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Abstract

In this paper we investigate the problem of Simultaneous Localiza-
tion and Mapping (SLAM) for a multi robot system. Relaxing some
assumptions that characterize related work we propose an application
of Rao-Blackwellized Particle Filters (RBPF) for the purpose of coop-
eratively estimating SLAM posterior. We consider a realistic setup in
which the robots start from unknown initial poses (relative locations
are unknown too), and travel in the environment in order to build a
shared representation of the latter. The robots are required to ex-
change a small amount of information only when a rendezvous event
occurs and to measure relative poses during the meeting. As a con-
sequence the approach also applies when using an unreliable wireless
channel or short range communication technologies (bluetooth, RFId,
etc.). Moreover it allows to take into account the uncertainty in rel-
ative pose measurements. The proposed technique, which constitutes
a distributed solution to the multi robot SLAM problem, is further
validated through simulations and experimental tests.

Keywords Mobile robots - Multi robot SLAM - Rao-Blackwellized
Particle Filters



1 Introduction

Recent advances in mobile robotics have allowed autonomous systems to
be involved in many successful applications including planetary exploration,
search and rescue, surveillance, and other service scenarios [1]. For the pur-
pose of successfully accomplishing a generic task, a main prerequisite for a
mobile robot, deployed in an unknown area, is the capability of autonomously
navigate, exploiting the information acquired through the joint estimation of
its positions and a model of the surrounding environment. The problem
of estimating both the robot pose and the environment representation is
usually defined Simultaneous Localization and Mapping (SLAM), and its de-
velopment and application have attracted large attention from the robotic
community over the last decades. While the maturity of SLAM in single
robot scenarios is recognized in many recent works [2, 3, 4], a challenging
issue is to extend these approaches to multi robot scenarios in order to en-
hance autonomous exploration and large scale SLAM. Although improving
efficiency and robustness of operation, multi robot scenarios introduce sev-
eral sources of complexity requiring a bigger effort in designing probabilistic
filters for the estimation of the SLAM posterior of different robots by fusing
the prioceptive and the eteroceptive information acquired by each teammate.
Compared to a single robot scenario, several challenges arise, including: 1)
distributed posterior estimation from the available data gathered by different
robots; 2) the influence of limited bandwidth and sensing range, connected to
the use of unreliable wireless communication channels; 3) team coordination
and need of shared world representation; 4) complexity and memory require-
ments in dependence of the number of robots and map size; 5) estimation in
intrinsically dynamic environment.

In the following we will discuss some relevant aspects connected to the
points mentioned above, introducing a simple taxonomy of the multi robot
SLAM problem, consistent with the recent literature on this topic. This
taxonomy will be further enriched in Section 2, in which related work on
the estimation of SLAM posterior of a team of robots will be reported. A
crucial role in the estimation process is played by the prior knowledge avail-
able for solving SLAM. When relative initial poses of the robots are exactly
known the problem easily extends from the single robot SLAM techniques
[5, 6]. On the other hand in case of unknown initial correspondence of robot
locations (no prior information on relative initial positions) the SLAM esti-
mation and the information fusion is often challenging. A further distinction
can be applied, classifying the approaches for solving SLAM in centralized
and distributed techniques. In centralized approaches, all the information
acquired by the teammates (commands and measurements) are gathered to



a central node, that performs computation over the whole team posterior.
This solution is often undesirable since it requires a stable communication
among all the robots at each time, and this prerequisite cannot be met when
using an unreliable wireless channel, prone to failures and quickly saturated
by the large amount of information gathered to the central node. As a conse-
quence distributed approaches are required, relaxing the strong assumption
that all the team has to remain inside the communication range of the central
node and improving the robustness with respect to a centralized technique
in which the system cannot perform estimation in case of failures of the cen-
tral node. Distributed approaches allow the robots to build their own world
representation using only local information and the data exchanged with the
teammates in the communication range. Although the computation remains
local, the outcome of the estimation over the map model is expected to be as
shared as possible, in order to enhance team coordination. For example in
cooperative information gain-based exploration [7] the robots are supposed
to have a shared representation of the surrounding world in order to allow
coordinated actions. If each robot has its own map the information gain of
each robot cannot be easily compared with the ones of the other teammates
and also the task allocation becomes challenging, since there is no common
reference frame on which target assignment can be performed. Finally, the
technique used to solve SLAM is required to be scalable (in terms of memory
and computational complexity) and robust to dynamic environments, since
the team travels in the same scenario and each robot should build a consistent
map although facing the teammates that represent moving obstacles.

As witnesses of the attention paid by the robotic community to the men-
tioned challenges, there is a large literature in the field of multi robot SLAM
(see Section 2). In such a scenario, the use of Rao-Blackwellized Particle Fil-
ters (RBPF), which are probably the most used approach to estimate metric
maps in single robot scenarios, found relatively few contributions, since the
high dimensionality of the state in the estimation process prevents efficient
solutions unless ad-hoc techniques are applied. We here propose an extension
of the grid-based SLAM to the multi robot context for the purpose of building
a metric representation of the environment by means of a distributed estima-
tion process. Relaxing the strict assumptions that characterize related work,
our approach is suitable for a realistic setting in which the relative initial po-
sitions of the robots are unknown and robots can communicate only within a
limited communication range. Data exchange among robots is only required
when a meeting among robots occurs, whereas single robot RBPF-SLAM is
performed when no communication is available. A further contribution of
this work is the possibility of taking into account the uncertainty in relative
measurements during rendezvous, which is shown to have a major influence



on the quality of the estimation process, and cannot be neglected in most of
real world applications.

The article is organized as follows. An overview of the state-of-the-art
approaches to multi robot SLAM is presented in Section 2. In Section 3 our
approach to RBPF-SLAM is described in deep and clarified through practical
examples. Then in Section 4 we present results from simulations and real
tests. Conclusions are drawn in Section 5.

2 Related Work

Multi robot SLAM is an active research field and many efforts were devoted
to find suitable filtering techniques able to deal with a team of robots per-
forming cooperative exploration in unknown environments. As mentioned
above the problem imposes harder constraints than single robot SLAM, so
many authors proposed ad-hoc extensions of the bayesian framework in or-
der to adapt it to distributed multi agent estimation. As for the study of
single robot SLAM problem, it is possible to distinguish feature-based repre-
sentations, in which the map model is expressed by means of landmarks in
the environment, from metric representations, which provide a fine-grained
model of the scenario. In the rest of this section we describe relevant ap-
proaches for multi robot SLAM based on both metric and landmark-based
representations.

In order to face the challenge of integrating the information collected
by different robots in a consistent representation, research works proposed
the use of the Extended Kalman Filter (EKF) [8], to jointly estimate robots
and landmarks posterior included in an augmented state space. In [9], multi
robot SLAM problem is addressed, relaxing the hypothesis of known initial
correspondence. Further study on distributed estimation by means of EKF
can be found in [10] and [11]. Since the EKF involves a complexity which
grows quadratically in the state space dimension, Thrun [12] formulated the
landmark-based multi robot SLAM using the Sparse Extended Information
Filter (SEIF), which constitutes an efficient solution of the SLAM problem
in the information space. Taking advantages from the structure of the filter,
SEIF approach can be performed in a distributed manner, overcoming the
non easily decomposable structure of the EKF.

As metric maps are characterized by higher resolution and allow finer
planning and exploration, many authors proposed to go over the less de-
tailed landmark-based representations, by exploiting the idea of sub-map
approach in order to build a graph-like topological map, in which vertices
represent local metric maps and edges describe relative positions of adja-



cent local maps. These algorithms are shown to be extendable to the multi
robot SLAM [2, 13]. Unfortunately, when the number of features in the
environment increases, the computation cost becomes unsustainable. Other
approaches to multi robot SLAM with metric world models are based on fea-
ture matching applied to grid maps. In a recent work [14], Carpin borrowed
some concepts from image processing, applying line detection algorithms and
Hough transform to the original metric map. Exploiting spectral informa-
tion the author computes a set of possible transformations, i.e., rotation and
translation, needed to consistently merge the maps of two robots. In [15], in-
stead, a manifold map structure is applied to multi robot SLAM scenario, by
adopting a maximum-likelihood estimation algorithm [16] for the manifold
representation. Because of the centralized processing, the communication
issue should be carefully considered, and many drawbacks arise reducing the
potential number of teammates in the system.

The multi robot SLAM problem turns out to be even more challenging
when using Rao-Blackwellized Particle Filters. In such a case each robot car-
ries on several map hypotheses (one for each particle) and it is not straight-
forward to merge this large amount of data among the teammates. In [17],
Howard distinguishes the case of known initial correspondences from the one
in which robots are deployed without any a-priori information on their rela-
tive poses. After detailing his solution to the former case, Howard focuses the
attention on the latter, proposing to solve the multi robot posterior estima-
tion by augmenting the state space of each robot with the trajectories of the
other robots in the team. When two robots meet at occasional rendezvous,
each agent initializes a new set of samples, which are in charge of approx-
imating the trajectory posterior of the met teammate. After the meeting
each robot continues to iterate both filters, by using its own sensor measure-
ments and the data communicated by the other robot. Once all teammates
have met, each robot behaves as a central node, performing estimation of the
SLAM posterior over the whole team. Although this work is strictly related
to the proposed approach some limitations reduce its effectiveness. Howard
assumed for his approach a stable wireless connection that allows the robots
to exchange every command and measurement from sensors among all robots
at each sampling time. Moreover, a careful study of this technique reveals
that the approach is substantially centralized and each robot uses a fixed
particle set size to estimate over an augmented state space, although this
has a large impact on the consistency of the map as we underlined in our
previous work [18]. Finally the error on relative measurements is neglected
and, as shown in Section 4, this approximation can lead to poor results in
real scenarios. Further comparisons with the approach of [17] are reported
in Section 4.2.



3 Multi Robot RBPF-SLAM

3.1 Problem Statement

We consider the case in which a team of N robots, each one equipped with
laser scanner, camera and odometric pose estimation, travels in an unknown
indoor scenario, with the primary aim of building a consistent metric repre-
sentation of the environment. The robots start from unknown initial poses
(relative positions between robots are unknown too) and each agent of the
formation has local knowledge of the surrounding environment (given by laser
and camera). Moreover communication among agents is possible only within
a maximum distance r, by means of an unreliable wireless channel. Without
loss of generality we assume that a rendezvous event is only between two
robots at a time.

Each robot is asked to obtain a metric map of the environment since the
team is assumed to work in a highly symmetric scenario in which it is tricky
to solve the correspondence problem of a landmark-based representation.
This map should be as shared as possible among the teammates in order
to enhance team coordination and allow active rendezvous and loop closing
procedures.

3.2 Notation

In this subsection we introduce the basic notation used in the paper. We
assume that each robot of the team is denoted with a unique identification
number, so we will call robot ¢ the i-th robot of the formation. The pose of the
robot ¢ at time ¢, expressed in the reference frame R, is pﬁ?t = [xiot yfg Hfg]T,
where x5, and g} describe robot position and 679 represents its orientation.
We further define the homogeneous coordinates of the robot, obtained from
the pose pﬁg by augmenting the vector with a unit component, i.e., ﬁﬁg =
e 2 020 1|7

Let u, be the column vector containing the odometric estimate of the
robot pose pﬁ%, sampled at the ¢-th discrete time. The odometric trajectory
up to time ¢ can be described by the following matrix containing subsequent
odometric poses, assumed by the robot, ordered by columns:

i0 i0 i0

. O O R

0 - i0 0. 0 ] _ i0 0. i0
U1t = [ U;p Uio U ¢ } =1 Y1 VYip Yit | - (1)

i0 i0 i0

9@',1 9i,2 e eit

When sampling the odometric pose, robot ¢ also acquires measurements
from the laser scanner. The latter provides a distance measurement for ¢



discrete angles within laser field of view. In the example of Fig. 1 the
laser returns a distance information for every five degrees in the interval
[023 -7/ Z,Qfg + 7/2]. We can summarize all the measurements acquired
before time t in the following matrix:

21t = [ Zil R ottt Rt } S Rem) (2)

in which the ¢-th column contains the distance measurements of the scan
acquired at time .

Figure 1: Range measurements from laser scanner at time ¢. The length of
each radius is an entry of the vector z;;.

It is worth noticing that the distance data are expressed in polar coordi-
nates relative to the robot reference frame, whereas they can be reported to a
global reference frame introducing the information on the pose at the corre-
sponding time steps. The information acquired by each robot can be packed
in a unique variable containing prioceptive and eteroceptive data, that will
be used for SLAM posterior estimation:

i0 i0 i0 i0

40 = Uiree | | Wa Uit Uy (3)

i1t = .
’ Zi1:4 Zil %2 ottt Zig

Finally we denote a meeting with the time stamps of the robots involved,
respectively t; , and tik (as they can be different for lack of synchronization),
where the superscript indicates the robot from which the time stamp is sam-
pled, the first subscript corresponds to the id of the met teammate and the
last subscript indicates that the time is referred to the k-th rendezvous event.
For sake of simplicity subscripts are omitted when they can be easily inferred
from the context. When it is not specified vectors are intended to be column
vectors.



3.3 Approach Overview

The approach we propose is an efficient extension of RBPF single robot
SLAM. Before and after each rendezvous the robots of the team perform their
estimation using RBPF-SLAM, following the path drawn by [19] and [20].
When a rendezvous occurs, a simple procedure allows to fuse the information
in an effective and distributed fashion. This multi robot approach can be
summarized in three phases:

— Data exchange: the two robots, namely ¢ and j, exchange the data
acquired since the last meeting (or since the beginning if it is the first meeting
between the two robots) to the rendezvous instant; in order to minimize the
data to be exchanged, robot ¢ communicates only the odometric data and

the corresponding laser scanner measurements, i.e., d;oti 4i » whereas j
g k—=1""],k

. 0
communicates d’°;, ;
It k17

— Reference frame transformation: from the information received by the
teammate, and using relative pose measurements, each robot suitably roto-
translates the data received in its own reference frame;

— FEstimation on virtual data: once the data are roto-translated, they are
used to estimate SLAM posterior as they were due to laser and odometric
measurements acquired by the robot itself. RBPF estimate the posterior
from received data, using suitable process models with the corresponding
uncertainties.

Finally, after the filtering of received data is complete, the particles within
the filters restart from their poses before the meeting, and continue the esti-
mation process, according to grid-based RBPF-SLAM.

The approach is detailed in the following subsections, describing each
phase in chronological order.

3.4 Team Setup and Single Robot RBPF-SLAM

The robots start from unknown initial poses and they begin to acquire infor-
mation from the surrounding environment and from the prioceptive sensors.
Robot i fixes the reference frame in its own initial pose, namely R;,. Each
agent can start at a generic instant of time and no synchronization among
the teammates is needed. According to RBPF-SLAM framework [20], since
the map posterior can be computed analytically given the robot path, it is
possible to factorize the joint probability through Rao-Blackwellization [21]:

pTOb(pZ?Lumi | Zinut, UE?L;:) = prob(m; | pf?ua Zitt) - PrOb(pZ?Lt | Zi1:t, Uﬂ(@)



In (4) the state includes the robot trajectory, namely pl 1t = {pl 1) pl By e ,pﬁ?t
and the map m;, both estimated from the measurements z; ;.4 and the odo-
metric data ui?l:t' The previous equation provides the basis for single robot
grid-based RBPF-SLAM: the particle filter is applied to the problem of esti-
mating potential trajectories and a map hypothesis is associated to each sam-
ple. The posterior of robot trajectory is approximated by a set of weighted
random samples:

prOb(pz 1:t dz?l:t) ~ Z wt[S]5 (p;?l R {pz 1:t ) (5)
s=1

where n is the particle set size, {]5?0 el is the trajectory of the s-th sample

at time ¢, w/” is the corresponding weight <ZS ) Wil = 1), and 0(-) is the

Dirac delta function. Filter prediction is obtained by drawing particles from
the proposal distribution m(pl5 , | piY,d%.,), which is often derived from a
probabilistic description of the motion model of the robot, see [22]. Sample
weights are then updated according to [23]:

wF] ~ wﬁlprob(ziyt | {p) AL mt 1) =1,...,n. (6)
hence using the measurement likelihood to assign importance weight to each
particle. Particles degeneracy (i.e., the situation in which most part of the
sample set has negligible weight) is then prevented by a resampling phase that
randomly chooses the samples which best fit current and past observations,
according to particles weights. A common condition for resampling is based
on the effective sample size [24], which is an approximated measure of particle

diversity:
~ 1

Nepy = o N
Zs:l <wt )

Particles are re-sampled if the previous quantity drops below a given thresh-
old, usually fixed to n/2, see [25].

Before the first rendezvous, the robot i estimates its belief prob(pi°,.,, m; |
Zi1ts YY) (from the beginning to the current time) given the acqu1red in-
formation d;?l:t' Since the wheel odometry is inaccurate and provides poor
motion estimation, several authors proposed to improve the accuracy of rel-
ative motion estimation, by using of a scan-matching procedure among laser
scans acquired at subsequent poses. This approach is usually referred to as
laser-stabilized odometry [17] and it allows to retrieve precise motion estima-
tion while reducing the amount of data to be used for posterior estimation.

(7)



The scan-matching procedure can be seen as a preprocessing block that dis-
cards the redundant data (measures acquired when the robot does not move)
and outliers (scans with large matching errors). For further details refer to
[17].

Figure 2: Single robot RBPF-SLAM before first rendezvous event. FEach
robot estimates both trajectory and map hypotheses in its own reference
frame.

3.5 First Rendezvous and Data Exchange

Since we made no strict assumption on communication between robots nor
on their synchronization, a rendezvous episode, between two generic robots,
¢ and 7, should be denoted using the time stamp of each robot involved, i.e.,
t! , and tik

At the first rendezvous (k = 1) each robot transfers its own piece of

information, respectively contained in dzol, n and a’ Ly o to the teammate,
gk 140 &

using for example wireless communication or other short range technologies
(bluetooth, RFId, etc.). These data contain a list of odometric poses with
the corresponding laser scan for each time step, see (3).

Remark 1: The robots are required to exchange few preprocessed data,
and the communication can be limited to rendezvous events. This makes the
approach suitable when using an unreliable wireless communication, since, in
the short range, the wireless channel is supposed to be more stable, and long
distance communications, although useful for enhancing team coordination,

10



are not strictly necessary for our SLAM posterior estimation. The robots can
even stop when they meet and wait until a proper connection is established.

For the symmetry of the process and without loss of generality, in the
following subsections we will limit our description to robot i.

3.6 Reference Frame Transformation

When robot i receives dj Ol.tj , in order to successfully include this piece of
Ll K
information in its posterior it is required to transfer the data in its own

reference frame, , it has to obtain d‘o1 = As mentioned in subsection

3.2, laser scanner data are expressed in local coordinates, hence only the
odometry has to be transformed in R;y. The coordinate transformation to

express uiol_tj in R,y requires the knowledge of the relative pose between
Tk . .

Rio and Rjo, i.e., p;%. From Fig. 3 it is possible to observe that p;% is the

composition of the relative poses of four reference frames, i.e., the reference

frames of the two robots (R;9, R,o) and the reference frames corresponding

to the robots poses during rendezvous (R;, R;). Accordingly we can write:

Po=p®p 0P (8)

where p® and p?o are the poses of the two robot when the meeting occurs,
later called rendezvous poses, pj is the relative pose between the teammates,
and @, & are the pose compounding operators [26], see also Remark 3.

In this context we assume that when the robots meet, they are able to
measure their relative pose and the corresponding uncertainty using a pan-
tilt camera associated to the laser (line of sight between the teammates is
required). For each robot, the relative pose of the teammate can be obtained
from the relative distance p (given by the laser), the angle a§ at which robot ¢

sees the robot j, and the angle o, at which robot j observes robot i (angular
measurements can be easily performed by the cameras).

Remark 2: The angle 04{ and the final odometric pose of robot j in
Rjo should be previously communicated by robot j itself. The distance p is
measured by the robot 7, i.e., p = p; It p{ is also communicated by robot j,
although not strictly necessary, can be averaged with p; allowing, under the
hypothesis of independent Gaussian noise to reduce the variance of distance
measurement to o = ap o 7/(0 + 0 i)

From the observatlon of Flg 4 it is p0551ble to compute the relative angle
between the rendezvous poses, by simple geometric considerations:

0 +a] =Ff=a;+17="0;=F1+a; -] 9)

11
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rendezvous event.

Figure 3: Reference frames involved in coordinate transformation during a

Since both signs of 7 represent the relative angle, for sake of simplicity,
robot ¢ becomes:

we consider the plus sign. Hence the relative pose of robot 7 with respect to

matrix P = [Ppy], with m,n =1,2,3,
J

(10)
From the previous equation we can further compute the first-order ap-
proximation of the relative pose uncertainty, expressed by the covariance

12



2

P = 02 cos? oz;- + pzaii sin oz;-
o2 — 202
P P O-aiv .
— — J : (2
Plg = Pgl = ﬁ SlH(QOéj)
_ 2 G
Pis = P31 = paa; sin o (11)

2.2 2 2 2 i
Py = o, sin” o; +p aa; Cos”
_ _ 2 :
Pys = P3y = PO COS O

Pys = 02, + 02,
8= 0oy T 0

where o,i, 0_; and o, are the standard deviations of relative angles and
7

;
distance measurements. From the knowledge of the relative pose and the
rendezvous poses, it is possible to compute the vector describing the relative
pose between R,y and Ry, according to [8] and [9]. The angle between the

two reference frames can be obtained as:

i0 __ pi0 i j0 __
9]’0 - ezt +9j _ejt -

; 'z . 12
=7 +ai —al + 06— 0%, (12)

whereas the Cartesian components of the pose vector can be expressed as:

[xg()? } _ {x%o } N [ pcos(9§0+a§) } N

vi' psin(0;" + aj)

i . 0
+lCOSHj% —smej%][x; } (13)

. N0 i0 30
sin 9j0 CoS 9]-0 Y]

It is worth noticing that each summand in (12) and (13) corresponds
to a term in (8), enlightening the role played by each reference frame in the
definition of the relative pose between R,y and Rjo. The first two components
of pé% correspond to the translation to be applied in order to express the
position of robot 7 in R;y, whereas the last component provides the rotation
angle. Hence a generic pose pﬁig = [xﬂ yj-g Qgg]T in Rjo can be reported in
Rio through the following transformation:

i0 i0 i Q0 JjO i0
Tiy | _ | cos 9]-0 sin Qjo T4 L Tho (14)
0 sin 0% cos 09 70 9ol
j J
and:

13



0%, = 0 + 0. (15)

Equations (14) and (15) can be rewritten in compact form using homo-
geneous coordinates:

~0 __ 0 ~j0
Pi = Tjo s (16)
where:
cosfly —sinfig 0 %
- i0 i0 i0
T = Tz 40 gi0) — sinfjo  costy 0 Yo (17)
30 300 Y500 Y50 0 0 1 60
50
0 0 0 1
. 0 . :
Hence in order to transform v’ , in u® ., we apply:
],1:2&? k ],1:2&? k
~ 0 0 =50
wt’ s =Ty u . 18
g1t 30 g, (18)

Figure 4: When a rendezvous event occurs each robot knows its final pose,
respectively expressed in R;p and Ry, and is able to measure the relative pose
of the teammate. It is possible to attach a reference frame to the rendezvous
pose of each robot in order to understand how the overall transformation
is the composition of the roto-translation between the represented reference
frames.

Once the stabilized odometry of robot j is roto-translated into the refer-
ence frame of robot 7, the latter has all the necessary information to evaluate
SLAM posterior including received data.

14



Remark 3: The use of homogeneous coordinates is quite unusual in pla-
nar transformations. Nevertheless, in the analyzed case, a planar rotation,
which represents a mapping R? — R?, is insufficient to describe the trans-
formation of the three dimensional state space, which includes both position
and orientation of the robot. The latter, instead, can be easily threaded
with homogeneous coordinates, exploiting the analogies between the consid-
ered problem and rigid transformations in 3D space. We further observe that
composition rules used for 3D roto-translations still apply to our case. Hence
we can rewrite equation (8) by exploiting the transformation corresponding
to each term:

T =TT =
= T (2, y, 0:)T (a, yi, 0))(T(27, 1", 602°) "

i 7

(19)

Developing equation (19) we obtain analogous results as (14) and (15).

Remark 4: The data received were preprocessed by robot j, which re-
fined odometry through laser stabilization [17]. Such a preliminary computa-
tion reduces the number of recorded poses, since outliers or successive poses
in which the robot was stationary are discarded. This fact further shrinks
the communication overhead.

Remark 5: If a wireless communication is active in the considered sce-
nario, the robots can exchange information also in the interval of time be-
tween two meetings. In particular the robots can share their current poses,
which is fundamental, once the robots know the transformation between their
reference frames, in order to plan active rendezvous. Notice that rendezvous
remains central, since the odometric information transferred between the
robots gradually derives, whereas when meeting occurs pose constraints are
added as clarified in the next subsection.

3.7 SLAM Posterior Estimation on Virtual Data

In order to obtain grid-based SLAM posterior, for the single robot case,
RBPF use the odometric information for the prediction phase, and the mea-
surements from laser scanner for filter update. With respect to (3) we can
state that at each time, as new odometric and laser measures are acquired
by robot i, one more column is added to the matrix d’.,, and this column
provides the input for filter estimation one step ahead. In particular, the
prediction phase of the filter is based on the change of odometric pose be-
tween time ¢ and time £+ 1. Hence the prediction only exploits the odometric
constraint given by two subsequent odometric poses, i.e., it only depends on

15



the difference between w3}, and w3}, and from its covariance matrix, given
by the uncertainty of odometry. Analogously the update phase only depends
on laser measurements and the corresponding uncertainty:.

We extend the estimation process to the multi robot case by introducing
the concept of wirtual data. When a rendezvous event occurs, instead of
acquiring a single piece of information from odometry and laser, the robot
acquires a large amount of information, which includes the past acquisitions
of the met teammate. Hence robot ¢ acquires wvirtual measurements and
odometry from robot j, gaining knowledge on places that were not physically

visited. As a consequence, instead of adding one single column to d? TR it

concatenates all the data received d’° suitably roto-translated, obtammg:

4
Lt

i0 0. i0 i0 i0 i0
dZO B U%l Ul72 UA’ i ujyt‘z ) /U/J72 U]J

;.41 J -
Ll Zil o Zi2 ot Zig
3,

(20)

Zj,ti,l 24,2 251

It is worth observing that the data are included in reverse order and this
is not an arbitrary choice but is due to problem constraints. In a real scenario
a rendezvous event imposes a constraint on rendezvous poses, whereas the
initial poses of each robot remain unobserved, and can only be inferred from
the rendezvous poses and odometric data. In our approach this rendezvous

constraint can be exploited applying a suitable prediction model from u’o
7 1

to uj xR When passing from column ¢/, to ¢}, + 1 in (20), the predlctlon
is not due to a physical movement of the robot but is due to relative pose
measurements. As a consequence the odometric constraint is substituted by
the rendezvous constraint expressed by the relative pose of the two robots
pj and the corresponding covariance matrix P,. The estimation over the
remaining data is performed according to RBPF SLAM since between each
column an odometric constraint (given by robot j) holds. When RBPF end
the estimation over the odometric path of robot j, each particle restarts
from its pose at time t;l and all particle poses are predicted one step ahead
according to the odometry of robot 4, as in single robot RBPF-SLAM.

We further explain the approach by means of a simple example. In Fig.
5, the initial positions of robot ¢ and j are S; and Sy, whereas points F}
and Fy are their rendezvous poses respectively. Therefore, the procedure
corresponds to attach the inverted odometric data (from F, to S3) to the
initial odometric data carried on by robot i (from S; to Fy). This piece of
information can be used as input to RBPF, that extract the SLAM posterior
from the rough data. When applying the prediction step from the last pose of
i (F1) to the final pose of j (Fy), a proper prediction model is considered. The
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update model remains unaltered since measurements are always given by the
laser. After this step the filter continues using the odometry for prediction
since the poses from F; back to S, are linked by odometric constraints. When
RBPF end the estimation over the path of robot j, each particle restarts from
its rendezvous pose and particles are predicted one step later to S3. Hence
the robot continues the estimation through RBPF-SLAM applied to its own
measurements until the exploration process ends at a generic point Fj.

Figure 5: Multi robot RBPF-SLAM. After rendezvous the overall map and
trajectory hypotheses include the information acquired by both robots in-
volved in the meeting.

During the estimation over the external data, the robot ¢ processes the
information of the other robot as it was traveling backward following the tra-

jectory of the robot j. The surplus of information d” ; represents a kind of

g1t
virtual movement, since the robot i acquires measurerﬁlents on the environ-
ment and on the odometric poses of robot j that were not obtained physically
from its own sensors but were observed and communicated by another robot.
After the rendezvous, robot i posterior prob(pj?lzt; LT | dé,olztj-,l’d;?l:t{l)
includes the data of robot 5 and both the map and the trajectories are ub—
dated accordingly.

Finally we must observe that the approach is effective since the estimation
process is remarkably faster than the acquisition of new measurements. As
a consequence the information carried on by the other robot are quickly
included in the posterior, preserving the on-line nature of the estimation
process. Details on latencies are reported in Section 4.
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3.8 Following Rendezvous Events

The procedure described in the previous subsection can be easily generalized
to an arbitrary number of meetings. After the first rendezvous each new
meeting with a previously met robot corresponds to a loop closing event,
adding constraints that are introduced in the filter through a resampling
phase which selects the trajectories that best describe all the information
acquired. Moreover, including virtual data from other robots, loop closure
can occur also if the robot revisits places traveled by the met teammates. In

the k-th rendezvous, the robots j do not transfer the entire data set dj 0 w
Lk

but only the piece of information from the last meeting to the current time
stamp, i.e., d’ (1]- . This is not only a necessity dictated by the limited

ot 1t
bandwidth, but’kdé)ri’\kfes from structural properties of the filtering process.
If the same data are included twice in the RBPF, the filter interprets this
information as the robot traveled twice in a place that was really visited
only once. As a consequence resampling phases occur although no useful
information for resampling is added. Based on this consideration our method
allows to preserve filter consistency and at the same time it takes advantage
of the small amount of data exchanged during rendezvous.

Remark 6 (Application to heterogeneous teams): We focused on
the very specific case of robots equipped with a laser scanner since this setup
is widespread for indoor mobile robotics applications, for laser capability of
acquiring accurate range information over long distances. In smaller sce-
narios, however, one can envision to apply the same approach with other
distance sensors, as ultrasound sensors [27] or cameras [28], by simply choos-
ing a suitable sensor model. Moreover the team can be heterogeneous: in
such a case the communication between agents should include further infor-
mation on robot sensor models, which have to be applied when performing
estimation over virtual data (see Section 3.7). Also the choice of cameras
(and distance measurements from laser scanner) for relative pose estimation
can be easily substituted by other technological solutions, thus reducing to
a similar probabilistic treatment, under a suitable uncertainty propagation
(see Section 3.6). For instance the literature on relative pose estimation in-
cludes the use of vision based techniques [29] or the inference of relative pose
from multiple distance measurements [30].

We conclude this section observing that when more than two robots in-
tervene in the estimation process the procedure described above remains
unchanged. The only aspect to be carefully considered is the imposition of
the constraints given by the odometry, measurements and rendezvous events.
In our implementation we preferred the robot to provide only the informa-
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tion acquired through its own sensors, regardless past meetings with other
teammates. Roughly speaking the robot does not transfer virtual data re-
ceived in previous meeting, since in such a case, the constraints would become
difficult to manage. In this fashion we preserve the simplicity of implemen-
tation making the proposed technique an effective extension of grid-based
RBPF-SLAM.

The proposed approach is validated and discussed in the following section
in which both simulations and experimental results are presented.

4 Test and Discussion

In this section we report the results of the implementation of our approach in
simulations and real scenarios. Both virtual and real tests were carried out
using the adaptive resampling technique, proposed by Stachniss et al. [25],
and stabilized laser odometry, further detailed in [17]. The mobile robots
used are ActivMedia Pioneer P3-DX equipped with laser range sensor SICK
LMS200, a LOGITECH pan-tilt camera and odometry pose estimation. The
scenario is an indoor environment, in which the robots travel for the purpose
of building a consistent and shared map.

4.1 Multi Robot Simulations

Simulations were performed in MobileSim, a real time simulator, used to test
the approach in realistic environments, with an arbitrary number of robots.
Before introducing some results from the simulated multi robot system we
underline the importance of considering the uncertainty in the relative pose
measurement, when dealing with multi robot SLAM. In Fig. 6 a simple
example of RBPF multi robot SLAM is reported. Robot 1 starts from point
S7 and meets robot 2 in [y, receiving data from the latter. Then robot 1
continues its estimation until it arrives in a generic position F;. We limit this
simple example to robot 1 perspective. In Fig. 6(a) we consider the error
on relative measurement and the resulting map of the corridor, estimated
from data of both robots, is achieved in a correct manner. In Fig. 6(b)
we neglect the uncertainty in the relative measurement and, as expected,
the underestimation of the uncertainty leads to an inconsistent map. This
phenomenon worsens in real tests in which the error affecting measurements
is even bigger due to sensor calibration errors and measurements noise.
After these preliminaries we present the results of simulations in a logistic
space. Three robots travel in the environment, and meetings occur randomly
when they are in reciprocal field of view and their distance is less than 3
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Figure 6: Toy example of multi robot RBPF-SLAM. In (a) the uncertainty
in relative measurement is taken into account, whereas it is neglected in (b).

meters (for simplicity teleoperation is used for moving the agents since in this
context we are not interested in the particular exploration policy). During
each rendezvous event, robots exchange data and they are able to estimate
the map from received information. At the end of the process each robot has
the overall map, built in a cooperative fashion. In Fig. 7 the estimated maps
are shown. Fig. 7(al) reports the trajectory of robot 1 and the maps built
by the robot neglecting the rendezvous events: robot starts in the position
denoted with the red circle, ending its exploration in the place labeled with
the green square. In such a case the agent performs single robot SLAM and it
is able to recover only a partial representation of the environment. Fig. 7(bl)
shows the case in which the robot takes advantage of the rendezvous episodes
(according to our approach) and is able to include the information acquired
by the teammates in its SLAM posterior. The corresponding information
for robot 2 and 3 are shown in Figures 7(a2)(b2) and Figures 7(a3)(bh3),
respectively. Figures 7(a2) and 7(a3) report the single robot SLAM outcome
and the trajectories followed by the agents, whereas Figures 7(b2) and 7(b3)
show the estimated map with the multi robot approach. We remark that
the trajectories followed by the agents in the multi robot SLAM case, are
identical to the corresponding trajectories shown in 7(al)(a2)(a3).
Remark 7: The approach is distributed and for the nature of the RBPF-
SLAM, it leads to non overlapping representations of the environment among
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Figure 7: Comparison of the maps of the simulated logistic space, obtained
by each agent in the single robot case (al), (a2), (a3), and with the proposed
multi robot approach (bl), (b2), (b3). The trajectories of the robots are
shown in the upper sub-figures, whereas the red circles, the green squares and
the triangles denote the starting points, the final positions and the rendezvous
positions for each agent.
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the robots. Although the maps built by each teammate are not exactly equal,
due to the random nature of the particle filter, they only differ by few cells,
preserving the structure of the scenario. As a consequence our approach
allows to build a shared map which can be used for team coordination.

Figure 8: Map of the logistic space estimated with RBPF-SLAM (single
robot). This grid map is used as ground truth and compared with the maps
estimated with the proposed multi robot SLAM approach.

In order to give quantitative evidence of the similarity between the maps
of the robots after the end of the SLAM process, we now compare these grid
maps with a ground truth map, estimated by a single robot that visits all
the scenario. The test scenario is challenging, since the robot is requested to
cover an area of 1100 m?, producing an “ideal” map to be used as ground
truth. The single robot map and the corresponding trajectory followed by
the agent are shown in Fig. 8.

Overcoming a simple visual inspection, we use the metric proposed by
Carpin in [14]. We report the following definition from the cited paper.

Definition 1: Let M; and M, be two grid maps. The agreement between
M; and M (indicated as agr(My, Ms)) is the number of cells in M; and M,
that are both free or both occupied. The disagreement between M; and M,
(indicated as dis(M;, M3)) is the number of cells such that M is free and
M, is occupied or vice-versa. The acceptance index between them is defined
as:

0 if agr(My, My) =0
w(M17M2) = agr(Mi,Ms) . (2]_)
{ agr(lell\/Ii)—l—ldis(QMhMQ) Zf Clg’l“(Ml, MQ) 7A 0

The acceptance index gives information on map similarity, once a suitable
roto-translation is applied (in our approach each robot preserves its initial
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Table 1: Acceptance index of the three maps cooperatively built by the robots
with respect to the map estimated through single robot RBPF-SLAM.

Robot 1 | Robot 2 | Robot 3
Acceptance Index 0.96 0.95 0.97

reference frame). Rototranslation is computed according to [14]. Table 1
reports the acceptance index values of the maps estimated cooperatively by
the three robots (see Figures 7(b1)(b2)(b3)), with respect to map estimated
by the single robot (see Fig. 8). The high values of the acceptance index
indicates the consistency of the maps produced by the multi robot system
and their similarity.

Fig. 9 shows the length of the sensor data queue that should be processed
at each time step by one of the three robots. This length coincides with
the number of columns of (20) waiting for being included in the posterior.
The z-axis of the figure corresponds to physical time. Notice that the two
peaks, that coincide with the instant in which external data are received from
the other teammates, are quickly shortened by the RBPF. This observation
allows us to conclude that, after a latency, the estimation process comes back
to its on-line nature. The maximum delay observed, using common laptop,
was 190 s. The delay is proportional to the peak height (approximately given
by the amount of data received), hence, frequent meetings lead to lower peaks
and shorter latencies, because agents are required to exchange only the data
acquired after the last meeting. We notice that the experiment reported here
is a worse case example, since the robots travel independently for a long time
and meet after exploring large areas, hence making the communication more
demanding. A more common situation is the one reported in Section 4.2
(see Fig. 12 for comparison), which further highlights that the approach is
sustainable and suitable for long operation.

We conclude this section with some results on the practical advantages
of our technique with respect to single robot SLAM approach. In Table 2
we report the distance traveled by each robots in the multi robot SLAM
case (i.e., the length of the trajectories shown in Figures 7(al)(a2)(a3)) and
the length of the path followed by the agent in the single robot SLAM case,
see Fig. 8. It is possible to verify that the overall distance traveled by the
team (i.e., the sum of the distances traveled by each robot in the multi robot
system) is similar to the one traveled by the single robot, but since such
distances are traveled in parallel, the overall estimation process is speeded
up. Evidence of such consideration is reported in the same table, in which
we also show the time required to build the complete map in the multi robot
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SENSOR DATA QUEUE AND RENDEZVOUS EVENTS
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Figure 9: Length of the sensor data queue that should be processed at each
time step of simulation. The peaks correspond to rendezvous events in which
external data is added to the queue.

Table 2: Distance traveled by the robots and time required for building the
overall map, in the multi robot case and in the single robot scenario.

Multi Robot
Robot 1 | Robot 2 | Robot 3
Time [s] 805 795 992 1425
Distance traveled [m)] 128 113 183 402

Single Robot

case (for each agent) and in the single robot case. It is quite intuitive that
the advantage of the information exchange relies on the capability of the
robots of estimating the whole map, without spending time in acquiring
sensor measurements. Hence, in our experiments, after less than 1000 s all
the robots of the team have a complete map representation, whereas a robot
alone, would require about 1500 s.

4.2 Real Tests

In this section we report the results of the implementation of our approach
in two real scenarios. The first experiment is useful to further explain the
approach and describe its real implementation. The second, instead, is an
application of SLAM in an artificially created environment, that reproduces
the structure of a logistic space.

We firstly considered the case in which two robots travel inside an office-
like environment cooperatively building a map. This experiment was per-
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formed in the corridors and labs of Politecnico di Torino. The test scenario
is challenging since it was performed in an environment with many non re-
flective surfaces in presence of people traversing corridors. The mobile robots
are shown in Fig. 10. A visual marker is attached to each teammate, and this
marker is endowed with a bar code useful to distinguish the robots. The map
estimated by robot 1 and the corresponding estimated trajectory (including
the pieces of data received from robot 2) are shown in Fig. 11. The reader
is referred to the same figure for the following description.

Figure 10: Robots P3-DX used for real tests. A bar code marker is used to
distinguish the robots.

The two teammates are initially deployed in separated locations, respec-
tively labeled with S; and Sy. The robots cover the first piece of trajectory
until they arrive in positions I; and I, where the first rendezvous occurs.
Once the robots meet, they measure the relative poses and exchange data us-
ing a wireless communication (based on a client/server architecture). Robot
1 includes in its posterior the external information related to the path S -
I; of robot 2 and then continues its route, traveling in loop (A) and applying
RBPF-SLAM. In the meanwhile robot 2 explores the lab (B) and arrives in
position F,. Robot 1 visits room (C) and, once arrived in Fy, it finally meets
robot 2 for the second time. The data received from robot 2 allow robot 1 to
complete its map, reducing the time required for exploration and enhancing
loop closing. The dual procedure is applied by robot 2, producing a similar
map.

In Fig. 12 we report the length of data queue of an agent: in this case the
first rendezvous occurred after the robots have explored a small area, hence
the peak is low and the virtual data is processed by the agent in few seconds.

During the second meeting, instead, the maximum observed latency was less
than 40 s.
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Figure 11: Map estimated through RBPF multi robot SLAM during exper-
imental test at Politecnico di Torino. The corridor length is about 20 m
whereas the particle set size was 100.

SENSOR DATA QUEUE AND RENDEZVOUS EVENTS

Length of data queue

50
0 “ A A
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Time [s]

Figure 12: Length of the sensor data queue that should be processed at each
time step of the real test. The peaks correspond to rendezvous events in
which external data is added to the queue.
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The second experiment was lead in an environment of approx. 300m?
reproducing the structure of a logistic space. In Fig. 13(a) the map estimated
by robot 1 is shown. The figure also shows robot trajectory, in which the red
circle denotes robot starting point, yellow triangles correspond to places in
which a rendezvous occurred and green square corresponds to the end of robot
1 trajectory. Fig. 13(b) reports the same information with respect to robot
2. According to our approach the robots can build a similar representation
of the environment in a distributed fashion without physically traveling in
the whole scenario. The acceptance index between the two maps is equal to
0.92.

We further stress that no synchronization is needed and the approach
requires no central computation, constituting a fully distributed multi robot
SLAM solution. The formation of robots can be seen as a mobile sensor net-
work, in which a communication link appears between two nodes, only during
rendezvous events. In such a way fault tolerance problems in communication,
as investigated in [27], are relaxed and also in case the robots fail to detect
a rendezvous case, this does not influence the estimation process. These
considerations remark the advantages over the state of the art approaches.
The robots are no longer constrained by the communication ranges of the
teammates as in [17], but can proceed in their exploration independently.
Moreover the approach takes into consideration the uncertainty on relative
measurements, whereas neglecting these errors can lead to an underestima-
tion of filter uncertainty, thus to inconsistencies in the occupancy grid map.
Finally each robot treats the virtual data as its own measurements, and the
filter is no longer required to perform estimation over an augmented state
(see [17]), hence avoiding the use of large sample size (the number of required
samples increases exponentially in the number of state variables [31]).

5 Conclusion

As multi robot systems are envisioned to play an important role in many
robotic applications, distributed techniques for solving Simultaneous Local-
ization and Mapping are required, in order to enhance autonomous explo-
ration and large scale SLAM, increasing both efficiency and robustness of
operation. Although Rao-Blackwellized Particle Filters (RBPF) have been
demonstrated to be an effective solution to the problem of single robot SLAM,
few extensions to teams of robots exist, and these approaches are charac-
terized by strict assumptions on both communication bandwidth and prior
knowledge on relative poses of the teammates. The present paper proposes an
efficient extension of RBPF-SLAM to the multi robot scenario. We relaxed
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(a) Robot 1 (b) Robot 2

Figure 13: Maps estimated by the two Pioneer P3-DX during the real test in
logistic space-like environment. Figures show robot trajectory (red circle is
the starting point, green square is the end of the path) and the rendezvous
points (yellow triangles).

the assumptions of related works, addressing the problem of multi robot
SLAM in the case of limited communication and unknown relative initial
poses. Our approach allows to jointly estimate SLAM posterior of the robots
by fusing the prioceptive and the eteroceptive information exchanged among
teammates. RBPF multi robot SLAM involves the communication of a small
amount of data, while taking into account the uncertainty in relative pose
measurements. Moreover it can be naturally extended to different commu-
nication technologies (bluetooth, RFId, Wifi, etc.) regardless their sensing
range. Before and after each rendezvous the robots of the team perform their
estimation using RBPF-SLAM. When a rendezvous occurs, a simple proce-
dure allows to enhance information fusion in an effective and distributed
fashion. This procedure can be summarized in the three phases, respec-
tively called data exchange, reference frame transformation and estimation
on virtual data. When the filtering of received data is complete, the parti-
cles restart from their poses before the meeting, and continue the estimation
process, according to grid-based RBPF-SLAM. At the end of the mapping
process the robots share similar (i.e., not exactly equal) representations of
the map, up to a known roto-translation. Overcoming the visual inspection
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that is often applied for result evaluation we use the acceptance index pro-
posed by Carpin in [14] to provide an objective evaluation of the estimation
process. After the first meeting the robots know the relative transformation
between the reference frames of the met teammates, enhancing the possibility
of team coordination and active rendezvous. The technique is shown to be
an effective solution to multi robot SLAM and it is further validated through
simulations and real tests. Real experiments were performed in office-like en-
vironment and in an artificially build scenario which reproduces the structure
of a logistic space.
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