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This PDF file includes the following material:

• Construction of the mixing layer: initial conditions and transient (Figures S.1
and S.2, Table S.1).

• Why a Reynolds stress and a mean flow are not generated inside the shearless
mixing layer? (Figure S.3).

• Transversal velocity derivative skewness (Figure S.4).

• Movie description (shearless mixing energy.avi).

1 Construction of the mixing layer: initial condi-

tions and transient

The shearless mixing layer is constructed by combining two cubic simulation domains
that each contain isotropic turbulences with different energy levels. The computational
domain is a parallelepiped with aspect ratio equal to two (2L × L × L, L = 2π in
dimensionless variables). Periodic boundary conditions are imposed in all directions.
To satisfy this condition, the domain should host two shearless mixing layers as shown
in figure S.1. In the initial condition, the two isotropic turbulent fields are matched
over a layer as large as about one correlation length. The matched field is generated
as a linear superposition of the two initial isotropic fields. The hypothesis is done
that during the initial transient of the simulation (about 1-2 eddy turnover times) the
superposition becomes a Navier-Stokes solution. Thus

u(x) = u1(x)p(x) + u2(x)(1 − p(x)) (1)
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Figure S. 1: Scheme of the computational domain and initial conditions.

where the suffixes 1,2 indicate the high- and low-energy fields, respectively, x is the
inhomogeneous direction. Function p(x) is the weighting function:
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1
2
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)]
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Constant a determines the initial mixing layer thickness ∆, conventionally defined as
the distance between the points with normalized energy values 0.25 and 0.75 when the
low-energy side is mapped to zero and the high-energy side to one. When a = 50, ∆
is about 1/40 of the domain.

In the following, the reader can find a table where dimensional values of the main
parameters for typical shearless mixings are listed. We have considered the flow studied
in the laboratory by Veeravalli and Warhaft [2, 3] as a reference for the case at Reλ =
45.

Reλ = 45 Reλ = 71 Reλ = 150
2L [m] 0.41 0.82 4.1
E1 [J/kg] 5.0 × 10−2 7.2 × 10−2 4.8 × 10−2

u′
rms [m/s] 0.18 0.22 0.18

� [cm] 1.03 2.16 11
λ [cm] 0.37 0.48 1.3
τ1 = �/u′

1 [s] 5.7 × 10−2 9.6 × 10−2 6.1 × 10−1

ρ [kg/m3] 1.2
ν [m2/s] 1.5 × 10−5

(E1 − E2)/∆ [J/(kg m)] 4.2 2.0 0.4
∆t/τ1 2.5 1.8 0.8

Table S. 1: Dimensional parameters of the initial conditions: 2L is the domain size,
E1 is the initial kinetic energy in the high energy isotropic regions, � and λ are the
initial integral scale and Taylor microscale, τ1 is the initial eddy turnover time, ∆t is
the length of the initial transient. The data at Reλ = 45 are chosen to match the 3:1
bar grid wind tunnel experiments by Veeravalli and Warhaft [2].
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Figure S. 2: Maximum of the skewness of the velocity component u in the inhomo-
geneous direction inside the mixing layer. The arrows indicate the interval where we
collected the results.

During the decay of the flow, we observe the velocity and velocity derivative statis-
tics, which gradually depart from their isotropic values inside the interacting region.
We observe an initial transient where the mixing is formed and the numerical solution
becomes a physical Navier-Stokes solution. The mixing region gradually becomes in-
termittent, as can be seen from the appearance of significant peaks in the skewness
and kurtosis distribution of the velocity component u (see figures 2-5 in [4], figure 9
in [2]).

The maximum of the skewness inside the interaction layer is reached after few
eddy turnover times, then it slowly decreases, see figure S.2. The time at which
the maximum skewness is obtained is used to define the end of the initial transient in
which the shearless mixing emerges from the initial conditions. The length of the initial
transient decreases as the Reynolds number is increased: it is about 2-3 initial eddy
turnover times at Reλ = 45 but less then one initial eddy turnover time at Reλ = 150
in the present simulations with an imposed energy ratio equal to 6.7. This transient
becomes longer with higher energy rations, see figures 6(a) and 7(a) in [1]. We see
that, after 10-12 eddy turnover times, the mixing becomes spoiled by the growth of
the correlation lengths and mixing layers thickness and by the decay of energy. The
intervals we used to analyze the data of the present numerical experiment are shown
in figure S.2.

2 Why a Reynolds stress and a mean flow are not

generated inside the mixing layer?

The shearless turbulent mixing is a flow where the average momentum is zero since
the initial condition and the boundary conditions are such as to not generate a mean
flow. This can be also seen by considering the average momentum balance. In fact,
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Figure S. 3: Spatial distributions of the turbulent kinetic energy E(x, t) and of the
deviatoric part of the Reynolds stress tensor, normalized by using the average kinetic
energy E(x, t), and correlation coefficients in the simulation at Reλ = 150; x is the
coordinate in the inhomogeneous direction and 2L is the domain size along x. The
vertical dashed line indicates the centre of the mixing layer.
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we can write

∂tUi − ∂jUiUj + (1/ρ)∂iP + ∂juiuj − ν∇2Ui = 0, (3)

where the capital letters denote mean quantities, the small letters fluctuations, and the
overline denotes the statistical average. From the initial conditions, we have Ui = 0
∀i at t = 0, so, the second and the last terms in equation (3) are everywhere equal to
zero and the momentum equation in the x direction equations reduces to

∂tU = −(1/ρ)∂xP − ∂xu2, (4)

where U is the mean velocity in the mixing direction. Since the field is incompressible,
the divergence of the mean velocity is zero. As consequence, we obtain the following
equation for the mean pressure:

∇2P/ρ = −∂i∂juiuj − ∂i∂jUiUj (5)

which, by considering that the flow is uniform outside the mixing layer, yields

∂2
xxP/ρ = −∂2

xxu2, ∂xP/ρ = −∂xu2. (6)

Consequently, by inserting this mean pressure gradient into (4), the right hand side
vanishes, and no mean acceleration, ∂tU , is generated. The distributions of the result-
ing mean pressure and acceleration can be seen in [1], appendix A and figure 10. The
order of magnitude of this pressure gradient is of a few Pascal/m. At the state of the
art these small values are not observable in the laboratory.

Figure S.3 shows the spatial distributions of the components of the deviatoric part
of the Reynolds stress tensor. They oscillate about a zero mean value. One can see
that the oscillation never becomes larger than 2% of the turbulent kinetic energy.

3 Transversal velocity derivative skewness

In contrast with homogeneous shear flows, the transversal derivative skewness in the
simulated flows is found to be very small and do not depart from the isotropic value.
Thus, in general, the smallness of the transversal moments is not a sufficient condi-
tion for isotropy. Figure 4 shows the spatial distributions of the skewness of the six
transversal derivatives. The skewness has a mean value close to zero and a standard
deviation between 0.02 and 0.04.
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Figure S. 4: Spatial distribution of the skewness of the transversal derivatives in
the simulation at Reλ = 150. The horizontal lines indicate the computed standard
deviation of the skewness distribution.
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4 Movie description, shearless mixing energy.avi

The movie (shearless mixing energy.avi) shows the isolevels of the turbulent ki-
netic energy in the first 6 eddy turnover times in the simulation at Reλ = 150 in a
plane y2 =const. The animation covers only a portion of the domain, roughly a square
of 560 × 560 grid points, which is placed in the centre of the domain.
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