h = 10 and j = 5. The effects of transverse normal strain �zz

are the same as those observed for the correspondent plate case.
The curvature does not play a new role with respect to the sand-
wich plate. The importance of the �zz effect is clearly demonstrated
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Fig. 5. Sandwich plate embedding an FGM core with polynomial material law [6], thickness ratio a/h = 10. Displacement and stresses through the thickness direction z for
j = 4.
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in Table 5 for thick shells, and it seems less important for thin
shells. However it is shown in Fig. 7 that this fact is not valid for
each value of the thickness coordinate z.

6. Concluding remarks

The paper proposes an exhaustive investigation of the trans-
verse normal strain effects in classical and higher-order two-
dimensional theories for one-layered and multilayered plates and
shells embedding functionally graded material (FGM) layers. The
proposed higher-order theories (order of expansion N in the thick-
ness direction for the three displacement components from 1 to 4)
have been implemented by referring to Carrera’s Unified Formula-
tion (CUF). Classical theories, such as Classical Lamination Theory
(CLT) and First order Shear deformation Theory (FSDT), have been
obtained as particular cases of the N = 1 CUF higher-order model.
The transverse normal strain effects in higher-order theories have
been investigated by imposing a constant transverse displacement
and an order of expansion N = 1, . . . ,4 for the two in-plane displace-
ment components.

From the analysis of the results, the following main conclusions
can be drawn:

� Koiter’s recommendation appears relevant in FGM structures
analysis, that is, an increase in the order of expansion for in-
plane displacements can result meaningless if the thickness
stretching is discarded in the plate/shell theories (constant
transverse displacement);
� �zz effect plays a significant role in thick and moderately thick

plates and shells;
� �zz effect depends on the considered FGM material (thickness

law), on the number of layers and their sequence in the thick-
ness direction;
� �zz effect depends on the transverse anisotropy of the consid-

ered structure and on the investigated variable;
� �zz effect cannot be neglected in the case of sandwich plates and

shells even though the considered structures are thin; in these
cases the use of layer wise models could result sometime
mandatory;
� the conclusions obtained for plates are the same remarked for

shells, which means that the curvature does not introduce fur-
ther effects.

Future works would consider multifield problems and in partic-
ular the thermo-mechanical FGM plate/shell analysis will be
investigated.
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