What are Trace Zero Varieties?
Why Pairing on TZV?
Proposed by Gerhard Frey in 1998. Now in twelfth year

Start with genus g hyperelliptic curve C over I,

Trace Zero (sub)Variety of C over a field ext of deg r:

@ Subgroup of divisor class group CI(C/F,) of C over Fr
e [somorphic to quotient group CI(C/F,)/Cl(C/Fy)
e Constructive application of Weil descent

Karl Rubin and Alice Silverberg in 2002, supersingular TZV:

e Allow to obtain higher MOV security per bit than EC
e Boost the security parameter by a factor of r/¢(r)
e Application to pairing-based cryptography...

Supersingular is NOT insecure!

Bounded embedding degree
e Moderate security level: < 1200-bit IF/DL

Symmetric pairing (distortion map)
e Much faster than asymmetric pairing

Trace Zero Varieties

o€ End E
P=(z,y) — (29,y9)

Trace-zero subgroup of E(FF,)

Er(Fy) =KerTr ={P € E(Fy): Tt P =0} |,

where Tr = [1] + o +---+ 0" ! € End BE(Fy)
b /F, : subvariety of the Weil descent Resp . /g, &

Why*? To speed up the scalar multiplication

o Need to compute [m|P
e Double-and-add algorithm

m integer, P point
dbls: logm; adds: %10gm

How? Using ¢-Frobenius endomorphism o (e.g. r = 3)

e Efficiently compute o(P) = |s|P s depends on the curve
e Scalar splitting: write [m|P = |mg+ms|P mg, my = \/m
e Compute concurrently [mg|P + [m]o(P) almost half dbls

Price? Work with bigger coordinates

e Transmission overhead — small :-)
e Point compression

Pairing with Supersingular Trace Zero Varieties Revisited

Pairing
Two examples from algebraic geometry (elliptic curves)

o //IF, be an elliptic curve; = € End E be the ¢-Frobenius
o/ | #E(F,) be a big prime
e Embedding degree k: minimal such that E[i] C E(F )

A new tool for cryptographers:

0c: G x Gy — GT

e Bilinear: e([a] P, [1]Q) = e(P, Q)™

o Non degenerate: there exist P, Q: e(P, Q) # 1
e Efficiently computable

____________________________________

Ell] = Z/Z; x 2/ = | E[)(Fg) | x| E[)(Fy) \ E[](Fy)

....................................

o| Gy = B[l N Ker(m — [1]) | , {Gy = Ell] N Kex(r — [q])

_____________________________________________

°'GT = ] € FZk
o fp € F,(E), with divisor [ (P) — IO

 fp(Q) _ i
w(P, Q) = o) HP,Q) = fp(Q)
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Pairing with Supersingular TZV

b /F, be a supersingular Trace Zero Variety

A new algorithm for computing the Tate pairing (P, Q) on E,

e Exploits the action of the ¢-Frobenius o
o Evaluates the Miller function f, p at r conjugates of )
e Suitable for parallel/storage-friendly implementations

Survey of available algorithms in literature (extended version)

o Naturally apply to E(F,) D Ej
e Only consider the action of the ¢"-Frobenius =

Three relevant cases (Lemmas 1, 2, 3):

e Supersingular E3 over Fom
Efficient alternative (with equivalent security properties) to
supersingular elliptic curves over Fam

e Supersingular Er over Fam
First example of supersingular abelian varieties with security
parameter greater than 6

e Supersingular E3 over F), , p >3

Main result [Theorem 2]

Let E, be a supersingular TZV with embedding degree k.
Suppose k is even and the distortion map allows for
denominator elimination.

Then the Tate pairing can be computed as:

1
M%q“

- (r+1
HP, Q) = (H fop (Q7)E" ’) |
1=0

where a = k/2, M = ¢*/> — 1, f, p is the Miller function
and o; = ¢/ Is a proper power of the ¢g-Frobenius o
5 depends on the curve and is given in Theorem 1.

A New Algorithm for
the Tate Pairing

Precomputation/Storage
@ logy g points

Parallelization
® 1 Processors

e loop on ¢
Pairing Loop Size | Xeon
for@Q) | q=2"  0.472
t) = 0(2°™) | 1.983
tn N =0(2°™) | 1.026
n 23m 1.438
nr oBm+1)/2 _ 11 0.775
7V 3 x 2m 1.375
trzyv (par) 3 x 2™ 0.698

Timings (ms) on a Quad-core Xeon 3.2GHz
Es/Fous: y* +y=a>+x+1
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