Pairing with supersingular Trace Zero Varieties revisited

Original

Availability:
This version is available at: 11583/2373213 since:

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
What are Trace Zero Varieties? Why Pairing on TZV?

Start with an η-hyperelectric curve C over F_q

Trace Zero (sub)Variety of C over a field ext of deg r:
- Subgroup of divisor class group $\text{Cl}(C/F_q)$ of C over F_q
- Isomorphic to quotient group $(\text{Ch}(C/F_q), \text{Ch}(C/F_q))$
- Constructive application of Weil descent

Karl Rubin and Alice Silverberg in 2002, supersingularTZV:
- Allow to obtain higher MOV security per bit than EC
- Boost the security parameter by a factor of $r/\phi(r)$
- Application to pairing-based cryptography...

Transmission overhead – small :-)

\[\text{Efficiently compute } \sigma(\alpha P) = \alpha^m(\sigma P) \text{ almost half dbls} \]

Price? Work with bigger coordinates

\[\text{Start with genus } E \text{ with parameter greater than 6} \]

Two examples from algebraic geometry (elliptic curves)
- E/F_q be an elliptic curve; η its η-Frobenius

Embedding degree r minimal such that $E[r] \subset E/F_q$

$E[r] \cong \mathbb{Z}/r \times \mathbb{Z}/r$

\[G_1 = E[r] \cap K_1 = \mathbb{Z}/r \times \{0\} \]

\[G_2 = E[r] \cap K_2 = \{0\} \times \mathbb{Z}/r \]

\[P \in F_q \times E \text{, with divisor } (P) = -\mathcal{O} \]

Main result [Theorem 2]

Let E be a supersingular TZV with embedding degree r. Suppose r is even and the distortion map allows for denominator elimination. Then the Tate pairing can be computed as:

\[e(P, Q) = \prod_{i=0}^{r-1} f_i(P)(Q^{\phi(i)})^{\alpha^{-1}} \]

where $\alpha = \frac{1}{r} \cdot M = \frac{1}{r} \cdot f_{\eta}(P)$ is the Miller function and $\phi(i)$ is a proper power of the η-Frobenius η

depends on the curve and is given in Theorem 1.

A New Algorithm for the Tate Pairing

Parallelization
- multi processors
- loop on σ

Precomputation/Storage
- E/F_q points

Pairing with Supersingular TZV

E/F_q be a supersingular Trace Zero Variety

A new algorithm for computing the Tate pairing $e(P, Q)$ on E

- Exploits the action of the η-Frobenius η
- Evaluates the Miller function $f_i(P)$ at r conjugates of Q
- Suitable for parallel/software-friendly implementations

Survey of available algorithms in literature (extended version)
- Naturally apply to $E(F_q) \cong E$.
- Only consider the action of the η-Frobenius η

Three relevant cases (Lemmas 1, 2, 3):
- Supersingular E_1 over F_{q^2}
 - Efficient alternative (with equivalent security properties) to supersingular elliptic curves over F_q
- Supersingular E_2 over F_{q^2}
 - First example of supersingular abelian varieties with security parameter greater than 6
- Supersingular E_3 over F_q, $p > 3$

References

Extended version of this work: http://eprint.iacr.org/2008/404

Motivation

 WHY? To speed up the scalar multiplication
- Need to compute $[m]P$ in integer, P point
- Double-and-add algorithm: \log_m; adds: $\frac{1}{2}\log_m$

How? Using η-Frobenius endomorphism η (e.g. $\eta = r$)

- Efficiently compute $[m]P = \eta^m[m]P$ depends on the curve
- Scalar splitting: write $[m]P = \sum_{\delta|m} [\delta]P$, $m_0 = m_1 \ldots m_t$
- Compute concurrently $[\delta]P$ and $[\delta]P$ almost half dbls

Price? Work with bigger coordinates

- Transmission overhead – small :-)
- Point compression

\[\text{Barreto et. al. [02–07] } \]

- Various people [06–08]: various optimisations -->
- Vercauteren [08]: optimal pairings
- Hass [08]: pairing lattices

Loop Size

| η, σ | Xeon
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E/F_q</td>
<td>0.472</td>
</tr>
<tr>
<td>σ</td>
<td>0.983</td>
</tr>
<tr>
<td>η</td>
<td>1.506</td>
</tr>
<tr>
<td>P</td>
<td>1.438</td>
</tr>
<tr>
<td>P</td>
<td>0.775</td>
</tr>
<tr>
<td>η</td>
<td>1.375</td>
</tr>
<tr>
<td>σ</td>
<td>0.698</td>
</tr>
</tbody>
</table>