
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Towards an Efficient Context-Aware System: Problems and Suggestions to Reduce Energy Consumption in Mobile
Devices / MEJIA BERNAL, JOSE FELIPE; Ardito, Luca; Morisio, Maurizio; Falcarin, Paolo. - ELETTRONICO. - Ninth
International Conference on Mobile Business, (ICMB 2010):(2010), pp. 510-514. (Intervento presentato al convegno 9th
International Conference on Mobile Business and the 9th Global Mobility Roundtable (ICMB/GMR 2010) tenutosi a
Athens nel June 2010) [10.1109/ICMB-GMR.2010.3].

Original

Towards an Efficient Context-Aware System: Problems and Suggestions to Reduce Energy
Consumption in Mobile Devices

Publisher:

Published
DOI:10.1109/ICMB-GMR.2010.3

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2374174 since:

IEEE Computer Society Press

Towards an Efficient Context-Aware System: Problems and Suggestions to Reduce
Energy Consumption in Mobile Devices

Jose F. Mejia Bernal, Luca Ardito, Maurizio Morisio, Paolo Falcarin
Department of Automation and Information

Politecnico di Torino
Turin, Italy

{jose.mejiabernal,luca.ardito,maurizio.morisio,paolo.falcarin}@polito.it

Abstract—Looking for optimizing the battery consumption is
an open issue, and we think it is feasible if we analyze the
battery consumption behavior of a typical context-aware
application to reduce context-aware operations at runtime.
This analysis is based on different context sensors
configurations. Actually existing context-aware approaches are
mainly based on collecting and sending context data to external
components, without taking into account how expensive are
these operations in terms of energy consumption. As a first
result of our work in progress, we are proposing a way for
reducing the context data publishing. We have designed a
testing battery consumption architecture supported by Nokia
Energy Profiler tool to verify consumption in different
scenarios.

Keywords-context-awareness; energy consumption; mobile
device

I. INTRODUCTION
The increasing proliferation of mobile devices and the

intention of defining universal standards related to mobile
market, motivate many companies to implement context-
aware standards, with the purpose of stimulating the fast and
wide adoption of a variety of useful applications. The
implementation of context-aware features results in benefits
to the end-users, providing easy interoperability across
operators and mobile terminals.

Many context-aware applications, based on different kind
of technologies, also require new solutions for dynamically
controlling device energy consumption. Such solutions can
be visible by implementing a context-aware system,
characterized by supporting context reasoning in mobile
devices.

In order to extend context-aware functionalities for
mobile devices, we have seen that the battery status is a
relevant parameter involved in the device behavior. It is
important finding an adequate synergy between the system
performance and the battery life cycle, mainly related to the
software execution and the active user participation.

A context-aware application has to be able to reduce its
runtime operations in situations where the energy is
considerably reduced. Reducing the device runtime
operations means: taking at the minimum level the number
of operations that have to be carried out by the system.

In order to limit at the lowest level the runtime operations
to request the minimum energy possible, different kind of
optimizations at hardware and software level, have been
proposed to minimize the energy consumption for each
useful computation.

Nowadays, operative systems for mobile devices provide
different kind of APIs to check the battery state, and even
business processes activities associated to battery state are
updated according to the state changes.

Context data are any information that can be used to
characterize a specific entity situation. A context-aware
system has to be able to combine every context information
related to the bounded environment in order to: (1) describe
the actual situation and (2) determine automatic behavioural
variations or notify the user about some specific event.

This system is constantly in execution in order to: (1)
gather raw data and (2) execute different type of operations
based on context reasoning.

Specifically, the proposed approach is based on a typical
context-aware architecture. It implements features focused
on reducing the energy consumption by avoiding execution
of redundant operations.

On the other hand, different problems related to energy
consumption in mobile devices are also analyzed, and a
testing battery consumption mechanism is introduce to
provide a reliable validation of a context-aware application,
in terms of energetic efficiency.

The main purpose of our approach is to increase the
adaptability of the system, by both identifying the main
problems related to typical context-aware systems, and
proposing feasible solutions according to the obtained
battery consumption results.

The main features of our approach include updating
context data procedures, according to eventual modifications
derived from context information. All this with the scope of
increasing the flexibility and improving the adaptability of
the system.

The rest of this paper is organized as follows. Section II
includes related works. Section III describes the main
characteristics of Context-Awareness. Section IV describes
the energy consumption system and its main features.
Section V describes validation and results. Finally, Section
VI includes conclusions and future work.

2010 Ninth International Conference on Mobile Business / 2010 Ninth Global Mobility Roundtable

978-0-7695-4084-9/10 $26.00 © 2010 IEEE

DOI 10.1109/ICMB-GMR.2010.34

511

2010 Ninth International Conference on Mobile Business / 2010 Ninth Global Mobility Roundtable

978-0-7695-4084-9/10 $26.00 © 2010 IEEE

DOI 10.1109/ICMB-GMR.2010.34

510

II. RELATED WORKS
In this section, we analyze and discuss some solutions

that provide support for context-aware technologies. In [14]
authors propose a context-aware battery management
approach. The system proposed detects that the phone
battery is low before the next charging opportunity is
encountered.

Predictions algorithms are often used to establish when
the next charging opportunity will be available, how much
call-time will be required by the user, and how long the
battery will last if the current set of applications continue to
execute.

Some approaches are based on the next principles: (1)
energy consumption should be predicted to allow devices to
determine, how they should behave, according to scarce or
plentiful energy, and (2) context information can be used to
predict energy consumption policies.

Data from device's operating system (e.g. battery status,
processes running on the device, calls made on the device)
can provide important elements for reasoning and situation
analysis. Additional context information (e.g. time of day,
speed, presence of wireless devices) and prediction
algorithms help to detect and infer specific situations.

An important metric that is not always considered in
energy consumption is the battery age. It is important taking
into account applications' battery usage as a way to provide
adequate battery energy management.

There is not too much prior work on dynamic energy
battery management. Some researches propose adaptation
based on the logic and the content. Several researchers focus
on the logic adaptation of services [12], the service is
represented by components; and the adaptation is
characterized by adding or replacing a component.

Other researchers [2] are focused on content adaptation; a
typical example of content adaptation is changing the service
presentation depending on the context data. The data
properties can be modified in order to adapt the service
according to terminal capabilities, network capabilities
and/or even user preferences.

Prior research related to the limited battery lifetime
problem is mainly focused on optimizing energy at different
levels (e.g. hardware and application layer [1, 4]), including
compiler-based energy optimizations [6].

On mobile devices, the interfaces that inform the user of
the battery levels are not actually enough to provide a proper
evolution of the capabilities of these devices for context
reasoning.

There is some literature on predicting user location based
on mobility traces [9, 8]. Battery lifetime research has also
focused on analytical methods related to battery
characteristics [13, 15].

There is also some work based on hardware power
management for mobile computers [10]. Other works are
related to a single component, such as network [7], disk [3],
and CPU [11]. These results take mainly into account
hardware components that are complementary to reducing
energy usage through different kind of methodologies.

The main contributions of our approach provide both: (1)
an analysis of the battery consumption behavior of a typical
context-aware application, based on different sensor
configurations and (2) a way to reduce the number context
data publications. We have also designed a testing battery
consumption architecture supported by Nokia Energy
Profiler tool to verify energy consumption in different
scenarios.

To sum things up, according to existing architectures,
context-aware approaches are mainly based on collecting and
sending useful context data to the server, without taking into
account how expensive are these operations in terms of
energy consumption.

The approaches mentioned before, differ from our
approach mainly in aspects related to the consumption
adaptation according to inferred situations [5]. Adaptation is
only suggested when context information analysis reveals
the need of applying changes.

III. CONTEXT-AWARENESS
Context information can be used to characterize a

specific entity situation. It is divided into device context (e.g.
net connectivity, communication cost and resources), user
context (e.g. profile, geographic position, neighbors, social
situation), physical context (e.g. temperature, noise level,
light intensity, traffic conditions) and temporal context (e.g.
day, week, month, season, year).

Combining every information obtained from the context
retrieved, it is possible reconstructing the current situation.
The characteristics of the surrounding environment
determine the behaviour associated to mobile applications.

The set of states and parameters of the surrounding
environment can determine a specific automatic variation
related to the application behavior, or can allow the
application informs the user about some specific event.

The Context-Aware concept is a paradigm that define
how different kind of applications can discover the current
situation, and consequently taking advantage of the context
in which they are involved. Context-Aware applications use
these features in order to perform reasoning operations and
adaptation [16].

Context-aware computing relies on several independent
enabling technologies, such as sensors for data input,
hardware for data processing and artificial intelligence
principles to extract rules by combining data and knowledge.

In order to develop a Context-Aware system, it is
necessary considering the availability and the way in which
the context information is used and processed.

A. Context Data Level
In this level, basic context data generated from several

informative available sources, are retrieved and aggregated.
This layer of abstraction collects context data in a fast and
economic way, in order to integrate information sources and
consequently supporting protocols and different kind of data
formats.

512511

B. Context Analysis Level
This layer identifies the user context and aggregates raw

data with the aim of obtaining more relevant information. It
also performs reasoning techniques on the information
received to obtain new information with a higher abstraction
level.

C. Service Integration Layer
Context-aware functionalities are exposed towards the

service platforms. The actors involved in the Provider-
Consumer model are: context provider, context consumer,
context intermediary and context broker.

IV. ENERGY-AWARE CONSUMPTION SYSTEM
A typical context-aware client application is called Local

Context Broker. Specifically, the local context broker is in
charge of: (1) gathering context data retrieved from the
device and (2) being the only contact point towards
external/local components (e.g. data updating, data
sending/receiving policies).

A. System Architecture Analysis
Typical Local Context Broker architectures are based on

two levels: the first one is associated to the local broker, and
the second one to the sensors layer. The local context broker
provides an interface to allow other applications, installed in
the device, request directly context data.

The Local Context Broker component is a background
service that has as main function gathering, formatting and
sending context information to external applications (e.g.
context server).

Gathering context information is an operation performed
by the sensors. Sensors are associated with different kind of
information retrieved from the terminal (see Table I).

TABLE I. SENSORS DESCRIPTION

Sensor Description

WiFi WiFi nets

Cell Which cell is connected to

Location Geographical user position

DeviceInfo Terminal information

DeviceSettings Device configuration

Bluetooth Bluetooth neighbors

B. Suggested Features
As a result of the critical problems found, the sequential

scanning of every sensor and the consequent data publishing
in the server, involves the publication of duplicated data and
high energy consumption.

A typical Local Context Broker, often introduces some
critical problems mainly related to: (1) high device battery
consumption, (2) static data search and data publishing based
on specific movement, (3) redundant context data
transmission and (4) one single application controlling every
sensor that collects specific context data.

In order to solve these critical problems, some
modifications based on limited search and publishing are
suggested. Context data search and publishing are expensive
in terms of energy consumption.

The scanning of wireless nets, Bluetooth devices or
geographic location, represents expensive operations. These
operations have to be limited in cases where they are not
needed.

It is necessary implementing a special control in the
sensor, in order to both: (1) understand whether the data
context retrieved is the same as in the previous scanning and
(2) avoid the context data are published unnecessarily.

The sequential scanning of every sensor and the
consequent data publishing mean duplicated data publishing
and high battery consumption.

According to our analysis, the best solution is based on
providing the possibility of executing a data search when it is
perceived a specific event, that identifies a context variation.
This feature is highly recommended because avoids the
polling.

The Local Context Broker has to consider the context
data expiration to handle this problem. It has to be
implemented a timer mechanism included in every sensor
that defines how long the data, in the server side, is valid.

C. Update Policies
The customer should be able to choose whether he wants

to provide either detailed information, according to the
device energy consumption, or less granular information in
order to have a greater battery autonomy.

Some profiles could be defined in the server side to
change the Local Context Broker behaviour in terms of
context data searching and publishing.

V. VALIDATION AND RESULTS
Battery consumption analysis has involved the testing

procedure related to how expensive are specific context
scenarios. A local context broker, developed in Symbian
(series 60 3rd Edition), has been tested.

Every configuration has been repeated twice. The
reference device is a nokia n95 and the test configuration is
based on “table II”.

TABLE II. TEST CONFIGURATION

Test Duration 10 minutes

Context Update 5 times

Clock 60 seconds

Test Cases 8

Use Cases 6

The battery life cycle has an important characteristic,

when the mentioned tests are performed, it is relevant
considering parameters related to how old is the tested
battery and the temperature retrieved.

513512

The battery consumption testing procedure is based on
the next steps (see Fig. 1): (1) Energy profiler starts
collecting data (e.g. voltage, current, CPU load), (2) TestGUI
starts, (3) context sources are configured, (4) Local Context
Broker starts, (5) Local Context Broker reads the
configuration file and (6) TestGUI application collects data
from Energy Profiler API.

Figure 1. Testing procedure.

A. Use Cases
The use cases defined are the next:
• Indoor (Office): UMTS connection and not

crowded place,
• Indoor (Office): Connectivity problems and not

crowded place,
• Indoor (Classroom): UMTS connection and

crowded place,
• Indoor (Classroom): Connectivity problems and

crowded place,
• Outdoor (Courtyard): UMTS connection and

crowded place,
• Outdoor (Courtyard): Connectivity problems and

crowded place.

B. Findings
In order to establish the energy consumption behaviour,

we have repeated the tests twice for both: (1) the terminal in
standby and (2) the Local Context Broker running in
background (see Table III).

Table III lists the battery consumption average in terms
of how many times specific configurations are more
expensive, in terms of battery consumption, than the device
in standby conditions.

It is important considering that in the same column the
consumption can increase more for some cells, it is because
there are factors related to how much power the terminal
used to connect to some specific UMTS cell.

The results show that the most expensive devices are
Bluetooth, identified by Bt, and GPS. GPS is the most

expensive sensor when the data transmission with the server
is interrupted. When there are connectivity problems, the
consumption is often higher than in normal connection cases.

TABLE III. TEST RESULTS

According to the test cases, the sensors ranking in terms

of energy consumption, from the most expensive to the less
expensive is: (1) GPS, (2) Bt, (3) WiFi, (4) DevSet, (5) Cell
and (6) DevInfo.

According to the use cases results, in most of them,
where there is not an adequate UMTS connection, the battery
consumption is higher than the cases in which it is provided
adequate UMTS connection. In crowded environments, the
battery consumption of every sensor, except GPS, tends to
increase compared to the not crowded case.

When all mentioned sensors are enabled at the same
time, the current measure keeps symmetric for every test and
is around 10 times greater than the case in which the Local
Context Broker is disabled.

The consumption results do not consider factors related
to: battery quality, temperature and which resources are used
from every application. In order to reduce the energy
consumption, it is be possible considering a different
approach based on single resources management.

It is also important considering that in some cases the
terminal could have transmitted more power to find an
UMTS cell, in that case it is possible the final measure result
may be greater than the logical expected value.

Since GPS and Bluetooth sensors are the most expensive,
it is necessary reducing the number of context updates. GPS
sensor is a component that has low connectivity for indoor
situations, in this case reducing the number of context
updates is a good mechanism to reduce the energy
consumption.

DevInfo and Cell sensors revealed low consumption
compared to the other sensors. The consumption associated
to these sensors is almost the same for every situation. Since
the DevInfo context data do not change often, the number of
context updates have to be configured to the minimum
permitted.

Not adequate UMTS connection cases revealed a higher
battery consumption compared to the cases with optimal
UMTS connection. A connectivity testing element is useful
to avoid loss of data.

Server side policies to analyze context data and establish
whether the context update can be reduced, according to data
variations (e.g. cell changes, Bluetooth data, etc), are a good

514513

methodology for controlling consumption and applying
solutions from the server side.

It is absolutely important and useful analyzing context
data from the server side, in order to: (1) know whether the
user change location and (2) avoid unnecessary updates.

Nowadays, many devices are equipped with
accelerometer, this component is useful to estimate whether
the terminal changed location, and implement policies to
avoid the expensive usage of sensors associated to
geographic coordinates, like GPS or UMTS cell connection.

VI. CONCLUSIONS AND FUTURE WORK
The key goal of context-aware systems is providing relevant
information and/or services based on current user context. In
this paper, we analyze the battery consumption behavior of
a typical context-aware application, running in background
in a mobile terminal. This analysis is based on different
sensor configurations.

We have designed a testing battery consumption
architecture supported by Nokia Energy Profiler tool. We
validated this tool by comparing the results retrieved from it,
with the results retrieved from the oscilloscope. We have
verified that the measures retrieved from the tool, match the
measures verified in the oscilloscope.

It was necessary establishing the battery consumption in
terms of how many times a specific configuration is more
expensive than the terminal battery consumption in standby
conditions.

We also discuss the main characteristics of context-aware
approaches related to the battery lifetime problem, that are
mainly focused on optimizing energy at different levels.

In particular, we analyzed some principles based on
energy consumption to determine how mobile devices should
behave according to scarce or plentiful energy, and how
context information, can be used to infer energy
consumption policies. These aspects are of importance for
improving the efficiency of context-aware systems in terms
of energy consumption.

Based on our findings, we propose a preliminary
evaluation of the effectiveness of these context-aware
architectures in terms of energy consumption for empirical
studies.

There are still many relevant factors to improve the
battery efficiency, mainly related to new available features
(e.g. percentage of CPU usage, temperature and technology)
in order to reduce the energy consumption.

As future work, we see many ways in which this work
can be extended: (1) we would like to explore the robustness
of our results across diverse platforms, in order to provide a
bigger range of context-aware mobile applications studied.
(2) we will implement and test a complete context-aware
system, supported by the features suggested, in order to
validate and confirm our findings.

ACKNOWLEDGMENT
This research has been partially funded by Telecom Italia

S.p.A. / Research Projects within the collaboration with the
Context Awareness group.

REFERENCES
[1] 1 R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.

Yang, “The case for cyber foraging”, Proc. of the 10th workshop on
ACM SIGOPS European workshop, 2002.

[2] 2 L. Boszormenyi, H. Hellwagner, H. Kosch, M. Libsie, S. Podlipnig,
“Metadata driven adaptation in the ADMITS project”, in EURASIP
Signal Processing: Image Communication Journal, Vol. 18, No. 8,
Sept. 2003, pp. 749-766.

[3] 13 E. Douglis, P. Krishnan and B. Bershad, “Adaptive disk spin-
down policies for mobile computers”, Proc. of the 2nd USENIX
Symposium on Mobile and Location-Independent Computing, Ann
Arbor, MI, April 1995, pp. 121-137.

[4] 3 J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for
mobile applications”, Proc. of the seventeenth ACM symposium on
operating systems principles (SOSP 99), 1999.

[5] 15 L. Goix, M. Valla, L. Cerami and P. Falcarin, “Situation Inference
for Mobile Users: a Rule Based Approach”, In workshop on
Managing Context Information and Semantics in Mobile
Environments (MCISME), May 2007.

[6] 4 T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini, “Code
transformations for energyefficient device management”, In IEEE
Transactions on Computers, 2004.

[7] 11 R. Kravets and P. Krishnan, “Power management techniques for
mobile communication”, Proc. of The Fourth Annual ACM/IEEE
International Conference on Mobile Computing and Networking
(MOBICOM 98), Dallas,TX, October 1998, pp. 157-168.

[8] 7 J. Krumm and E. Horvitz, “Predestination: Inferring destinations
from partial trajectories”, Proc. of Ubicomp, 2006, pp. 243-260.

[9] 8 K. Laasonen, M. Raento, and H. Toivonen, “Adaptive on-device
location recognition,” in Proceedings of the Second International
Conference on Pervasive Computing, 2004.

[10] 12 J. Lorch and A. Smith, “Software strategies for portable computer
energy management”. IEEE Personal Gommunications, June 1998,
pp. 60-73.

[11] 14 J. Lorch and A. Smith, “Scheduling techniques for reducing
processor energy use in MacOS”. Wireless Networks, October 1997,
pp. 311-324.

[12] 5 B. Marquet, et. Al., “Secured services in a multi-tier architecture”,
in World Telecommunications Congress (WTC 2002), Sept. 2002.

[13] 9 D. Panigrahi, S. Dey, R. Rao, K. Lahiri, C. Chiasserini, and A.
Raghunathan, “Battery life estimation of mobile embedded systems”,
Proc. of the The 14th International Conference on VLSI Design
(VLSID ’01), 2001.

[14] 6 N. Ravi, J. Scott, L. Han, and L. Iftode, “Context-aware Battery
Management for Mobile Phones”, Proc. IEEE PerCom '08, 2008, pp.
224-233.

[15] 10 P. Rong and M. Pedram, “Remaining battery capacity prediction
for lithium-ion batteries”, In Conference of Design Automation and
Test, 2003.

[16] 16 S. Schou, “Context-based Service Adaptation Platform: Improving
the User Experience towards Mobile Location Services”, In ICOIN
2008: International Conference on Information Networking, January
2008, pp. 1-5.

515514

