
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Improving cost and accuracy of DPI traffic classifiers / Cascarano, Niccolo'; Ciminiera, Luigi; Risso, FULVIO GIOVANNI
OTTAVIO. - STAMPA. - (2010), pp. 641-646. (Intervento presentato al convegno SAC '10: Proceedings of the 2010
ACM Symposium on Applied Computing tenutosi a Sierre, Switzerland nel March 2010) [10.1145/1774088.1774223].

Original

Improving cost and accuracy of DPI traffic classifiers

Publisher:

Published
DOI:10.1145/1774088.1774223

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2374747 since:

ACM

Improving Cost and Accuracy of DPI Traffic Classifiers

Niccolò Cascarano
Politecnico di Torino

C.so Duca degli Abruzzi 24
Torino, Italy

niccolo.cascarano@polito.it

Luigi Ciminiera
Politecnico di Torino

C.so Duca degli Abruzzi 24
Torino, Italy

luigi.ciminiera@polito.it

Fulvio Risso
Politecnico di Torino

C.so Duca degli Abruzzi 24
Torino, Italy

fulvio.risso@polito.it

ABSTRACT
Traffic classification through Deep Packet Inspection (DPI)
is considered extremely expensive in terms of processing
costs, leading to the conclusion that this technique is not
suitable for DPI analysis on high speed networks. However,
we believe that performance can be improved by exploiting
some common characteristics of the network traffic. In this
paper we present and evaluate some optimizations that can
definitely decrease the processing cost and can even improve
the classification precision.

Categories and Subject Descriptors
C.2.3 [Computer-communication networks]: Network
monitoring

Keywords
Deep Packet Inspection, Traffic Classification

1. INTRODUCTION
Deep packet inspection (DPI) is perhaps the most com-

mon technique for traffic classification. Among the rea-
sons, its (relatively) straightforward hardware implemen-
tation and the fact that other techniques are still in the
research domain. However, DPI classifiers are considered
expensive in terms of CPU and memory consumption.

This mis-conception is probably due to two reasons. The
first is that several flavors of DPI are possible and the most
advanced techniques (e.g. the ones that reconstruct the en-
tire stream at the application level) may be extremely costly.
The second is that DPI is often associated to security appli-
cations such as Intrusion Detection Systems (IDS) or fire-
walls, which may include thousand of rules (the ruleset of
the November 2007 release of Snort includes 8536 rules, 5549
of them requiring application-level content inspection [1]),
which tend to stress the capabilities of DPI engines.

We believe that traffic classification is different from the
other applications cited above because the number of pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

tocols to be classified is definitely lower than the number of
rules present in an IDS (tens or at most hundreds against
several thousands) and because a limited number of misclas-
sifications are acceptable. For instance, misclassified traffic
may update the byte counter of the wrong protocol but it
does not usually pose any security threat such as a mis-
classification into an IDS. Hence, a traffic classifier can take
into consideration the average characteristics of the traffic
in order to optimize the processing path while an IDS must
prevent a single session from damaging network infrastruc-
ture, therefore leading to different architectural choices.

This paper describes some optimizations that are used by
some real implementations and that are able to substantially
reduce the cost of a DPI classifier. Optimizations are based
on limiting the amount of data that are analyzed by the
DPI engine, which is possible by taking into account some
common characteristics of the traffic present in nowadays
networks. However, no experimental data is available so far
that evaluate the goodness of these techniques in terms of
costs/benefits, i.e. at which extent the gain in processing
complexity can be balanced with a loss of precision.

This paper aims at filling this gap by evaluating the im-
pact of each optimization on the processing load and on
the accuracy of the classification process. Results demon-
strate that these optimizations alone are able to decrease
the processing cost of more than one order of magnitude,
while even improving classification precision. Our analysis
is based on real traffic traces, some of them containing also
a relevant portion of peer-to-peer traffic that is known to
be challenging for DPI classifiers because of its frequent use
of encryption and content hiding techniques to avoid the
identification. Moreover, two of the three traffic traces used
have been collected using the GT suite [2], which provides
the ground truth for evaluating the classification accuracy.

This paper is organized as follows. Section 2 presents the
existing works on DPI optimizations, while Section 3 intro-
duces the general architecture of a DPI classifier. Proposed
optimizations are presented in Section 4 and the procedures
used in their evaluation are summarized in Section 5. Sec-
tion 6 evaluates the impact of the optimizations in terms
of processing load and classification precision and Section 7
concludes the paper.

2. RELATED WORKS
Most papers assume that that DPI is a very expensive

traffic classification technique without any further investi-
gation. A (non exhaustive) list can be papers [3–6]. Only
recently a paper appeared [7] that demonstrates how the

complexity of a well-known traffic classifier based on Sup-
port Virtual Machine may be comparable to the DPI one.

So far, most of the work focused on the analysis or the
definition of new techniques for performing fast and scal-
able regular expression matching [8–10], which are mostly
appropriate when thousands of rules are present or when
the characteristics of the ruleset in use require a careful rep-
resentation in memory in order to avoid state explosions [1],
which are common conditions especially in case of IDS.

However, we believe that traffic classification has different
characteristics than the applications that operate in network
security. In our vision, the complexity of the DPI technique
applied to traffic classification can be definitely decreased by
accepting a minor worsening in the classification accuracy
and by optimizing the whole process of DPI classification
and not just the engine in charge of the regular expression
matching.

Along this line, Moore et al. [11] proposes different algo-
rithms that basically increase the amount of data to be ana-
lyzed until a positive match on a known protocol is returned,
but it limits the analysis on the classification precision and
does not investigate the impact in terms of processing cost.
Furthermore, they use old traffic traces that do not contain
peer-to-peer traffic.

A (relatively) widespread technique to reduce the process-
ing cost of traffic classification consists in using only the
first portion of the session data for classification. For in-
stance, BRO IDS stops the pattern matching after examin-
ing 1KBytes of application payload, while Snort can specify
(for each signature) the amount of application data to be
analyzed before stopping the search. However, this value
has been chosen as “reasonable” according to the users ex-
perience. Also in this case no scientific analysis has been
performed to justify this choice and to evaluate its impact
on classification precision and computational load.

Another technique which seems to be in use in some com-
mercial device consists in stopping the analysis of a session
if it is still unclassified after a given number of packets. Also
in this case no public results are available that can confirm
the goodness of this technique.

3. BASELINE DPI CLASSIFIER
A DPI classifier relies on the observation that each ap-

plication uses specific protocol headers to initiate and/or
control the information transfer. DPI uses mostly regular
expressions (commonly called signatures) to identify the pe-
culiar sequence of data of an application protocol. A DPI
engine receives all the packets that belong to a TCP/IP ses-
sion1 not yet associated to a known application-level pro-
tocol and it compares the packet payload to a given set
of signatures. In case a match is found, the correspond-
ing TCP/IP session is placed in a session table and all the
packets belonging to that session are no further analyzed by
the DPI engine.

Among the several flavours of DPI classifiers, the most
common categories [12] are (i) packet-based, per-flow state
which analyzes data on a packet-by-packet basis as soon as
packets are received by the classifier, and (ii) message-based,
per-flow state that analyzes application-level payload as a

1A TCP/IP session includes all the network packets that
share the same source/destination address, transport proto-
col and source/destination ports.

unique stream of data, after TCP/IP normalization2.
Our “baseline DPI classifier” follows the packet-based ap-

proach that, as pointed out in [11, 12], is usually enough
for traffic classification. In fact, the loss of precision of
the packet-based approach is usually limited and tolerable
in case of traffic classification, while the additional preci-
sion of the message-based approach makes it more appro-
priate for network security environments, which are outside
the scope of this paper. We use the signatures contained
in the protocol database available on NetPDL website [13],
which includes some processing tools that can be easily cus-
tomized for our objectives. The current version of the Net-
PDL database (as of July 2009) includes 72 application-level
protocols (39 TCP, 25 UDP and 8 that operate with both
TCP and UDP), whose signature are partially derived from
the L7-filter [14] project.

4. DPI OPTIMIZATIONS
This Section presents the optimizations that can improve

the behavior of the DPI traffic classifier under evaluation.

4.1 Snapshot-based classification
An inspection of the protocol signatures contained in our

database [13] shows that most of them require a limited num-
ber of bytes for identifying a protocol, and these bytes are
usually placed at the beginning of the application data. This
makes sense because application signatures usually describe
the handshaking phase of application protocols or some kind
of data used for synchronization, which are usually placed
at the beginning of the application payload; the rest is usu-
ally application-related data that is useless for classifica-
tion. This applies particularly to UDP traffic, whose data-
grams travel independently on the network and therefore
each packet requires its own header (e.g. for sequence num-
bering). For the above considerations, we can reasonably
conclude that the portion of data useful for classification
should be in the first bytes transmitted over the wire.

Although in principle we should stay with the longest in-
put (i.e. full payload) in order to preserve the accuracy, a
better approach is to limit the number of bytes provided to
the pattern search block and to evaluate the possible loss in
classification accuracy, in order to determine the best trade-
off between accuracy and processing cost. We speculate that
forcing the DPI classifier to analyze only a snapshot of net-
work packets can provide an advantage in terms of cost,
without a significant impact on the classification accuracy.

4.2 Limiting classification attempts
A DPI classifier might waste a huge amount of computa-

tional resources while performing pattern searches on ses-
sions that cannot be identified anyway. Table 3 demon-
strates that traces with higher percentage of unknown traf-
fic are associated with higher computational costs, suggest-
ing a direct correlation between unclassified traffic and cost.
For instance, a protocol cannot be classified when (i) the
data transported by the session is encrypted, (ii) the classi-
fier does not know the signature that describe the protocol
transported, or (iii) the signature does not match because
it is split across two packets.

2TCP/IP normalization is a term commonly used to indicate
the capability to handle IP fragments and TCP segment
reordering/duplication, which can be used to rebuild the
original application-level stream as seen by the receiver.

Table 1: Average number of pattern searches in case
of unclassified sessions

Data set x̄ σ(x)

UNIBS-GT (tcp) 654 4619
POLITO-GT (tcp) 563 3659

POLITO (tcp) 67.6 1879
UNIBS-GT (udp) 2.62 0.71

POLITO-GT (udp) 6.05 26.4
POLITO (udp) 9.17 476

Apart from the case (iii) that is outside the scope of this
paper (a packet-based approach is currently considered), in
the other two cases the DPI classifier should stop its analysis
over a given session after a reasonable number of classifica-
tion attempts and leave the session as “unclassified”. This
could save processing power since we avoid to analyze all the
packets belonging to the session, while at the same time we
decrease the possibility that a random payload matches a
signature and brings to a misclassification. Particularly, Ta-
ble 1 shows the mean and standard deviation of the number
of classification attempts executed over unclassified sessions;
the number of searches is extremely high especially in case
of TCP sessions, which are usually longer than UDP ones.

This suggests that a reasonable limit on the number of
classification attempts per session should not affect the amount
of traffic correctly classified, while it should reduce the num-
ber of misclassifications and the processing cost per packet.

5. EVALUATION METHODOLOGY

5.1 Parameters under evaluation
We define three parameters for the evaluation of each op-

timization: (i) the performance speedup of the new clas-
sifier compared to the baseline classifier presented in Sec-
tion 3 (measured when processing the same traffic traces)
and the accuracy in terms of (ii) percentage of unclassified
and (iii) misclassified traffic. The “unclassified traffic” is
the traffic that does not match any known protocol signa-
ture. The “misclassified traffic” is the traffic that matches
a protocol signature that does not correspond to the ap-
plication that generated it. Obviously, the last parameter
can be calculated only on traffic traces captured with the
GT suite. The traffic correctly classified can be derived by
complementing the unclassified and misclassified traffic and
we tolerated a maximum worsening of 1% compared to the
traffic correctly classified without optimizations.

Processing cost has been evaluated by running the classi-
fier on our traces and measuring the average processing cost
per packet. Measurements have been done using the RDTSC
assembly instruction available on Pentium-compatible pro-
cessors and include only the time spent in the DPI classifier,
excluding all the other conpanion functions (e.g. loading
packets from disk). The measurement platform was an In-
tel Dual Xeon 5160 at 3GHz, 4GB RAM and Ubuntu 8.04
32bit; the code under examination was compiled with GCC
v4.2.4 and always executed on the same CPU core.

5.2 Traffic traces
Table 2 summarizes the most important characteristics of

the three full-payload traffic traces that we used to eval-
uate the goodness of the proposed optimizations. All of

Table 2: Traffic traces used in the evaluation
Data set Date and Bytes Packets

Duration

POLITO-GT December 10, 2008 202 GB 330M
68 hours 76.8% TCP 69.8% TCP

UNIBS-GT December 17, 2008 3.5 GB 4.72M
56 hours 99.4% TCP 67.6% TCP

POLITO Dec. 20, 2007 419 GB 579M
12 hours 94.7 % TCP 92.3% TCP

Table 3: Classification cost and precision of the base-
line classifier

Data set Avg. cost Unknown Misclass.
(ticks/pkt) (bytes) (bytes)

POLITO-GT (tcp) 6681 72.7% 16.9%
UNIBS-GT (tcp) 2503 29.2% 7.73%
POLITO (tcp) 743 5.67% N/A

POLITO-GT (udp) 242 0.43% 57.7%
UNIBS-GT (udp) 758 14.7% 1.39%
POLITO (udp) 709 15.3% N/A

them were collected through the well-known tcpdump tool at
the border routers of Politecnico di Torino and University
of Brescia campuses and then properly anonymized. The
“POLITO-GT” and “UNIBS-GT” traces were obtained us-
ing the GT suite [2] thus we know exactly which application
generated each session; this information allows to evaluate
the absolute accuracy of the classification process.

POLITO-GT contains mainly peer-to-peer and WebTV
traffic, generated by 10 virtual machines running Edonkey,
Bittorrent, Skype, PPlive, TVAnts and SopCast on Win-
dows XP, plus four real machines running Linux, Windows
Vista and MacOS X with default settings and used by regu-
lar users. WebTV applications were executed with an auto-
matic turnover of 1 hour, while P2P application were down-
loading and seeding some popular resources for the entire
duration of the capture. The UNIBS-GT trace contains the
traffic generated in a research laboratory by 20 PhD stu-
dents doing their normal activities. This trace is smaller
than POLITO-GT in term of volume but it contains more
normal users activity, including P2P file sharing.

Since POLITO-GT and UNIBS-GT include traffic gener-
ated by a limited number of hosts due to the difficulties to
deploy the GT suite over many clients, we decided to use
also the POLITO trace that includes traffic generated by
about 6000 hosts during an entire working day in order to
extend the evaluation scenario. Although the ground truth
is not available on this trace (hence the amount of misclas-
sified traffic cannot be derived and the result in terms of
unclassified traffic cannot be verified), this trace is interest-
ing for evaluating the impact of proposed optimizations at
least in terms of processing costs in a more realistic scenario.

5.3 Performance of the baseline classifier
Table 3 reports the classification results (in terms of aver-

age processing cost per packet and unclassified / misclassi-
fied traffic) obtained on the three traffic traces by the base-
line DPI classifier. POLITO-GT trace has a very high per-
centage of unknown TCP traffic. This is expected because
the signatures for the WebTV protocols, which represent the
largest part of the traffic captured, are partially unknown
and partially derived with reverse engineering (and not very
precise). With respect to the UDP portion, the result is

128 256 512 1024
0

1

2

3

4

5

6

7

8

Unibs-GT TCP
Polito-GT TCP
Polito TCP
Unibs-GT UDP
Polito-GT UDP
Polito UDP

Snapshot length (bytes)

S
pe

ed
up

Figure 1: Performance speedup at different snap-
shot length.

even more problematic because of the high percentage of
misclassified traffic. Trace UNIBS-GT is less critical than
POLITO-GT since the percentage of misclassified traffic is
reasonably low; we still have a large portion of unknown
traffic due to the use of P2P file sharing applications. For
trace POLITO we have only the information of unknown
traffic that results to be lower than the other two traces for
the TCP case (most hosts on the network use only “stan-
dard” applications such as web and email). Vice versa, the
unknown UDP traffic is rather high, probably for the pres-
ence of traffic coming from P2P clients that adopt hiding
techniques for avoiding classification (e.g. Emule).

The average processing cost for TCP and UDP is differ-
ent because we implemented the pattern matching module
as a Deterministic Finite Automata (DFA), using algorithm
provided by the well-known flex tool. The cost of a DFA
matching depends on many parameters (i.e., average packet
size, average session length, presence of unclassifiable ses-
sions, type of regular expressions used, etc.), which are dif-
ferent from trace to trace and even from TCP and UDP
traffic.

While a DFA does not seem appropriate for traffic clas-
sification, [1] demonstrated that a careful implementation
is able to address the requirements of many regular expres-
sions even with the Kleene closure (which represents the
worst operating conditions for DFA because it could lead to
state explosion).

6. EXPERIMENTAL EVALUATION

6.1 Snapshot-based classification
We evaluated the impact of the snapshot length optimiza-

tion by varying the number of bytes analyzed for each packet
and by observing the corresponding variation in accuracy
and processing cost. Results, shown in Figure 1, are en-
couraging. For instance, the best trace (UNIBS-GT) shows
that the processing cost related to the TCP traffic is 7 times
better than the one of the baseline classifier.

The POLITO-GT trace is a tough trace for our DPI clas-
sifier because of the amount of unclassified traffic present
(72.7% of the TCP traffic, as reported in Table 3). For
this trace we can observe an interesting phenomenon: pro-
cessing cost obtained with a 128 bytes snapshot is higher

128 256 512 1024
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
Unibs-GT
misclassified TCP
Unibs-GT
unknown TCP
Polito-GT
misclassified TCP
Polito-GT
unknown TCP
Polito unknown
TCP
Unibs-GT
misclassified UDP
Unibs-GT
unknown UDP
Polito-GT
misclassified UDP
Polito-GT
unknown UDP
Polito unknown
UDP

Snapshot length (bytes)

T
ra

ff
ic

 (
by

te
s)

Figure 2: Classification accuracy at different snap-
shot length (thick lines refer to TCP).

than the one related to the 256 bytes case, and a similar
phenomenon can be seen for the classification accuracy. In
fact, Figure 2 shows that the 128 bytes snapshot leads to
an higher amount of unknown traffic while the misclassi-
fied traffic is lower. The reason is that a smaller snapshot
triggers less false positive matches on that trace, but this
implies the growth of the number of classification attempts
per session, lowering the classification speedup consequently.
Another observation reveals that UDP traffic shows a lim-
ited improvement in terms of processing cost compared to
the TCP case; this is mainly due to the average payload size
of UDP traffic that is usually smaller than TCP and often
below 250 bytes.

Figure 2 shows the corresponding variation in classifica-
tion accuracy. Results are in some sense similar to the pre-
vious graph, showing that in most cases even a snapshot
length of 128 bytes does not affect significantly the accuracy,
and that the result achieved with a snapshot of 256 bytes is
almost indistinguishable from the result obtained with full
payload. The worst trace in these conditions appears to be
the POLITO, which shows an imperceptible increase in the
unknown TCP traffic (0.04% in bytes) with respect to the
baseline classifier. With respect to UDP, results are even
more interesting. In the POLITO-GT trace there are no
differences at all between 256 bytes and the full payload,
while the POLITO trace the difference is limited to 0.001%
in terms of bytes. Interesting, the traffic classified differ-
ently includes also some sessions that are misclassified with
full payload and that remain unclassified with the snapshot.

According to these results, an hard limit of 256 bytes
seems to be a good tradeoff between the improvements in
processing costs (especially for TCP traffic, which varies be-
tween 2.8 and 4.4 against the baseline classifier), and the
impact on accuracy. For UDP, the improvement is smaller
and varies (in our traces) between 1.1 and 1.8 but there are
almost no effects in terms of accuracy. Although this num-
ber depends on the traffic traces, we believe our dataset is
sufficiently representative of real network traffic and there-
fore we do not expect may differences in other environments.
Further analysis on different dataset are planned, but this
is an hard task due to the difficulties of getting traces that
include the real payload (i.e. not randomized data) and the
proper ground truth associated with each session.

1 2 3-10 11-100 >100
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Correctly classified
POLITO-GT
Misclassified
POLITO-GT

Correctly classified
UNIBS-GT
Misclassified UNIBS-
GT

Classification attempts performed

B
yt

es
 p

er
ce

nt
ag

e

Figure 3: Distribution of positive matches vs. num-
ber of classification attempts performed.

0 10 20 30 40 50 60
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% Unibs-GT
misclassified TCP
Unibs-GT
unknown TCP
Polito-GT
misclassified TCP
Polito-GT
unknown TCP
Polito unknown
TCP
Unibs-GT
misclassified UDP
Unibs-GT
unknown UDP
Polito-GT
misclassified UDP
Polito-GT
unknown UDP
Polito unknown
UDP

Classification attempts limit

T
ra

ff
ic

 (
by

te
s)

Figure 4: Classification accuracy at different classi-
fication attempts limit (thick lines refer to TCP).

6.2 Limiting classification attempts
Figure 3 shows the percentage of traffic that is either

correctly classified or misclassified by the baseline classifier
while examining the first N packets of each session. The
most part of the traffic is correctly classified by examining
only the first packet, while the sessions that are classified
when examining the N th packet (with N ≥ 2) is definitely
limited. Besides, inspecting more packets has the side effect
of increasing the amount of misclassifications, because the
randomness of application data transported leads to inci-
dentally return a positive match on some “weak” signatures.

Figure 4 adds more details and shows that TCP traffic is
classified almost entirely at the first packet, in both UNIBS-
GT and POLITO-GT traces (the curves of unclassified and
misclassified traffic does not change sensibly with N ≤ 50).
Considering a limit of N = 2, the correctly classified traffic is
reduced of 0.95% in the UNIBS-GT trace without almost no
misclassifications, which can account up to 7.73% in absence
of limits. Results on the POLITO-GT are even better, with
a loss of 0.20% in terms of correct traffic and almost no
misclassifications.

Unfortunately, the analysis of UDP traffic is less encour-
aging. While in the POLITO-GT trace the correctly clas-

0 10 20 30 40 50 60
1.0

1.6

2.5

4.0

6.3

10.0

15.8

25.1

39.8

63.1

100.0 Unibs-GT TCP
Polito-GT TCP
Polito TCP
Unibs-GT UDP
Polito-GT UDP
Polito UDP

Classification attempt limits

S
pe

ed
up

Figure 5: Performance speedup at different classifi-
cation attempts limits (Y scale is logarithmic).

sified traffic drops only 0.57% when using N = 2 instead
of N = ∞, the UNIBS-GT shows a decrease of 12.87% in
the same conditions. The gap reduces when inspecting more
packets (i.e. it becomes 0.76% when N = 10) but this seems
to suggest that the definition of a “fair” limit such as in the
TCP case is more complicated. With respect to the mis-
classified traffic, both traces share the same behavior. In
the POLITO-GT trace, in which this phenomenon is more
evident, the unclassified traffic drops from 55.29% (N = 2)
to 13.37% (N = 50) and leads almost entirely to misclassi-
fications, whose value grows from 3.84% (N = 2) to 45.35%
(N = 50). This phenomenon is less evident in the UNIBS-
GT trace, but it is expected because the misclassified traffic
in this trace is already very low.

The reduction of misclassified traffic is a clear by-product
of this technique and it is particularly evident on traces with
high amount of encrypted traffic or P2P applications us-
ing obfuscation techniques. For instance, Table 3 reports a
72.7% of unknown TCP traffic for POLITO-GT trace, which
becomes almost 90% in Figure 4 because it includes also all
the previously misclassified traffic (was 16.9% in Table 3)
that remains unclassified with the new optimization.

Clearly, this optimization can lead to a gain in term of pro-
cessing cost. Figure 5 shows the performance speedup ob-
tained with different limits of classification attempts, which
can reach more than a 50-fold increase on some traces (e.g.
POLITO-GT with N = 1). The gain is less evident for
UDP traffic, mostly due to the fact that UDP sessions are
usually shorter (e.g. several DNS queries are present in the
traces) and some“weak”signatures may return a positive re-
sult after a small number of packets, which are in most part
misclassifications. For instance, Table 1 shows that the aver-
age number of packets required to classify a UDP session is
always less than 10, although the standard deviation may be
rather high (POLITO trace) showing that a non-negligible
percentage of long UDP sessions may exist.

A limit of N = 2 for TCP traffic seems acceptable in
terms of classification accuracy3, with a corresponding im-
provement of the processing cost that ranges from about 4 to
more than 50 times, depending on the traces (3.9, 14.8, 54.8

3This value is probably due to the fact that some signatures
match over the message coming from the server, which is
usually the second packet of the session.

respectively for POLITO, UNIBS-GT and POLITO-GT).
For UDP traffic, results are less interesting. For instance,
the speedup in terms of processing cost is limited (from 1.2
to 2.9 times) even with N = 2, at the expense of a substan-
tial loss in classification accuracy (e.g., in the UNIBS-GT
trace). On the other side, the improvement with higher val-
ues of N becomes negligible, e.g. the cost speedup of the
UNIBS-GT trace when N = 10 is limited to 1.03.

We can conclude that limiting the number of classification
attempts of a DPI classifier is a good strategy for limiting
the computational cost introduced by unclassifiable traffic
while preserving, and in some cases improving, the classifi-
cation accuracy in case of TCP traffic, and a limit of N = 2
seems to be a good tradeoff. With respect to the UDP traf-
fic, this optimization does not seem to guarantee sensible
improvements in terms of processing costs even in case of
very small values of N ; furthermore the impact on the clas-
sification accuracy is unclear because the misclassifications
are definitely reduced, but the amount of correctly classified
traffic may suffer. This may be due to the poor quality of
the signatures we use, but this point will surely require some
further investigations.

7. CONCLUSIONS
This paper presents two optimizations of a packet-based

DPI traffic classifier that are based on reducing the amount
of data fed to the pattern matching engine. These optimiza-
tions are possible because we focus on traffic classification
in which we can accept a limited reduction on the accuracy,
while network security (e.g., IDS, firewalls) is out of scope.
For each optimization we analyzed the trade-off between the
improvement in terms of processing cost and the worsening
in terms of classification accuracy.

According to our analysis, the first optimization based
on the snapshot limit is particularly appropriate for UDP
traffic, which shows no differences in the accuracy when re-
ducing the payload analysis to the first 256 bytes, with a fair
decrease in processing complexity. The second optimization
based on limiting the number of packets examined is par-
ticularly useful for TCP traffic, in which a speedup of more
than one order of magnitude and a negligible loss in terms of
accuracy can be achieved when examining at most the first
two packets of each session.

The second optimization has an interesting side effect in
that it can reduce considerably the amount of misclassifica-
tions because “late” classifications appears mostly false posi-
tives. In that sense, this technique is beneficial also for UDP
traffic, but we were unable to identify a clear threshold; first
results seem to suggest that 10 packets may be a reasonable
limit, but further investigations are required on this topic.

Although we worked with a limited number of traces, we
are reasonably confident that our datasets are sufficiently
representative of the current network traffic. Further inves-
tigations with different data sets are planned, but we are
experiencing many difficulties in getting full-payload traces
with ground truth information over a large number of clients.

8. ACKNOWLEDGEMENT
We would like to thank Luca Salgarelli and Francesco

Gringoli at University of Brescia who gave us many sug-
gestions in the earlier part of this work and who contributed
to the evaluation of the results presented in this paper.

9. REFERENCES
[1] M. Becchi, M. A. Franklin, and P. Crowley, “A

workload for evaluating deep packet inspection
architectures,” in Proceedings of the IEEE
International Symposium on Workload
Characterization, pp. 79–89, IEEE, Sept. 2008.

[2] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano,
F. Risso, and K. Claffy, “Gt: picking up the truth from
the ground for internet traffic,” SIGCOMM Comput.
Commun. Rev., vol. 38, pp. 207–218, October 2009.

[3] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson,
“Identifying and discriminating between web and
peer-to-peer traffic in the network core,” in Proceedings
of the 16th International Conference on World Wide
Web, (New York, NY, USA), pp. 883–892, ACM, 2007.

[4] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and
K. Salamatian, “Traffic classification on the fly,”
SIGCOMM Comput. Commun. Rev., vol. 36, no. 2,
pp. 23–26, 2006.

[5] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli,
“Traffic classification through simple statistical
fingerprinting,” SIGCOMM Comput. Commun. Rev.,
vol. 37, no. 1, pp. 5–16, 2007.

[6] S. Zander, T. T. T. Nguyen, and G. J. Armitage,
“Self-learning ip traffic classification based on
statistical flow characteristics.,” in Passive and Active
Measurement Workshop, vol. 3431 of Lecture Notes in
Computer Science, pp. 325–328, Springer, 2005.

[7] N. Cascarano, A. Este, F. Gringoli, F. Risso, and
L. Salgarelli, “An experimental evaluation of the
computational cost of a dpi traffic classifier,” in
Proceedings of IEEE Globecom 2009, Next-Generation
Networking and Internet Symposium, (New York, NY,
USA), pp. 50–59, IEEE, November 2009.

[8] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating
the big bang: fast and scalable deep packet inspection
with extended finite automata,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 4, pp. 207–218, 2008.

[9] M. Becchi and P. Crowley, “Efficient regular expression
evaluation: theory to practice,” in Proceedings of the
4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS
’08), (New York, NY, USA), pp. 50–59, ACM, 2008.

[10] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and
J. Turner, “Algorithms to accelerate multiple regular
expressions matching for deep packet inspection,” in
SIGCOMM 2006, (New York, NY, USA), pp. 339–350,
ACM, 2006.

[11] A. W. Moore and K. Papagiannaki, “Toward the
accurate identification of network applications,” in
Proceedings of the Passive and Active Measurements
Workshop, pp. 41–54, 2005.

[12] F. Risso, M. Baldi, O. Morandi, A. Baldini, and
P. Monclus, “Lightweight, payload-based traffic
classification: An experimental evaluation,” in IEEE
International Conference on, International Conference
on Communications (ICC), pp. 5869–5875, May 2008.

[13] Netgroup Research Group, “NetBee library Protocol
description database,” http://www.nbee.org/netpdl.

[14] l7-filter, “Application Layer Packet Classifier for
Linux,” http://l7-filter.sourceforge.net/.

