What are Trace Zero Varieties? Why Pairing on TZV?
Proposed by Gerhard Frey in 1998. Now in twelfth year Start with genus g hyperelliptic curve \mathcal{C} over \mathbb{F}_{q}

Trace Zero (sub) Variety of \mathcal{C} over a field ext of deg r - Subgroup of divisor class group $\mathrm{Cl}\left(\mathcal{C} / \mathbb{F}_{q^{r}}\right)$ of \mathcal{C} over \mathbb{F}_{q} - Isomorphic to quotient group $\mathrm{Cl}\left(\mathcal{C} / \mathbb{F}_{q^{r}}\right) / \mathrm{Cl}\left(\mathcal{C} / \mathbb{F}_{q}\right)$ - Constructive application of Weil descent

Karl Rubin and Alice Silverberg in 2002, supersingular TZV: - Allow to obtain higher MOV security per bit than EC - Boost the security parameter by a factor of $r / \phi(r)$ - Application to pairing-based cryptography...

Supersingular is NOT insecure!

Bounded embedding degree

- Moderate security level: < 1200-bit IF/DL Symmetric pairing (distortion map)
- Much faster than asymmetric pairing

Trace Zero Varieties

A new tool for cryptographers:
$\bullet e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$
Bilinear: $e([a] P,[b] Q)=e(P, Q)^{a b}$
Non degenerate: there exist $P, Q: e(P, Q) \neq 1$ -Efficiently computable

Pairing

Two examples from algebraic geometry (elliptic curves)
$-E / \mathbb{F}_{q}$ be an elliptic curve; $\pi \in \operatorname{End} E$ be the q-Frobenius
$\bullet l \mid \# E\left(\mathbb{F}_{q}\right)$ be a big prime

- Embedding degree k : minimal such that $E[l] \subset E\left(\mathbb{F}_{q^{k}}\right)$
$E[l] \simeq \mathbb{Z} / \mathbb{Z}_{l} \times \mathbb{Z} / \mathbb{Z}_{l}=E[l]\left(\mathbb{F}_{q}\right) \times E[l]\left(\mathbb{F}_{q^{k}}\right) \backslash E[l]\left(\mathbb{F}_{q}\right)$
- $\mathbb{G}_{1}=E[l] \cap \operatorname{Ker}(\pi-[1]), G_{2}=E[l] \cap \operatorname{Ker}(\pi-[q])$
- $\mathbb{G}_{T}=\mu_{l} \in \mathbb{F}_{q^{*}}$
- $f_{P} \in \mathbb{F}_{q}(E)$, with divisor $l(P)-l \mathcal{O}$

Weil pairing	Tate pairing
$w(P, Q)=\frac{f_{P}(Q)}{f_{Q}(P)}$	$t(P, Q)=f_{P}(Q)^{\frac{k^{\frac{k^{k}-1}{t}}}{t}}$

E_{r} / \mathbb{F}_{q} : subvariety of the Weil descent $\operatorname{Res}_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}} E$
Why? To speed up the scalar multiplication - Need to compute $[m] P$ m integer, P point -Double-and-add algorithm dbls: $\begin{aligned} & m \text { integer, } m \text {; adds: } \frac{1}{2} \log m\end{aligned}$ How? Using q-Frobenius endomorphism σ (e.g. $r=3$) - Efficiently compute $\sigma(P)=[s] P \quad s$ depends on the curve - Efficiently compute $\sigma(P)=\{s, P \quad$ s depends on the curve

- Scalar splitting: write $[m] P=\left[m_{0}+m_{1} s \mid P \quad m_{0}, m_{1} \approx \sqrt{m}\right.$ - Compute concurrently $\left[m_{0}\right] P+\left[m_{1}\right] \sigma(P) \quad$ almost half dbls

Price? Work with bigger coordinates
-Transmission overhead - small :-)

- Point compression

References

Extended version of this work: http://eprint.iacr.org/2008/40

- Naumann [99] and Blady [02]: TZV of EC with $r=3$, odd char॰ Barreto et. al. [02-07]: η and η_{T} with supersingular (H)EC - Weimerskirch [01]: TZV of EC with $r=5$, odd char

Lange [03]: TZV from genus 2 HEC and $r=3$, odd char
Avanzi \& Lange [04-07]: All three cases Implementation in odd char Avanzi \& C. [04-07]: All three cases
Implementation in even char; Next: Use of halving

- Rubin \& Silverberg [02-08]: supersingular AV (notably TZV) - Scott [05]: An EC endowed with an efficient endomorphism - Hess et. al. [06]: Ate and twisted-Ate with ordinary (H)EC
- ...various people [06-08]: various optimisations ;-) - Vercauteren [08]: Optimal pairings - Hess [08]: Pairing lattices

Pairing with Supersingular TZV

E_{r} / \mathbb{F}_{q} be a supersingular Trace Zero Variety
A new algorithm for computing the Tate pairing $t(P, Q)$ on E_{r} - Exploits the action of the q-Frobenius σ

- Evaluates the Miller function $f_{q, P}$ at r conjugates of Q - Evaluates the Milier function $f_{q, P}$ at r conjugates of Q

Survey of available algorithms in literature (extended version) - Naturally apply to $E\left(\mathbb{F}_{q^{\prime}}\right) \supset E$

- Only consider the action of the q^{r}-Frobenius π

Three relevant cases (Lemmas 1, 2, 3):

- Supersingular E_{3} over $\mathbb{F}_{2}{ }^{m}$

Efficient alternative (with equivalent security properties) to supersingular elliptic curves over $\mathbb{F}_{3^{n}}$
Supersingular E_{5} over $\mathbb{F}_{3^{m}}$
First example of supersingular abelian varieties with security parameter greater than 6
Supersingular E_{3} over $\mathbb{F}_{p}, \quad p>3$

Main result [Theorem 2]

Let E_{r} be a supersingular TZV with embedding degree Suppose k is even and the distortion map allows for denominator elimination.
Then the Tate pairing can be computed as:

$$
t(P, Q)=\left(\prod_{i=0}^{r-1} f_{q, P}\left(Q^{\sigma_{i}}\right)^{q^{(r+1)}}\right)^{M_{q}^{\frac{q_{q}}{a}} q^{a}}
$$

where $a=k / 2, M=q^{k / 2}-1, f_{n, P}$ is the Miller function and $\sigma_{i}=\sigma^{i j}$ is a proper power of the q-Frobenius σ : j depends on the curve and is given in Theorem 1.

A New Algorithm for the Tate Pairing

Parallelization
 -r processors

Precomputation/Storage - $\log _{2} q$ points

- loop on q

Pairing	Loop Size	Xeon
$f_{q, P}(Q)$	$q=2^{m}$	0.472
t_{l}	$l=O\left(2^{2 m}\right)$	1.983
t_{N}	$N=O\left(2^{2 m}\right)$	1.026
η	$2^{3 m}$	1.438
η_{T}	$2^{(3 m+1) / 2}-1$	0.775
t_{TZV}	3×2^{m}	1.355
t_{TZV} (par)	3×2^{m}	0.698

Timings (ms) on a Quad-core Xeon 3.2 GHz
$E_{3} / \mathbb{F}_{2}{ }^{103}: y^{2}+y=x^{3}+x+1$

Pairing with Supersingular Trace Zero Varieties Revisited

