POLITECNICO DI TORINO
Repository ISTITUZIONALE

SPAF: Stateless FSA-Based Packet Filters

Original

SPAF: Stateless FSA-Based Packet Filters / Rolando, Pierluigi; Sisto, Riccardo; Risso, FULVIO GIOVANNI OTTAVIO. -
In: IEEE-ACM TRANSACTIONS ON NETWORKING. - ISSN 1063-6692. - STAMPA. - 19:1(2011), pp. 14-27.
[10.1109/TNET.2010.2056698]

Availability:
This version is available at: 11583/2374337 since:

Publisher:
IEEE

Published
DOI:10.1109/TNET.2010.2056698

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024

SPAF: Stateless FSA-based Packet Filters

Pierluigi Rolando, Riccardo Sisto, Fulvio Risso

Abstract—We propose a stateless packet filtering technique
based on Finite-State Automata (FSA). FSAs provide a compre-
hensive framework with well-defined composition operations that
enable the generation of stateless filters from high-level specifica-
tions and their compilation into efficient executable code without
resorting to various opportunistic optimization algorithms. In
contrast with most traditional approaches, memory safety and
termination can be enforced with minimal run-time overhead
even in cyclic filters, thus enabling full parsing of complex
protocols and supporting recursive encapsulation relationships.

Experimental evidence shows that this approach is viable and
improves the state of the art in terms of filter flexibility, per-
formance and scalability without incurring in the most common
FSA deficiencies, such as state space explosion.

I. INTRODUCTION

ACKET filters are a class of packet manipulation pro-

grams used to classify network traffic in accordance to
a set of user-provided rules; they are a basic component
of many networking applications such as shapers, sniffers,
demultiplexers, firewalls and more.

The modern networking scenario imposes many require-
ments on packet filters, mainly in terms of processing speed (to
keep up with network line rates) and resource consumption (to
run in constrained environments). Filtering techniques should
also support modern protocol formats that often include cyclic
or repeated structures (e.g. MPLS label stacks, IPv6 extension
headers). Finally it is also crucial that filters preserve the
integrity of their execution environment, both in terms of
memory access safety and termination enforcement, especially
when running as an operating system module or on the
bare hardware. Although at first sight this aspect might not
seem crucial, it is a fact that many of the limitations built
into existing packet filters derive directly from safety issues:
as an example, the impossibility of automatically proving
termination for a generic computer program led the BPF [1]
designers to generate acyclic filters only, thus preventing the
parsing of packets with multiple levels of encapsulation or
repeated field sequences.

Existing packet filters focus invariably on subsets of these
issues but, to the best of our knowledge, do not solve all of
them at the same time: as an example, two widely known
generators, BPF+ [2] and PathFinder [3], do not support
recursive encapsulation; NetVM-based filters [4], on the other
hand, have no provision for enforcing termination, either in
filtering code or in the underlying virtual machine.

This paper presents SPAF (Stateless PAcket Filter), a FSA-
based technique to generate fast and safe packet filters that

The authors are with Politecnico di Torino, Dipartimento di Automatica e
Informatica, e-mail: {pierluigi.rolando, riccardo.sisto, fulvio.risso} @polito.it

This work has been partially supported by The Cisco University Research
Program Fund, a corporate advised fund of Silicon Valley Community
Foundation.

are also flexible enough to fully support most layer 2 to
layer 4 protocols, including optional and variable headers and
recursive encapsulation. The proposed technique specifically
targets the lower layers of the protocol stack and does not
directly apply for deep packet inspection nor for stateful
filtering in general. Moreover, for the purpose of this paper
we consider only static situations where on-the-fly rule set
updates are not required. While these limitations exclude some
interesting use cases, SPAF filters are nevertheless useful for a
large class of applications, such as monitoring and traffic trace
filtering, and can serve as the initial stage for more complex
tools such as intrusion detection systems and firewalls.

A stateless packet filter can be expressed as a set of
predicates on packet fields, joined by boolean operators; often
these predicates are not completely independent from one
another and the evaluation of the whole set can be short-
circuited. One of the most important questions in designing
generators for high-performance filters is therefore how to
efficiently organize the predicate set to reduce the amount of
processing required to come to a match/mismatch decision. By
considering packet filtering as a regular language recognition
problem and exploiting the related mathematical framework
to express and organize predicates as finite-state automata,
SPAF achieves by construction a reduction of the amount
of redundancy along any execution path in the resulting
program: any packet field is examined at most once. This
property emerges from the model and it always holds even
in cases that are hard to treat with conventional techniques,
such as large-scale boolean composition. Moreover, thanks
to their simple and regular structure, finite automata also
double as an internal representation directly translatable into
an optimized executable form without requiring a full-blown
compiler. Finally, safety (both in terms of termination and
memory access integrity) can be enforced with very low run-
time overhead.

The rest of this paper is structured as follows: Section II
presents an overview of the main related filtering approaches
developed to this date. Section III provides a brief introduction
to the FSAs used for filter representation and describes the
filter construction procedure. Section IV focuses on executable
code generation and on enforcing the formal properties of
interest, while Section V presents the experimental evidence
collected to evaluate the new approach and to support our
claims. Finally, Section VI reports conclusions and also high-
lights possible future developments.

II. RELATED WORKS

Given their wide adoption and relatively long history, there
is a large corpus of literature on packet filters. A first class
of filters is based on the CFG paradigm; the best-known and

most widely employed one is probably BPF [1], the Berkeley
Packet Filter. BPF filters are created from protocol descriptions
hardcoded in the generator and are translated into a bytecode
listing for a simple, ad-hoc virtual machine. The bytecode
was originally interpreted, leading to a considerable run-time
overhead impact which can be reduced by employing JIT
techniques [5]. BPF disallows backward jumps in filters in
order to ensure termination, thus forgoing support for e.g.
IPv6 extension headers; memory protection is enforced by
checking each access at run-time. Multiple filter statements can
be composed together by boolean operators but in the original
BPF implementation only a small number of optimizations are
performed over predicates, leading to run-time inefficiencies
when dependent or repeated predicates are evaluated. Two
relevant BPF extensions are BPF+ and xPF. BPF+ [2] adds
local and global data-flow optimization algorithms that try to
remove redundant operations by altering the CFG structure.
xPF [6] relaxes control flow restrictions by allowing backward
jumps in the filter CFG; termination is enforced by limiting
the maximum number of executed instructions through a run-
time watchdog built into the interpreter but its overhead was
not measured and extending this approach to just-in-time code
emission has not been proposed and might prove difficult.

A further CFG-based approach, unrelated to BPF, is de-
scribed in [4]. Its main contribution is decoupling the protocol
database from the filter generator by employing an XML-
based protocol description language, NetPDL [7]. Filtering
code is executed on the NetVM [8], a special-purpose virtual
machine targeting network applications that also provides an
optimizing JIT compiler that works both on filter structure and
low-level code. The introduction of a high-level description
language reportedly does not cause any performance penalties;
this approach, however, delegates all safety considerations to
the VM and does not provide an effective way to compose
multiple filters.

In general CFG-based generators benefit from their flexible
structure that does not impose any significant restriction on
predicate evaluation order; for the same reason, however, they
are prone to the introduction of hard-to-detect redundancies,
leading to multiple unnecessary evaluations if no further
precautions are taken. Even when optimizers are employed
and are experimentally shown to be useful, they work on an
opportunistic basis and seldom provide any hard guarantees
on the resulting code.

A second group of filter generators chooses tree-like struc-
tures to organize predicates. PathFinder [3] transforms predi-
cates into template masks (atoms), ordered into decision trees.
Atoms are then matched through a linear packet scan until
a result is reached. Decision trees enable an optimization
based on merging prefixes that are shared across multiple
filters. PathFinder is shown to work well both in software
and hardware implementations, but it does not take protocol
database decoupling into consideration and no solution to
memory safety issues is proposed for the software imple-
mentation. FSA-based filters share a degree of similarity
with PathFinder as packets are also scanned linearly from
the beginning to the end but predicate organization, filter
composition and safety considerations are handled differently.

DPF [9] improves over PathFinder by generating machine
code just-in-time and adding low-level optimizations such as a
flexible switch emission strategy. Moreover, DPF is capable
of aggregating bounds checks at the atom level by checking
the availability of the highest memory offset to be read instead
of considering each memory access in isolation; our technique,
described in Section IV-E, acts similarly but considers the filter
as a whole, thus further reducing run-time overhead.

While organizing predicates into regular structures makes it
easier to spot redundancies and other sources of overhead, it
also introduces different limitations: as an example, generators
restricted to the aforementioned acyclic structures do not fully
support tunneling or repeated protocol portions. Moreover, it
has been noted that performing prefix coalescing is not suffi-
cient to catch certain common patterns, resulting in redundant
predicate evaluation [2].

A third approach is to consider packet filtering as a language
recognition problem. Jayaram et al. [10] use a pushdown
automaton to perform packet demultiplexing; filters are ex-
pressed as LALR(1) grammars and can be therefore effectively
composed using the appropriate rules. This solution improves
filter scalability but there are downsides related to the push-
down automaton: a number of specific optimizations are
required to achieve good performance. It is also quite unwieldy
to express protocols and filter rules as formal grammars that
must be kept strictly unambiguous: the authors marginally note
that the simpler FSA model would be sufficient for the same
task.

The adoption of finite state automata in packet processing is
not new, as finite automata are already used to perform deep
payload inspection especially in intrusion detection systems
(DS) [11] [12] [13] [14] [15] [16]. While the general ap-
proach is similar, the practical issues involved in deep payload
inspection can be rather different from those encountered when
employing FSAs for layer 2 to layer 4 filtering. As an example,
payload regular expressions tend to be free-form and often
present patterns that negatively affect the size of the automata
resulting from composition, causing a so-called state space
explosion [16] [17]. This issue is arguably the limiting factor to
FSA adoption for payload inspection and it certainly deserves
investigation; however, our scenario might be different enough
(protocol headers often have a much more rigid structure) so
that its impact is mitigated. Among many FSA-based packet
processors the nearest match for SPAF is probably Ruler [18],
a packet rewriting system designed for anonymizing traffic
traces that can also be used for packet filtering. It is based
around an NFA extension that supports rewriting and its
engine is specifically tailored to Intel IXP network processors.
Being automata-based, Ruler shares a degree of similarity
with SPAF but its design goals are sufficiently different to
produce noticeably different final results. Ruler’s design aims
at supporting large free form regular expression sets and
the modifications required for rewriting; less attention has
been paid to aspects that are necessary for achieving good
layer-2 to layer-4 filtering performance, thus trailing SPAF
in experimental comparisons (Section V). Safety issues are
also not taken into account conveniently (memory bounds
are checked at each access) and its source language is not

general enough to specify complex filter statements or certain
commonly encountered protocol structures, such as the IPv6
extension headers: while it is possible to resort to regular
expressions that represent the entire packet structure, this
formulation presents an avoidable layer of complexity for the
final user.

Apart from the specialized solutions for fast packet filter-
ing mentioned above, one of the most widely used packet
filtering programs is the NetFilter framework!. NetFilter is a
component of the Linux kernel that performs packet filtering,
firewalling, mangling operations (e.g. network address trans-
lation) and more, acting through a set of hooks and callbacks
that intercept packets as they traverse the networking stack. In
contrast with all the aforementioned approaches, NetFilter uses
the relatively simple method of applying all the specified rules
in sequence when performing packet filtering, leading to poor
performance and scalability; moreover it appears not possible
to specify an arbitrary predicate, filters being limited to pre-
set protocols and statements that are specialized by specifying
actual network addresses and ports.

Besides the generation technique, there have also been
improvements along other dimensions such as architectural
considerations, as demonstrated by xPF, FFPF [19] and
nCap [20], or dynamic rule sets support, as shown by the
SWIFT tool [21]. We consider these aspects out of scope
for the purpose of this paper, being either orthogonal to the
technique we present or object of future works.

II1. FILTER GENERATION TECHNIQUE

The purpose of a stateless packet filter generator is to create
a program that, given a finite-length byte sequence (a packet)
as its input, returns a binary match/mismatch decision. The
input of the generator itself consists of a set of filter rules
provided by the user that specify the desired properties of
matching packets; each rule, in turn, consists of multiple
predicates expressed in a simple high-level language (where
header fields and protocols appear symbolically), combined
together with boolean operators. In older generators the set of
supported protocols was fixed; in modern ones protocol header
formats are kept into an external database that can be updated
without modifying the generator.

In order to develop a successful FSA-based filtering tech-
nique it is first of all necessary to show that any filter of
interest can be expressed as a finite automaton, then provide a
method to transform a high-level filter statement and a protocol
database into FSA form; finally, the resulting automaton must
be translated into an efficiently executable form.

A. Finite-State Automata

A Finite-State Automaton (FSA) is a quintuple
(4,5, s0,t, F), where A is an alphabet of input symbols, S
is the set of states, sg € A an initial state, t C S x A x S the
transition relation and F' C S the set of accepting states.

FSAs can be used to formally define regular sets of ar-
bitrarily long symbol strings; given a finite automaton and a

INetFilter is available at http://www.netfilter.org/

string, it is easy to decide whether the string belongs to the set
represented by the FSA or not. The parallelism with stateless
packet filters is immediate: each packet can be regarded as a
string of bytes and a filter statement defines a set of packets
that must be recognized. In order to adapt the FSA model
to our purposes, it is sufficient to define A as the set of all
the possible 8-bit strings plus the symbol ¢, used to label
transitions that can be taken without consuming any input.

The only remaining requirement is to show that any inter-
esting set of packets is regular; this is immediately proved
by noting that any finite set is regular and that there are
only finitely many packets because they are limited in length
by technological considerations?. It is therefore theoretically
possible, for any conceivable stateless packet filter, to build
a corresponding FSA. Even recursive structures can be sup-
ported: while in the general case a more powerful formalism
(such as a push-down automaton) is required, restricting the
scope of application to finite sets makes regular automata
sufficient.

B. Protocol database compilation

The first phase in the SPAF generation process consists of
parsing the protocol database and building template automata
that recognize all the correctly-formatted headers for a given
protocol. These automata will be reused and specialized in
later phases to create the final filter.

In order to decouple filter generation from the protocol
database, we have employed an XML-based protocol descrip-
tion language (NetPDL [7]) designed to describe the on-the-
wire structures of network protocols and their encapsulation
relationships. NetPDL descriptions are stored in external files
that can be freely edited without modifying the generator itself.

A precise description of NetPDL is beyond the scope of this
paper; nevertheless we shall provide a quick overview of the
features supported by the FSA generator. The language pro-
vides a large number of primitives that enable the description
of header formats of layer 2 to 7 protocols, but for the scope of
this work we have restricted our support to those designed for
layer 2 to 4 decoding. The basic building block of a protocol
format is the header field, a sequence of bytes or bits that
can be either fixed or variable in size. Adjacent fields are
by default laid out in sequence but more complex structures
such as optional or repeated sections can be created using
conditional choices and loops; these statements are controlled
by expressions that can contain references to the values of
previously-encountered fields.

A second NetPDL portion contains a sequence of control
flow operations (if, switch) that predicate encapsulation
relationships: in general, the control flow is followed until a
nextproto tag is encountered, specifying which is the next
protocol to be found in the packet. A NetPDL database thus
describes an oriented encapsulation graph where the vertexes
are protocols and the edges are encapsulation relationships.

2This is not true in general because FSAs can be used to filter unlimited-
length symbol strings as those encountered e.g. in payload inspection with
transport session reconstruction. Given the scope of this paper (layer 2 to 4
packet filtering) this is not a concern.

<protocol name="ipvé">
<format>
<fields>
<field type="bit" name="ver" mask="0xF0000000" size="4"/>
<field type="bit" name="tos" mask="0x0F000000" size="4"/>
<field type="bit" name="flabel"mask="0x00FFFFFF" size="4"/>
<field type="fixed" name="plen" size="2"/>
<field type="fixed" name="nexthdr" size="1"/>
<field type="fixed" name="hop" size="1"/>
<field type="fixed" name="src" size="16"/>
<field type="fixed" name="dst" size="16"/>

<loop type="while" expr="1">
<switch expr="nexthdr">
<case value="0"> <includeblk name="HBH"/> </case>
<case value="51"> <includeblk name="AH"/> </case>
<default>
<loopctrl type="break"/>
</default>
</switch>
</loop>
</fields>
</format>

<encapsulation>
<switch expr="nexthdr">
<case value="4"> <nextproto proto="#ip"/> </case>
<case value="6"> <nextproto proto="#tcp"/> </case>
<case value="17"> <nextproto proto="#udp"/> </case>

</switch>
</encapsulation>
</protocol>

Fig. 1. IPv6 NetPDL excerpt

Currently the graph begins with a single, user-specified root
that usually represents the link layer protocol but an extension
to multiple ones would be trivial. Starting from this root, the
FSA generator follows the encapsulation graph and builds a
FSA for every reachable protocol using the method explained
later in this section.

As an example, a simplified NetPDL description of the
IPv6 header format is presented in Fig. 1. IPv6 starts with
a sequence of fixed-size fields; bitfields (such as ver) are
specified by the mask attribute. The initial portion is followed
by a set of extension headers, each one containing a “next
header” information (nexthdr). This sequence is of unspec-
ified (but implicitly finite, as any packet is finite) length and it
is described using a switch nested within a 1oop: at each
iteration the newly-read nexthdr field is evaluated and, if
no more extension headers are present, the loop terminates.
Encapsulation relationships are also specified in a similar
fashion, by jumping to the correct protocol depending on the
value of the last nexthdr encountered.

SPAF currently supports the full versions of the most com-
mon layer 2-4 protocols in use nowadays, such as Ethernet,
MPLS, VLAN, PPPoE, ARP, IPv4, IPv6, TCP, UDP and
ICMP; this set can be easily extended as long as no stateful
capabilities are required.

An important point regarding FSA creation from NetPDL
descriptions is that, as long as it is correctly performed, it
is not a critical task for filter performance: any resulting
automaton ultimately will be determinized and minimised,
yielding a canonical representation of the filter that does not
depend on the generation procedure. For this reason, and
given the complexity involved, the NetPDL to FSA conversion
procedure is not fully described in this paper and it can be
regarded as an implementation detail. Nevertheless, in order
to exemplify how the conversion can be done, we report the
key steps for translating the NetPDL snippets of Fig. 2 into
the corresponding automata.

The purpose of this initial conversion step is not to generate

automata immediately suitable for filtering; on the contrary,
the results are templates for the following generation steps,
representing the “vanilla” version of protocol headers, with no
other conditions imposed, to be specialized according to the
filter rules. Since they are strictly related to header format, any
input-consuming transition in these templates can be related to
a specific portion of one® header field; this information must
be preserved to accommodate the imposition of filtering rules.
For this reason template automata are augmented by marking
all the relevant transitions with the related field’s name®*.

The simplest example is generating an automaton that parses
a fixed-length header field (Fig. 2a): it is sufficient to build
a FSA that skips an appropriate amount of bytes, resulting
in Fig. 2b. During the construction process header fields
are given well-defined start and end’ states that are used as
stitching points to join with any predecessors or successors by
e-transitions, as required.

A more complex example involving a conditional choice
is shown in Fig. 2c. The generation procedure starts by
creating automata representations for all the initial fields
in the NetPDL description; upon encountering the switch
construct, however, the generator backtracks the transition
graph until it encounters the type field. Once found, all the
states/transitions that follow type (the A block in the figure)
are replicated. The original copy is left as-is while in the
replica the transitions for type are specialized to recognize
the bytes of interest for the switch, so the right path will be
taken depending on the actual input values. Finally the correct
trailing block (B or C) is joined in the right place.

The last example (Fig. 2e and Fig. 2f) shows the automata
generated for a header structure similar to the IPv6 extension
headers case. In this case a loop is interlocked with a switch
construct and a greater amount of block replication is required
to ensure that independent paths exist into the automaton for
every possible combination of the current nexth value (upon
which the outcome of the switch depends) and the next
nexth value, that might cause the Loop to end.

Encapsulation relationships are handled in a similar fashion,
by spawning new paths in the automaton graph that end
with a special state marked with the protocol that should
follow. The exact usage of these marked states is explained
in Section III-D.

The generation procedure acts to counter the absence of
explicit storage locations in the FSA model; when it becomes
necessary to use the values of previously encountered fields
for subsequent computations the only solution is to spawn a
number of parallel branches within the automaton, each one
associated with a specific value of the field under considera-
tion.

C. Filter rule imposition

The second generation step takes filtering rules into consid-
eration. The user provides the filter generator with an arbitrar-
ily complex rule that is split into a parse tree where leaves are

30r possibly more, in case of bitfields.
4These names appear in figures only when relevant.
SNot necessarily final.

<field type="fixed” name="type” size="4" ... />

(a) Fixed field

<field type="fixed” size="1" name="type” />
A
<switch expr="type”>
<case value="0">
B
</case>
<case value="1">
C
</case>

</switch>

(c) Switch construct

<field type="fixed” size="1" name="nexth” ... />
A
<loop type="while” expr="1">
<switch expr="nexth”>
<case value="0">
<field type="fixed”
<field type="fixed”
</case>
<case value="1">
<field type="fixed”
<field type="fixed”
</case>
<default>
<loopctrl type="break” />
</default>

—n

size="1" name="nexth” ... />
size="1" ... />

size="1” name="nexth” ... />
size="2" ... />

</switch>
</loop>
B

(e) Interlocked loop and switch

Fig. 2. Filter generation examples

predicates (e.g. ip.src = 10.0.0.1) and internal nodes
are boolean operators. Working on a single predicate at a time,
the generator creates a copy of the related protocol template
automaton and specializes it so that the resulting FSA reaches
a success state if and only if input data makes the predicate
true. In order to perform this step the generator uses template
annotations to find the transitions corresponding to the field
specified by the predicate, then creates a parallel path labeled
with the expected values. The last state of this specialized
transition chain is marked as final to implement the required
behavior.

An example of the specialization procedure is reported
in Fig. 3. Let us consider a simple protocol with 3 header
fields (a, b and c) and a structure leading to the template
automaton of Fig. 3a. Encapsulation conditions state that if c
is O then the protocol encapsulates itself as its payload; this
translated into marking the dashed state in the figure with the
appropriate identifier. Finally, let us assume the user specifies
a single predicate: b = AA BB. When parsing this predicate
the generator creates a replica of the graph in Fig. 3a, then
proceeds to locate the b field. During the specialization step
a chain of 2 transitions matching the 44 55 byte sequence
and ending with a final state is generated and then pasted in
parallel to the branch leading to field b. The result is shown
in Fig. 3b where it appears clear that the only path to success
goes through the specialized version of the b field, as required.

type[2] type[l] type[0]

(b) FSA for the fixed field

type[3]

@

(b) After specialization

Fig. 3. Automaton specialization

The generator does not directly impose the predicate over the
original field but instead creates a parallel state chain: this
is because, as in the example above, multiple instances of
the field under consideration might be present in the actual
header and overwriting the original transitions would cause the
predicate to be matched only against its first occurrence. The
resulting automaton can be non-deterministic, but this poses
no issues to the generator. A simpler case is when a predicate

Fig. 4. Encapsulation handling

only requires that the packet includes a correctly formatted
header of a given protocol. In this case, the specialized FSA
is a copy of the template automaton for that protocol where
all marked states are made final.

During this step it is possible for the user-specified rules
to involve fields that are already specialized due to NetPDL
constraints; as an example, NetPDL forces the IPv4 header
length field to be at least 5 but the user could specify a rule
that requires it to be lesser than that. No special precautions are
taken to handle these situations because the mismatch will be
automatically solved later through composition, determiniza-
tion and minimisation. In the case of the example, there will be
two and-ed specialized automata, one predicating the packet
includes a correct IPv4 header and the other one predicating
the length field is less than 5. If incompatible conditions are
predicated then the composite automaton will degenerate to a
single, non-accepting state, meaning that the recognized set of
packets is empty.

D. Filter composition

Once the generator has prepared a specialized FSA for each
rule predicate, what remains to be done is to assemble all these
automata together to create the final filter.

The composition step performs 2 different operations:

1) joining multiple automata related to different protocols

following encapsulation rules;

2) combining multiple automata by boolean operators.

Encapsulation is handled one predicate at a time, by intro-
ducing e-transitions that bridge automata related to different
protocols, following the markings from the first generation
phase. As an example, in the case described in Fig. 3, the
automaton that results after considering encapsulation is shown
in Fig. 4: the marked state has an additional outgoing e-
transition leading back to the initial state; in this way the
predicate will be matched even if the AA BB value does not
occur in the first encountered header but it occurs in one of
the other nested headers.

The second operation is performed in the order dictated by
the filter statement parse tree and uses well-known algorithms
[22] to implement boolean operations and to make the result-
ing automaton both deterministic and minimal.

Up to this step, the FSAs used in the generator can be
indifferently deterministic (DFA) or non-deterministic (NFA).
Here a determinisation step is required to support the im-
plementation of the complement operator, since there are no
known algorithms to perform complementation directly on
NFAs. The result of the compilation phase is, therefore, a
single minimal DFA that represents the filter.

E. On the properties of FSA-based filters

The FSA model provides by construction a set of properties
that can be successfully exploited for our purposes. First of
all, the final minimised DFA is the canonical, unambiguous,
machine-agnostic representation of a given set of rules on a
given set or protocols: FSAs are a formalism adequate to be
used as a semantic model for stateless packet filters, fully de-
scribing protocol structure and filter rules in a comprehensive
representation.

SPAF filters also enjoy practical advantages. Finite automata
scan their input strings strictly sequentially so it is true by
construction that SPAF examines each packet field at most
once, no matter how complex the protocol database or the
filtering rules are; this property is also carried across any
filter composition operation, which hardly can be achieved
with CFG-based approaches. The FSA-based approach is also
insensitive to any specific predicate order or other peculiarities
of the filter rules: the final result is dependent on the semantics
of the filter statement only, regardless of its syntactic form.

As a result of the considerations above, the final automaton
can be used as a guideline for a software or hardware im-
plementation by closely mimicking its logical behavior, thus
justifying our usage of FSAs as an intermediate representation
that decouples generation process from code emission routines
and allows in line of principle multi-platform code emission
while fully preserving its semantics.

It is worth to note that the built-in efficiency provided
by the FSA model is offset by certain limitations. A first
point is that SPAF filters examine packet fields in the same
order as they appear on the wire. Since the current code
emission technique closely mimics the model’s behavior, it
is possible that some fields are examined before it becomes
essential to know their value: the comparison may turn out
to be useless on the execution path that is eventually taken.
This constitutes a form of partial redundancy that can be
handled by many algorithms described in the literature [23]
[2] [24]. Respecting a fixed predicate evaluation order also
causes suboptimal state and transition counts for the final
filter because of the amount of duplication required. In spite
of these considerations, experimental evidence (presented in
Section V) shows that good quality code can be generated even
if this issue is ignored, as the number of partially redundant
checks is low when considering real-world protocols and rule
sets. Finally, in-order processing of packet bytes is a property
shared with many other packet filter approaches®, where it is
not generally regarded as a limitation.

IV. EXECUTABLE CODE GENERATION

The last generation phase is code emission, needed to
translate the filter DFA into an executable form. In a parallel to
traditional compiler architectures, during this phase the DFA is
used as a kind of intermediate representation passed from the
front-end (the DFA builder) to the back-end (the code emitter).

While translating a DFA into an executable form is by no
means a difficult or innovative task, it is nevertheless critical

SIn fact it might be argued that most packet processing applications read
their input in-order.

for our objectives and in particular both for performance
and safety. In line of principle the filter structure could
be translated into a regular expression and then fed to a
general-purpose matching engine such as the one provided
by Flex’, the PCRE library® or Ruler. In practice, however,
our scope and specific requirements are sufficiently different
from mainstream applications of regular expressions to justify
the development of an ad-hoc engine: this is because most
regex engines implement additional features such as backtrack-
ing [25] or rewriting (in the case of Ruler) that, while useful
in a general-purpose tool, are an avoidable source of overhead
for our purpose.

A further difference from traditional implementations is
safety enforcement. A DFA stops when the input symbol
sequence is over; this behavior should be emulated in software
by an implementation that receives a memory buffer (not a data
stream) as its input. While performing a termination check at
each step is certainly possible, it is likely to be very expensive
as well. Besides termination, replacing the input stream with
a memory area also brings a safety problem because of
potentially out-of-bounds read operations. Again, these must
be avoided with the least possible run-time overhead. While
these aspects are usually overlooked, most of the additional
filtering capabilities that distinguish FSA-based filters from
more traditional approaches (such as loop handling capability)
depend on a robust and efficient safety enforcement strategy.

The rest of this section describes the transformations per-
formed over the filter DFA in order to achieve high perfor-
mance while enforcing safe memory accesses and termination.
Afterwards, the code generation technique used in the current
back-end is documented.

A. Succeed-early algorithm

Often a user is interested in matching packets against
custom rules without necessarily checking for full protocol
conformance. In some of these cases it is possible to improve
filter performance by disregarding some additional aspects
related to protocol structure. As an example, a user may wish
to filter packets based on their IP source address only, and get
a match as soon as the IP source address field is encountered,
even if a malformed TCP header follows; on the contrary the
natural behavior of SPAF would be to traverse and validate all
known protocol headers.

In order to handle these cases it is possible to run the
succeed-early algorithm which simplifies a DFA by enumerat-
ing all the states that are post-dominated by a final one, marks
them as final too, and finally minimizes the automaton. This
operation removes any sequence of states that, given enough
input symbols, would lead to a final state, regardless of the
actual symbols’ values.

The effects of the succeed-early algorithm can be seen in
Fig. 5: since any sufficiently long path on the lower branch
of the DFA graph leads to a final state, the whole branch is
marked as final and collapses when minimised.

7 Available at http:/flex.sourceforge.net/
8 Available at http://www.pcre.org/

1}

(a) Original automaton

(b) After succeed-early

Fig. 5. Succeed-early algorithm

In the general case, the succeed-early algorithm modifies
the filter’s recognized packet set by accepting certain kinds
of packets that are truncated or have an otherwise malformed
tail; if this is not desirable, the algorithm can be disabled with
an apposite filtering predicate that forces full parsing.

B. Transition compaction algorithms

In most filters a large amount of input bytes are never
used because neither the protocol database nor the filtering
rules predicate anything about them: reading these bytes
from memory is an obvious waste of processor cycles and
memory bandwidth. In order to improve performance, the
generator searches DFA graphs for chains of byte-skipping
transitions and, whenever possible, compacts each of them
into single multi-byte transitions of the correct length with
all the intermediate states removed: this constitutes the star
compaction algorithm.

A similar optimization can be performed on non-star transi-
tions to address a different problem: filter DFAs work natively
on 8-bit symbols but most modern CPUs are more efficient
at processing multi-byte words. The transition compaction
algorithm takes care of this mismatch by merging multiple
subsequent transitions whenever possible, thus allowing the
resulting program to operate on larger word sizes. Transition
compaction is performed similarly to star compaction: starting
from a single state, the transition graph is explored to build
long chains of candidate transitions that will be replaced with
a multi-byte one. In contrast to star compaction, however, the
maximum number of transitions to be compacted is limited
to the machine word size. This algorithm trades off states
for transitions. Note that the number of transitions might in
principle increase exponentially: in order to avoid this issue
compaction is not performed on a given state subset if the
number of transitions to be introduced is larger than a tunable
threshold.

Neither star compaction nor transition compaction remove
any path in the FSA graph, so the set of packets recognized by
the filter is left unmodified. As an example, we have reported
a sample automaton both before (Fig. 6a) and after (Fig. 6b)
its star and transition compaction.

The final effect of transition merging is somewhat similar
to DFA multi-striding [26] with an important difference:
multi-striding keeps all transitions of the same length, so
the resulting object is still an automaton with a different
input alphabet; on the contrary, transition merging creates

(a) Original automaton

(b) After compaction

Fig. 6. Compaction algorithms

transitions of different lengths® and the result cannot be strictly
regarded as an automaton, as there is no longer a well-defined
input alphabet. This creates no issues as no further automaton
operations are performed after the compaction step in the com-
pilation process; allowing differently-sized transitions provides
additional flexibility because only the relevant portions of the
transition graph are compressed, without affecting the whole
structure.

Transition compaction has also a side effect very similar to
an optimization that is also performed by other filtering tech-
niques, sometimes called atom coalescing [9], which works by
merging multiple short physically adjacent fields into fewer
larger ones, disregarding field boundaries. Since no trace of
distinct fields remains at this level in the compilation process,
transition compaction automatically exploits every chance of
merging atoms.

In addition to reducing the number of operations to perform
at run-time and decreasing the amount of data to fetch from
packet memory, the post-processed automaton is significantly
smaller because many states can be safely eliminated.

C. C code generation

For simplicity reasons the currently implemented back-end
translates compacted DFAs into C functions; a simple JIT
compiler for the direct emission of assembly code for any
machine would not be difficult to build, if needed.

Given the relatively simple structure and behavior of
DFAs, there are multiple possible software implementations.
A straightforward automaton implementation can be built by
walking through a memory-stored transition table; this solu-
tion might incur in overhead due to hard-to-predict memory
access patterns. For this reason, we follow the other classical
approach where a uniquely identified code fragment is emitted
for each state: in this way we get a better exploitation of the
CPU prefetch and branch prediction units.

Considering that the input stream is replaced by the afore-
mentioned packet buffer, it is necessary, in the general case,
to perform the following steps for each traversed state:

« read the required amount of input bytes from memory;

« appropriately increment the memory offset pointer;

o perform a multi-way conditional comparison by using a
switch instruction. The cases derive from the outgoing
transition labels;

e jump to the destination state.

Nevertheless, all transitions out of the same state are kept of the same
length.

States with an outgoing byte-skipping transition can be
simplified as it is only required to increment the offset pointer
by a fixed amount and jump to the next state. A code emission
sample for both the complete and simplified cases is depicted
in Fig. 7.

The aforementioned code emission strategy ensures no other
operations are required at run-time, and all byte-swapping
and arithmetic operations are performed at compile-time. The
execution environment can be kept minimal as it must provide
the input packet buffer and its length only. No other facilities
(e.g. memory protection or external libraries) are needed.

A possible optimization is to employ arithmetic operations
to reduce the cardinality of multi-way statements. As an
example, the check on the IP header length is currently
translated into an 11-way conditional construct with 16 labels
in each case'?; the same operation could be replaced with a
more traditional masking of the lower 4 bits of the field.

The C code resulting from automata emission is not prone to
further optimizations as it is already compact and redundancy-
free. In particular, the outcome of each comparison performed
cannot be deduced by previous computation and is relevant for
the final result; no unnecessary or repeated memory reads are
ever performed. Since no arithmetic operations are performed,
apart from incrementing the offset pointer by a constant value,
the impact of any related optimization performed by the C
compiler is expected to be very small. Similarly, loops cannot
be unrolled or modified because every guard condition depends
on packet data unavailable at compile time. These expectations
have been confirmed by visually inspecting the resulting code.
The most relevant tasks left to the compiler are low-level
machine adaptation procedures such as register allocation and
move coalescing [27] and choosing a good emission strategy
for the switch instruction [28], which is very common in FSA-
based filters but not natively implemented by most CPUs.

D. Asymptotic complexity and scalability of FSA-based filters

A major concern in packet filters is their behavior with
increasing complexity of the filtering rule set. While many
common approaches scale linearly in the worst case, better
scalability is desired to adequately support the size of modern
rule sets.

If all the required operations (read from memory, offset
pointer increment, multi-way conditional choice, unconditional
jumps) were executed in constant time, it would be possible
to deduce that the worst-case execution time of any FSA-
based filter is asymptotically proportional to the length of
the input packet. Since packet size is upper bounded by a
constant (depending on the actual physical layer), FSA-based
filters would run in O(1) time w.rt. the number of filter
rules, independently from their complexity or from the size of
the protocol database. While processing speed measurements
would still be required to evaluate performance (constant and
multiplicative factors might still be large), this asymptotic

0These figures derive directly from the IPv4 protocol definition: header
length is a count of 32-bit words, stored as the lower 4 bits of a byte. Some
values are invalid, as the minimum IP header length is 20 bytes.

sl:

1, 11,
}

[10,
[10, 3, 3, 3]

(a) Standard state

* ok kK

s4 s5

(c) Skipping state

Fig. 7. C code emission

bound is a relevant result when evaluating the scalability of
our approach.

Unfortunately, FSAs have to be emulated on real-world
machines for which it is not possible to assume that all
the required operations can be executed in constant time: in
particular multi-way decision statements such as the switch
construct are not supported natively and are transformed
into multiple simpler instructions by the compiler. There are
multiple alternative strategies described in the literature to
implement switch operations [29] [28]: the compiler used
for our tests (GCC 4.2) has been observed to use balanced trees
for the very common large and sparse label sets deriving from
multi-byte fields. Since the number of levels in a balanced
decision tree grows logarithmically with the number of nodes,
the worst-case complexity of the switch instruction is ex-
pected to be O(log N) where N is the number of switch cases.
This quantity, in turn, grows roughly linearly with the number
of rules when composing similar filters (recognizing e.g.
TCP sessions or firewall rules that classify packets based on
source/destination addresses and ports), so we expect the filter
execution time to scale with the logarithm of the cardinality
of the rule set.

An improvement over this O(log N) asymptotic behavior
can be achieved by modifying the switch compilation strat-
egy: as an example it is possible to use minimal perfect
hashing to map case values into dense sets [30]. Perfect hashes
can be expensive to compute at compile time but they execute
in constant time with regard to the number of keys, lowering
the asymptotic complexity of FSA-based filters to O(1). Some
techniques described in the literature are explicitly aimed at
supporting networking applications [31], even extending to
dynamic updates.

E. Memory access safety

The natural solution of presenting C filter implementations
with a memory buffer to hold packet data poses the problem
of detecting and handling out-of-bounds accesses. A trivial
and inefficient answer is to perform a comparison between the
current offset and packet size on each access; better results can
be obtained by reducing the number of bounds checks to be
performed at run-time. In order to address this issue we have

read4 = get_ 4 bytes(packet, len, offset);
offset += 4;
switch(readd) ({

case ((10 << 8*0) | (1 << 8*1) | (1 << 8%2) | (1 << 8*3)):
case ((10 << 8%0) | (2 << 8*1) | (2 << 8%2) | (2 << 8*3)):
case ((10 << 8%0) | (3 << 8*1) | (3 << 8%2) | (3 << 8*3)):
goto s2;
break;
default:
goto s3;

break;

(b) Code for standard state

sd:
skip(len, &idx, 4);
goto s5;

(d) Code for skipping state

developed a bounds checks minimisation algorithm that places
aggregate bounds checks in a small number of places in the
program.

Given a compacted DFA transition graph G, we derive a
weighted oriented graph G’ with an edge for every DFA
transition and vertex for each state; edge weights are the
(positive) byte lengths of the corresponding transitions. We
establish a metric on G’ so that the distance between two states
(a, b) is the shortest path from state a to b. Given this metric,
the distance from success d(s) of a vertex s is the smallest
distance from s to a reachable, final state. If upon entering
state s less than d(s) bytes are available in the input buffer
then the filter is bound to fail as not even the nearest final
state can be reached. Since each outgoing transition consumes
a known amount of input data, we call [(s, s") the length of the
transition going from state s to state s’: the key observation is
that if d(s) > d(s")+1(s, s’) holds, then no check needs to be
performed upon entering s’ along the transition considered.

The bounds checks minimisation algorithm works by plac-
ing a bounds check before entering the initial state (as no
assumptions can be made at that point) and on all transitions
that do not respect the aforementioned inequality, a situation
arising primarily from back edges in the protocol encapsula-
tion graph and from optional protocol parts (e.g. IPv4 options).
Fig. 8a shows a DFA and Fig. 8b shows the corresponding
G’ with distance-annotated edges and states. States marked in
bold in Fig. 8a require bounds checks on at least one of their
input transitions.

The bounds checks placed in the code by this algorithm not
only verify that there are enough bytes left to take the next
transition but that there are enough to reach the end of the
computation as well. This effect is similar to bounds checks
aggregation, performed (to different degrees) by general-
purpose bounds check optimizers [32] and DPF [9]; whereas
aggregation usually works locally, our solution considers the
whole filter, achieving a very high degree of effectiveness.
As an example, a TCP session filter executes a single size
check when presented with a packet with no IP options
and the very common Ethernet - IP - TCP structure. This
check is performed at the beginning of the filter program to
detect packets that are too short to contain the minimum-sized

(rio, 1, 1, 11,
(10, 2, 2, 2j,
(1o, 3, 3, 31}

(1o,
[10,
(1o,

[RENE
[RENE
[REN

]
1
]

(a) G graph with bounds checks placement

(b) G’ graph

Fig. 8. Bound checks placement

Ethernet - IP - TCP header sequence. Placing memory checks
as early as possible has also the nice side effect of discarding
truncated packets without having to fully decode them.

F. Termination in "C’ language implementation of SPAF filters

The FSA model clearly dictates the worst-case termination
condition for any automata, which is exhaustion of the input
string; filter automata respect this behavior by terminating as
soon as their finite-sized input stream is completely processed,
regardless of the presence of any loops in the FSA transition
graph. It must be shown, however, that the C code implemen-
tation itself behaves in the same way.

The current implementation exploits bounds checks to en-
force filter termination as well. A filter function returns either
if a sink state!! is reached (whether final or not) or if a memory
check fails (in this case the result is always a mismatch)'2.
Backward jumps in the code, a potential source of infinite
loops, pose no problem: each transition of a deterministic
automaton consumes (at least) one byte; in the C implemen-
tation, this translates into the memory offset pointer being
incremented in a strictly monotonic fashion. This implies that
any finite input sequence will be completely consumed after
a finite amount of state transitions; any further read from
memory will trigger a failing bound check, thus proving that
any filter eventually terminates.

V. EXPERIMENTAL EVALUATION

In order to validate the SPAF approach, it has been experi-
mentally compared with a set of other techniques representa-
tive of the current state of the art.

The first alternative considered is BPF, still one of the
most common approaches to packet filtering; in order to avoid
interpretation overheads we have used the modern JIT version
described in [5]. The second selected technique is BPF+'3,

1A sink state is any state with outgoing transitions to itself for any input
symbol.

12 Any path in the FSA graph always terminates with a sink state by con-
struction: during compilation any states with no successors are automatically
linked to a non-final sink.

13The authors would like to thank dr. Begel who kindly provided the BPF+
source code.

which is commonly regarded as one of the most modern CFG-
based approaches and addresses some shortcomings associ-
ated to other state-of-the-art generators such as PathFinder.
The native UltraSparc BPF+ back-end has been modified to
generate C code in order to make it compatible with the
test platform. NetVM-based filters have also been selected
because they are based on NetPDL protocol descriptions,
therefore achieving a level of expressiveness very similar to
our approach, with which NetPDL descriptions are shared. At
the time of the tests being run, the NetVM did not provide any
safety enforcement, neither for termination nor for memory.
Finally, Ruler filters have been selected because they employ a
FSA-based approach similar to SPAF. Ruler can use two code
emission strategies, either walking through a memory table or
emitting a C code snippet for every state: the latter was chosen
as it is faster and it provides a better match to our approach,
even if Ruler does not implement the optimizations supported
by SPAF. For the comparison filtering rules and protocol
databases (where applicable) were made as similar as possible
across all the generators. As an exception, loops and multiple
encapsulations were included both in SPAF and NetVM filters
where meaningful, as noted; while theoretically capable of the
same, Ruler uses simplified protocol descriptions throughout
all the tests as there are no practical ways to specify those
features with its source language.

To ensure significance, the test filters were run indepen-
dently in a test bench that measures run times either with the
RDTSC instruction or the gettimeofday POSIX system
call for longer periods (more than a second). The hardware
platform used for all the tests is a Dell workstation with an
Intel E8400 Core 2 Duo dual-core processor with 4 GiB of
RAM, running a 32-bit OS based on the Linux 2.6.24 kernel.
C code was compiled with GCC 4.2. All filter processes were
bound to a single processor and the machine was otherwise
unloaded. Data were collected with hot disk and processor
caches.

A. Worst-case filter performance

The first test series aims at evaluating the emitted code
quality counting the clock cycles required to execute the worst-
case path through simple filters, reported in Table I. Since we
are interested in comparing filters recognizing identical sets
of packets, in this test the NetPDL database used for both the
NetVM and the FSA-based approach was reduced to contain
only the complete descriptions of the protocols involved. All
the aforementioned generators were tested apart from BPF+:
since no JIT emitter for the x86 platform is available it would
have been hard to separate optimizations introduced by the C
compiler from optimizations performed by the filter generator
itself. For each generator and each filter the resulting machine
code was examined and an ad-hoc packet was forged to make
the worst-case code path to be executed. The test packets
did not contain multiple levels of encapsulation because they
cannot be handled by some approaches. BPF and NetVM
measurements refer only to the proper filtering code while
the cost of the respective VM frameworks has been removed.

Test results are reported in Fig. 9. The two columns
“SPAF, check” and “SPAF, nocheck” refer to FSA-based filters

TABLE I
SAMPLE FILTERS

filter 1 ip

filter 2 Tp.src == 10.1.1.1

filter 3 tep

filter 4 ip.src == 10.1.1.1 and ip.dst == 10.2.2.2
and udp.sport == 20 and udp.dport == 30

filter 5 | iP-src == 10.4.4.4 or ip.src == 10.3.3.3 or
ip.src == 10.2.2.2 or ip.src == 10.1.1.1

€ s0
3 B SPAF, simple
o B SPAF, check
= [SPAF, nocheck
; 30 NetVM
% M Ruler

0 # BPF

10

0

1 2 3 4 5
Filter number
Fig. 9. Worst case filter evaluation

compiled with the aforementioned NetPDL descriptions and
bound checks enabled or disabled, respectively. The “SPAF,
simple” series was generated with a minimal NetPDL database
designed to match as close as possible the capabilities of BPF.
Fig. 9 shows that the worst-case behavior and the code quality
of FSA-based programs is similar or better than with other
approaches for filters of varying complexity. The best results
are achieved in tests 4 and 5 where the statement is more
complex because the FSA model is able to organize user-
specified predicates to avoid performing redundant checks; the
trend is similar for Ruler filters that nevertheless are slower,
due to a less optimized emission technique that leads to a
higher amount of comparisons and memory accesses to be
performed. Test cases 1, 2 and 3 show that SPAF generates
fast filters for low-complexity rules as well, even if the used
protocol database contains conditions that the other approaches
do not handle; results are further improved when considering
the “simple” database.

This benchmark also shows that safety checks cause very
low run-time overhead; this is fully justified by their reduction
to a single comparison at the beginning of the filter; the
resulting branch is made even less expensive by the branch
predictor of the host CPU. It can be noted that in test cases 1
and 5 enabling safety checks actually lowers filter execution
time: this apparently strange behavior is retained even when
tests are repeated for a large number of times and might be
caused by instruction reordering or other pipeline issues in
the processor, or, given the very small measured difference
(around 1 clock cycle) to unforeseen sources of error in the
measurement procedure.

Fig. 10. Protocol encapsulation graph

B. Filter scalability

The second test series is designed to evaluate the filtering
techniques in a realistic scenario that highlights filter scalabil-
ity. The rule set was created by extracting the N most active (in
terms of packet count) TCP sessions from a 1 GiB real-world
packet trace; packets were filtered by increasing the number
of sessions to be recognized from 1 to 128. Given its size, the
trace fits into the disk cache provided by the Linux operating
system.

The results are presented in Fig. 11, which reports the
average frame rates measured. While one-off compilation
times are not considered, in order to meet the goal of providing
a realistic comparison among multiple packet filtering tech-
niques we decided not to remove the time spent in frameworks
or other ancillary but essential tasks. Under this testing method
NetVM filters become the slowest of the group because of the
overhead introduced by the virtual machine. Their measured
results are not reported in order to preserve figure readability.

The NetPDL database used for this test is represented by
the encapsulation graph in Fig. 10, which includes recursive
encapsulations. The graph is larger than what can be examined
using BPF-derived techniques and allows SPAF to recognize
TCP sessions even if the IP header is encapsulated in other
protocols. This causes some protocols that do not appear
in filter statements (e.g. VLAN and IPv6) to be present in
the executable code because their traversal could be required
to reach IP and TCP headers; in turn, this causes more
operations to be performed at run-time than required by the
other approaches. This difference is small but justifies some of
the overhead encountered, especially with low session counts.

Fig. 11 shows that FSA-based filters scale significantly
better with increasing session counts than the other techniques
considered, following a logarithmic curve instead of the linear
one of traditional approaches. This is expected from the
theoretical considerations reported in Section IV-D. Other
approaches, such as BPF+, provide lower overheads when
filtering few sessions because of the smaller set of protocols
and protocol features analyzed; nevertheless they scale worse
than SPAF, with the crossover point being at around 10-16
sessions. In spite of the simpler protocol database, Ruler filters
are slower than their SPAF counterparts, once again because

2900000
2800000

A
2700000

2600000
= FSA
--BPF
“¥-BPF+
-A-Ruler

2500000

2400000

Processing rate (frame/s)

2300000

2200000

1 10 100

TCP sessions (log scale)

Fig. 11. TCP session filtering performance

30 1100
900

700

& SPAF (small)
-BPF+

¥ Ruler

= SPAF state count

500

Code size (KiB)
State count

300

100

-100
35

TCP session count

Fig. 12. Memory occupation of TCP session filters

the absence of emission-time optimizations leads to a higher
number of memory accesses and comparisons to be performed.
It should also be noted that SPAF absolute frame rates are
good, since even in complex cases it is possible, on the test
machine, to filter packets at roughly 150% the rate required
for gigabit Ethernet, even if the time spent in fetching packets
from memory is included in the count.

C. Memory consumption and potential state-space explosion

A very felt problem with finite automata is the exponential
explosion in the number of states experienced when trans-
forming a NFA into a DFA. This issue comes from the
intrinsic inability of DFAs to cope with certain pattern sets
that are frequently encountered in real world applications such
as intrusion detection systems [33] [17] [16]. In the general
case, a NFA of n states can lead to a DFA of O(2™) states
upon determinization; the additional states introduced are not
redundant and cannot be removed upon minimisation.

In order to investigate the occurrence of this issue in our
context we have taken memory occupation measurements for
filter statements and protocol databases of increasing complex-
ity. Since no memory is allocated at run-time, except for a very
small and fixed stack space, measurements were performed
directly on the executable code with the POSIX nm command;
Ruler and BPF+ filters are included as they are compiled to
object code in a similar fashion.

Scalability w.r.t. filter rule complexity has been evaluated
with TCP session filters compiled with a reduced protocol

TABLE I
MEMORY OCCUPATION OF PROTOCOL DATABASES

Database Protocols Raw Compressed
state count | state count
Ethernet, TCP,
simple IPv4 (no options, 40 11
no recursive encap.)
Ethernet, VLAN, PPPOE,
medium IPv4 (no recursive encap.), 183 55
TCP
Ethernet, VLAN, PPPOE,
complex | MPLS (no recursive encap.), 387 113
IPv4, TCP, UDP
Ethernet, VLAN, PPPOE,
full MPLS, IPv4, IPV6, 5004 705
TCP, UDP

database that mimics the one supported by BPF+; more
specifically, we have included all the protocols and all the
encapsulation relationships shown in bold in Fig. 10. Results
presented in Fig. 12 show that memory consumption is broadly
linear in the number of filtered TCP sessions with no state
explosion occurring; moreover, the trend of both Ruler and
SPAF object files is similar, as expected. Finally, the absolute
code size is reasonably small, so even big filters can fit into
modern processor caches. The comparison with BPF+ shows
that SPAF needs roughly twice the space; this is a good result
especially when considering that, as explained in previous
sections, the plain FSAs we use contain repeated portions
that cause additional memory consumption. When compared
with Ruler, SPAF filters use less space thanks to the automata
compression technique employed.

A second test involved compiling the protocol databases
reported in the second column of Table II with the
filler ethernet.src == 00:11:22:33:44:55 and
ip.src == 11.22.33.44 and tcp.sport 80.
If not differently specified, full encapsulation relationships
were used: this means that e.g. TCP can follow either IPv4
or IPv6, and the whole set of protocols is actually present in
the resulting automaton. The results of the second test are
reported in the third and fourth column of the same table and
show the state count before and after the succeed-early and
the automata compression algorithms. While some protocols
(such as IPv6) clearly require a larger amount of states to
be represented, the final result is still manageable, especially
after compression. It must also be kept in mind that the
cost of the protocol database is basically fixed and largely
independent from the size of the filter rule set: in the case
of IPv6 the bulk of the added states is used to parse the
extension headers and is not further replicated in the final
automaton.

While experimental tests can provide only empirical evi-
dence and it is always possible to design protocols and filter
rules to cause an explosion in state space, we do not expect any
from real-world protocol sets and filter rules. This is because
filters are not as free-form as regular expressions matching
arbitrary text fragments can be. As an example, finding a .x
pattern (widely known to be as a source of problems [17])
in packet filters is exceedingly rare as it would correspond to
a field of unlimited size, while network protocols are mainly

described in terms of fixed sequences of fixed-length fields;
even when repetitions or variable-sized fields are encountered
their maximum size is constrained by previously-read data or
by maximum packet size; moreover, in general each subpattern
can start in many positions in the input string, leading to
a large amount of replication required to keep track of all
the possible advancements in each rule. On the contrary,
packet filters subpatterns (i.e. specific protocols, generic or
specialized) invariably begin in a set of well-defined positions
(i.e. after the previous protocol is fully parsed), thus negating
another common source of space state explosion.

D. Filter compilation time

Optimizing the generator (versus optimizing the resulting
filters) was not a main objective for this work; however for
completeness we report some data on filter compilation times.

Under our current implementation generation times can vary
from seconds (for small protocol databases and simple filter
statements) to several hours (e.g. for the full protocol database
and a 128 TCP session filter). We speculate that these figures
can be improved by orders of magnitude as the generator
was designed to trade off performance for memory savings;
moreover profiling reports of the current Java implementation
show that a relevant amount of time is spent in performing
tasks such as garbage collection: a different language (such
as C++) is likely to reduce the associated overhead. It is
also possible to employ more optimized algorithms (e.g. by
performing determinization and minimisation in a single pass)
that were left out due to the aforementioned choice in trade-
offs.

VI. CONCLUSIONS AND FUTURE WORKS

We have designed, prototyped and evaluated SPAF, a packet
filter generator based on the creation of Finite-State Automata
from a high-level protocol format database and filter predi-
cates. SPAF aims at emitting fast and efficient filters while
preserving all the relevant safety properties, both in terms of
memory access correctness and termination.

The FSA model is particularly valuable for this purpose
because it is powerful enough to express any possible stateless
packet filter, even if containing advanced constructs not sup-
ported by most other approaches such as tunneling, multiple
encapsulations and repeated header portions. In FSA filters
each header field is examined at most once by construction;
this property alone greatly limits the amount of redundancy
in predicate evaluation, a major source of inefficiency in
packet filters. On the contrary, traditional, optimization-based
approaches cannot, by their own nature, provide any hard
guarantee about the resulting code quality. SPAF is also able to
handle filter composition trivially, using well-defined automata
boolean operations; no sequentialization of multiple filters
or resorting to heuristics is required. Besides being a non-
ambiguous semantic model for packet filters, FSAs also have
straightforward and fast software and hardware implementa-
tions, thus doubling as a guideline for efficient code emission.

In order to prove this technique on the field we have
developed a filter generator that creates filters from an external

protocol database and user-specified rules. Filter DFAs can be
used as they are by existing hardware or software engines, or
translated into C code by the back-end. We also developed an
ad-hoc DFA execution engine that adapts its operations to the
word size of the underlying machine instead of processing a
byte at a time and enforces memory safety and termination
through run-time fully aggregated bound checks.

The run-time performance and memory occupation of SPAF
filters have been evaluated both in synthetic and real-world
benchmarks. Test results show that FSA-based filters perform
on a similar or improved level as other modern approaches
such as BPF+, both on simple and complex filters; SPAF
filters are also shown to scale better with increasing numbers
of filtering rules. The measured overhead of run-time safety
checks is small and does not to cause any significant penalties
both in times of run-times (few checks are executed per packet)
and memory occupation (few checks are inserted per filter).
Overall, the SPAF approach is an effective and simple way to
generate packet filters that are easy to compose and efficient
to run, even with increasing complexity.

Among the potential problems, a widely-known issue af-
fecting specifically DFAs is an explosion occurring in the state
space when treating certain critical patterns; this problem is
the limiting factor for DFA adoption in other pattern-based
detectors such as intrusion detection systems. Even if in line
of principle the same could be artificially triggered in SPAF
filters, we believe it is unlikely to happen in practice because
of the structure of real-world protocol headers. Experimental
results show that under realistic conditions memory occupation
grows regularly, with large filters and full protocol databases
remaining tractable.

The SPAF approach can be easily extended to perform
packet demultiplexing in addition to packet filtering. This
is partially supported by our current generator by labeling
final states with identifiers of the matching filtering rules; full
support would require dynamic automata creation and code
generation, tasks that will be the object of future studies.
Another future extension to SPAF could be enabling interac-
tions (e.g. look-ups and updates) with stateful constructs such
as session tables, useful for higher-layer filtering and traffic
classification.

In conclusion, SPAF has been shown as an approach that
improves the state of the art by generating packet filters that
combine most of the desired properties in terms of processing
speed, memory consumption, flexibility and simplicity in
specifying protocol formats and filtering rules, effective filter
composition and low run-time overhead for safety enforce-
ment. The development of the filter generator and the test
results support the viability of our claims.

REFERENCES

[1] S. McCanne and V. Jacobson, “The BSD packet filter: a new architecture
for user-level packet capture,” in proceedings of USENIX ’93, 1993.

[2] A.Begel, S. McCanne, and S. L. Graham, “BPF+: exploiting global data-
flow optimization in a generalized packet filter architecture,” SIGCOMM
Comput. Commun. Rev., vol. 29, no. 4, pp. 123-134, 1999.

[3] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. Sarkar,
“PathFinder: A pattern-based packet classifier,” in Operating Systems
Design and Implementation, 1994, pp. 115-123.

[4

=

[5]

[6

=

[7

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

O. Morandi, F. Risso, M. Baldi, and A. Baldini, “Enabling flexible packet
filtering through dynamic code generation,” proceedings of ICC ’08,
May 2008.

L. Degioanni, M. Baldi, F. Risso, and G. Varenni, “Profiling and
optimization of software-based network-analysis applications,” in pro-
ceedings of the 15th Symposium on Computer Architecture and High
Performance Computing, Washington, DC, USA, 2003, p. 226.

S. Toannidis and K. G. Anagnostakis, “xPF: Packet filtering for low-cost
network monitoring,” in proceedings of HPSR '02, 2002, pp. 121-126.
F. Risso and M. Baldi, “NetPDL: an extensible XML-based language for
packet header description,” Comput. Netw., vol. 50, no. 5, pp. 688-706,
2006.

L. Degioanni, M. Baldi, D. Buffa, F. Risso, F. Stirano, and G. Varenni,
“Network virtual machine (NetVM): a new architecture for efficient
and portable packet processing applications,” proceedings of the Sth
International Conference on Telecommunications, vol. 1, pp. 163-168,
June 15-17, 2005.

D. R. Engler and M. F. Kaashoek, “DPF: fast, flexible message demul-
tiplexing using dynamic code generation,” in proceedings of SIGCOMM
"96. New York, USA: ACM, 1996, pp. 53-59.

M. Jayaram, R. Cytron, D. Schmidt, and G. Varghese, “Efficient demul-
tiplexing of network packets by automatic parsing,” in proceedings of
the Workshop on Compiler Support for System Software, 1996.

S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and
scalable deep packet inspection,” in proceedings of ANCS '06. New
York, USA: ACM, 2006, pp. 81-92.

S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Al-
gorithms to accelerate multiple regular expressions matching for deep
packet inspection,” in proceedings of SIGCOMM ’06. New York, USA:
ACM, 2006, pp. 339-350.

M. Becchi and P. Crowley, “An improved algorithm to accelerate regular
expression evaluation,” in proceedings of ANCS '07. New York, USA:
ACM, 2007, pp. 145-154.

F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast
and memory-efficient regular expression matching for deep packet
inspection,” in proceedings of ANCS ’06. New York, USA: ACM,
2006, pp. 93-102.

M. Becchi and P. Crowley, “A hybrid finite automaton for practical deep
packet inspection,” in proceedings of CoNEXT ’07. New York, USA:
ACM, 2007, pp. 1-12.

R. Smith, C. Estan, and S. Jha, “XFA: Faster signature matching with
extended automata,” Security and Privacy, IEEE Symposium on, pp.
187-201, 2008.

M. Becchi, M. Franklin, and P. Crowley, “A workload for evaluating
deep packet inspection architectures,” in proceedings of the IEEE Inter-
national Symposium on Workload Characterization '08., Sept. 2008, pp.
79-89.

T. Hruby, K. van Reeuwijk, and H. Bos, “Ruler: high-speed packet
matching and rewriting on npus,” in proceedings of ANCS '07. New
York, USA: ACM, 2007, pp. 1-10.

H. Bos, W. D. Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis,
“FFPF: Fairly fast packet filters,” in Proceedings of OSDI 04, 2004,
pp. 347-363.

L. Deri, “nCap: wire-speed packet capture and transmission,” in
E2EMON °05: Proceedings of the End-to-End Monitoring Techniques
and Services on 2005. Workshop. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 47-55.

Z. Wu, M. Xie, and H. Wang, “Swift: a fast dynamic packet filter,”
in proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation. Berkeley, CA, USA: USENIX Association,
2008, pp. 279-292.

J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman, Introduction to
Automata Theory, Languages and Computability. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000.

P. Briggs and K. D. Cooper, “Effective partial redundancy elimination,”
in PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation. New York, USA:
ACM, 1994, pp. 159-170.

R. Gupta, D. A. Berson, and J. Z. Fang, “Path profile guided partial
redundancy elimination using speculation,” in proceedings of the 1998
International Conference on Computer Languages. Washington, DC,
USA: IEEE Computer Society, 1998, p. 230.

V. Laurikari, “Efficient submatch addressing for regular expressions,”
Master’s thesis, Helsinki University of Technology, 2001.

M. Becchi and P. Crowley, “Efficient regular expression evaluation:
theory to practice,” in proceedings of ANCS ’08. New York, USA:
ACM, 2008, pp. 50-59.

[27]

[28]

[29]

(30]

(31]

(32]

[33]

A. W. Appel and J. Palsberg, Modern Compiler Implementation in Java.
New York, USA: Cambridge University Press, 2003.

A. Korobeynikov, “Improving switch lowering for the LLVM compiler
system,” in Proceedings of the 2007 Spring Young Researchers Collo-
quium on Software Engineering, May 2007.

Ulfat Erlingsson, M. Krishnamoorthy, and T. V. Raman, “Efficient
multiway radix search trees,” Inf. Process. Lett., vol. 60, no. 3, pp. 115-
120, 1996.

D. E. Knuth, The art of computer programming, volume 3: (2nd ed.)
sorting and searching. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1998.

Y. Lu and B. Prabhakar, “Perfect hashing for network applications,” in
in IEEE Symposium on Information Theory. 1EEE Press, 2006, pp.
2774-27178.

T. Wiirthinger, C. Wimmer, and H. Mossenbock, “Array bounds check
elimination for the java hotspot™client compiler,” in proceedings of the
5th international symposium on Principles and practice of programming
in Java. New York, USA: ACM, 2007, pp. 125-133.

S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing
regular expressions matching algorithms from insomnia, amnesia, and
acalculia,” in proceedings of ANCS 07. New York, USA: ACM, 2007,
pp. 155-164.

Pierluigi Rolando (pierluigi.rolando@polito.it) re-
ceived his M.Sc. in computer and system engineer-
ing from Politecnico di Torino in 2007 with a thesis
on developing a compiler for a systolic network pro-
cessor. He is currently a Ph.D. candidate in computer
and system engineering at Politecnico di Torino.
His main research area focuses on the application
of formal methods to packet processing, finite state
automata and special-purpose virtual machines.

Fulvio Risso (fulvio.risso@polito.it) received his
Ph.D. in computer and system engineering from
Politecnico di Torino in 2000 with a dissertation
on quality of service in packet-switched networks.
He is an assistant professor in the Department of
Control and Computer Engineering of Politecnico
di Torino. His current research activity focuses on
efficient packet processing, network analysis, net-
work monitoring, and peer-to-peer overlays. He is
the author of several papers on quality of service,
packet processing, network monitoring, and IPv6.

Riccardo Sisto (riccardo.sisto@polito.it) received
the M.Sc. degree in electronic engineering in 1987,
and the Ph.D degree in computer engineering in
1992, both from Politecnico di Torino, Torino, Italy.
Since 1991 he has been working at Politecnico di
Torino, in the Computer Engineering Department,
first as a researcher, then as an associate professor
and, since 2004, as a full professor of computer
engineering. Since the beginning of his scientific
activity, his main research interests have been in
the area of formal methods, applied to software

engineering, communication protocol engineering, distributed systems, and
computer security. On this and related topics he has authored and co-authored
more than 70 scientific papers. Dr. Sisto has been a member of the Association
for Computing Machinery (ACM) since 1999.

