
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

iNFAnt: NFA pattern matching on GPGPU devices / Cascarano, Niccolo'; Rolando, Pierluigi; Risso, FULVIO GIOVANNI
OTTAVIO; Sisto, Riccardo. - In: COMPUTER COMMUNICATION REVIEW. - ISSN 0146-4833. - STAMPA. - 40:5(2010),
pp. 20-26. [10.1145/1880153.1880157]

Original

iNFAnt: NFA pattern matching on GPGPU devices

Publisher:

Published
DOI:10.1145/1880153.1880157

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2373004 since: 2020-12-13T14:42:02Z

ACM



iNFAnt: NFA Pattern Matching on GPGPU Devices

Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, Riccardo Sisto
Politecnico di Torino

Turin, Italy
{niccolo.cascarano, pierluigi.rolando, fulvio.risso, riccardo.sisto}@polito.it

ABSTRACT
This paper presents iNFAnt, a parallel engine for regular
expression pattern matching. In contrast with traditional
approaches, iNFAnt adopts non-deterministic automata, al-
lowing the compilation of very large and complex rule sets
that are otherwise hard to treat.

iNFAnt is explicitly designed and developed to run on
graphical processing units that provide large amounts of
concurrent threads; this parallelism is exploited to handle
the non-determinism of the model and to process multiple
packets at once, thus achieving high performance levels.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations

General Terms
Experimentation, Algorithms

Keywords
NFA, pattern matching, CUDA, GPGPU, regular expression

1. INTRODUCTION
Pattern matching, i.e. the task of matching a string of

symbols against a set of given patterns, plays an important
role in multiple fields that range from bioinformatics (e.g.
for analyzing DNA sequences) to high-speed packet process-
ing, where it is a critical component for packet filtering, traf-
fic classification and, in general, deep packet inspection.

Pattern matching is commonly performed by expressing
patterns as sets of regular expressions and converting them
into finite state automata (FSAs), mathematical models that
represent (potentially infinite) sets of strings. The behav-
ior of FSAs is simple to emulate on computing devices in
order to perform the actual matching procedure and finite
automata can be easily composed together with the full set
of boolean operators.

Two kinds of FSAs are known from the literature, de-
terministic (DFA) and non-deterministic (NFA). While au-
tomata theory proves them equivalent in terms of expressive-
ness, their practical properties are different: NFA traversal
requires, by definition, non-deterministic choices that are
hard to emulate on actual, deterministic processors; on the
other hand DFAs, while fast to execute, can be less space-
efficient, requiring very large amounts of memory to store

certain peculiar patterns that are rather common in prac-
tice (the so-called state space explosion) [2]. In general,
software-based NFA implementations suffer from a higher
per-byte traversal cost when compared with DFAs: intu-
itively, this is because multiple NFA states can be active at
any given step, while only a single one must be considered
when processing DFAs.

So far software research has been focused mainly on DFAs,
as they provide a relatively easy way to achieve high through-
puts; many efforts have been aimed at solving the inherent
downsides of this model and avoid the aforementioned mem-
ory explosion. At the same time, NFAs have often been
relegated to the design of hardware devices (e.g. FPGAs)
that can easily mimic their behavior, or for use where high
throughput is not the primary concern (e.g. many general-
purpose pattern-matching libraries).

This paper presents iNFAnt, a NFA-based regular expres-
sion engine running on graphical processing units (GPUs).
iNFAnt represents a significant departure from traditional
software-based pattern matching engines both for its un-
derlying automaton model, the NFA, and its target hard-
ware platform, the GPU. NFA adoption allows iNFAnt to
efficiently store very large regular expression sets in a lim-
ited amount of memory while the parallelism offered by the
underlying hardware helps countering the higher per-byte
traversal cost of NFAs with respect to DFAs and the higher
instruction execution time of GPUs with respect to CPUs.
iNFAnt also represents, as far as we know, one of the first ap-
proaches to pattern matching designed from the ground up
for the heavily parallel execution environment offered by the
modern programmable GPUs, as opposed to being an adap-
tation of a technique originally designed for general-purpose
processors.

2. RELATED WORKS
It is common knowledge that pattern matching is the most

time-expensive operation to be performed in intrusion de-
tection systems and similar applications: accelerating its
execution has been the object of several academic works.
Some of them have already considered the idea of using the
parallelism offered by GPUs.

It is possible either to try to execute the whole packet
processing application on a graphical device or to accelerate
only the pattern matching portion. The first case saw the
development of Gnort [7], a full port of the Snort IDS1 to a
GPU environment.

1Available at http://www.snort.org/.



Gnort did not initially support regular expressions, del-
egating them to the host CPU; it has been since extended
with a DFA-based regex engine [8]. DFA approaches, how-
ever, incur in state space explosion, typically solved by heuris-
tically splitting the rules into smaller subsets or (as Gnort
does) translating only a “well-behaved” subset while keep-
ing the rest in NFA form for host processing [8]. Both so-
lutions are suboptimal for our goals as splitting leads to
inefficiencies (all the DFAs must be traversed) while resort-
ing to host processing defies the goal of graphical hardware
adoption. Other more advanced approaches for countering
the DFA state explosion problem have been proposed, such
as HFAs [1] that split the DFA under construction at the
point where state space explosion would happen.

There have been some experiences in porting advanced
techniques, such as XFAs [5], to GPUs; however adapting
a traversal algorithm designed for CPUs on a GPU-based
device is not straightforward or efficient because of deep
architectural differences.

Other techniques described in the literature use GPUs to
perform preprocessing steps or, alternatively, employ inex-
act algorithms to perform matching (e.g. [6]). These ap-
proaches are out of scope for the purpose of this paper,
aimed at a full-fledged regex engine.

Perhaps the work most closely related to iNFAnt is re-
ported in [4] and describes methods to run DFAs and NFAs
on a high-speed single-instruction, multiple data (SIMD)
processor. While NFAs are recognized as a viable technique
on parallel hardware and for reducing memory consump-
tion, the proposed algorithm implements only a subset of
the regular expression operators; moreover it considers an
architecture radically different from GPUs in terms of spec-
ifications and programming model.

3. CUDA ARCHITECTURE
The latest trends have seen a shift towards the devel-

opment of inexpensive, highly-parallel and programmable
GPUs. Employing these processors in fields unrelated to
computer graphics has been dubbed general-purpose com-
putation on graphical processing units or GPGPU.

There are multiple kinds of programmable GPUs available
on the market and only recently a standard programming
interface, OpenCL2, is emerging.

For the purpose of this work, we have used nVidia devices
that implement and expose the Compute Unified Device Ar-
chitecture3 (CUDA) programming interface.

3.1 Execution cores
CUDA devices are logically composed of arrays of single

instruction, multiple threads (SIMT) processors, the multi-
processors, each one containing a number of physical execu-
tion cores (typically 8). The devices support thousands of
threads at the same time, multiplexed on their far smaller
set of cores by a dedicated hardware scheduler that avoids
the overhead usually associated to context switching. The
instruction set is RISC and most instructions require mul-
tiple clock cycles for their execution instruction: efficiency
comes from the large number of cores, not their individual
performance which is low.

2Described at http://www.khronos.org/opencl/.
3Available at http://www.nvidia.com/object/cuda_home_
new.html.

In the SIMT paradigm each multiprocessor executes the
same instruction simultaneously for multiple threads by as-
signing a different execution context to each core; when this
is not possible (e.g. due to the different outcomes of a condi-
tional branch) threads are said to diverge and the execution
of groups of threads that go along different code paths is
sequentialized by the scheduler.

CUDA GPUs reduce the amount of branching (and thus
divergence) with predicated execution, i.e., the writeback
phase of most instructions can be conditionally disabled by
fencing them with a predicate register: if false, the instruc-
tion is still executed but does not modify the state of the pro-
cessor. Conditional execution is automatically introduced
by the compiler as a replacement for small, potentially di-
vergent code sequences e.g. in simple if-then-else constructs.

3.2 Memory hierarchy
CUDA devices provide a varied hierarchy of memory areas

with different sizes and access times; it is the programmer’s
responsibility to choose the appropriate usage for each one,
also considering access patterns and that no caching is im-
plicitly performed by the hardware.

In addition to a number of 32-bit registers shared by all
the threads, each multiprocessor carries an on-chip shared
memory. Even if slower than registers, shared memory is
still significantly fast: its latency can be measured in tens
of clock cycles; it is, however, small: our board carries 16
kiB of shared memory per multiprocessor. Shared memory
is also banked; multiple accesses to independent banks are
carried out simultaneously but conflicts force serialization.

Bulk storage is provided by global memory, ranging from
hundreds of megabytes up to more than a gigabyte (de-
pending on the card model). The on-board (though not
on-chip) global memory is connected to each multiprocessor
with a high-bandwidth bus, providing more than 80 Gb/s
on our test card. The downside is that every access incurs
in a very high latency cost, estimated around 400-600 pro-
cessor cycles. Latency hiding is one of the reasons for the
large number of threads supported by CUDA devices: the
hardware scheduler automatically suspends threads that are
waiting for the completion of global memory transactions
and switches to others that are ready to run.

In order to use efficiently all the available bandwidth it is
necessary to perform as few accesses as possible, as wide as
the memory bus allows. Since each thread typically accesses
small amounts of memory at a time, a hardware controller
tries to automatically coalesce many smaller memory ac-
cesses in fewer, larger transactions at run-time. This is pos-
sible only if all the accesses involved respect a well-defined
pattern: on newer CUDA devices all the addresses must fall
within the same naturally-aligned 256-byte memory area.

CUDA devices provide two further special interfaces to
global memory areas under the form of constant and tex-
ture memory that provide the additional benefit of hardware
caching. Given their limitations in size (e.g. 64 kiB at most
for constant memory) and supported access patterns, they
are currently unused by iNFAnt.

3.3 Concurrency and data-sharing model
CUDA devices are intented to be used in scenarios where

each thread requires minimal interaction with its siblings:
only a subset of the common synchronization and commu-
nication primitives is therefore provided.



For any application, the set of active threads is divided
into blocks: threads from the same block are always sched-
uled on a specific multiprocessor and communicate through
its shared memory; ad-hoc primitives enable atomic read-
modify-write cycles. This is the only form of inter-thread
communication currently supported by the CUDA model:
there are no reliable semantics for concurrent accesses to
global memory and threads belonging to different blocks
cannot exchange data.

Synchronization works in a similar fashion: CUDA pro-
vides primitives for pausing a thread until all the others in
the same block have reached the same point in their execu-
tion flow. Once again, threads belonging to different blocks
cannot interact.

4. INFANT DESIGN
It appears clear from Section 3 that traditional algorithms

developed for general-purpose processors are bad matches
for the CUDA architecture, often using a small number of
threads and paying little attention to memory access pat-
terns. This is even more true for classic automata traversal
algorithms: input symbols must be processed sequentially
and their randomness can lead to unpredictable branching
and irregular access patterns. It appears likely that a good
traversal algorithm should be a departure from the tradi-
tionally accepted practice.

Given the CUDA architecture and the problem at hand,
we have identified the following design guidelines:

1. Memory bandwidth is abundant. Reducing the
number of per-thread global memory accesses is not a
priority if they are fully coalesced and there are enough
threads to effectively hide memory latency. Shared
memory can be considered fast enough for our purpose
without requiring any special considerations.

2. Memory space is scarce. This is especially true for
the shared memory and for registers but global mem-
ory should be used carefully as well: although compar-
atively big, it is common for automata to grow beyond
the available amount, even when starting from small
regex sets; the ability to store very large automata
is also an advantage with multistriding (described in
Section 4.3).

3. Threads are cheap. In contrast to CPUs, CUDA
devices are designed to work best when presented with
very large numbers of threads, up to 512 per block, and
the maximum number of blocks as supported by the
actual GPU considered.

4. Thread divergence is expensive. The large num-
ber of threads is manageable by the hardware only if
all of them execute the same instruction at the same
time or if, at worst, the number of possible alterna-
tive paths is very small [5]. The program should be
structured so that jumps are few and replaceable with
predicated execution whenever feasible.

4.1 NFA representation
In order to adhere to our guidelines and in contrast to

classic approaches, iNFAnt adopts an internal format for
the FSA transition graph that we dubbed symbol-first rep-
resentation: the system keeps a list of (source, destination)

(a) NFA transition
graph.

(b) Transition vector.

Figure 1: Symbol-first representation.

tuples, representing transitions, sorted by their triggering
symbol. This list can grow very large so it must be stored
in a global memory array, together with an ancillary data
structure that records the first transition for each symbol, to
allow easy random look-ups. As an example, the represen-
tation for the automaton in fig. 1(a) is reported in fig. 1(b).

The current implementation allocates 16 bits per state
label, thus supporting up to 65535 states, which is more
than enough for our current workloads that peak at around
6000 - 9000 states. It should be noted that this limitation
does not affect the maximum number of transitions, that
depends only on global memory availability.

In order to reduce the number of transitions to be stored,
and also to speed up execution, iNFAnt adopts a special
representation for self-looping states, i.e. those with an out-
going transition to themselves for each symbol of the alpha-
bet. These states are marked as persistent in a dedicated
bit-vector and, once reached during a traversal and marked
as active, they will never be reset.

Bit-vectors containing current and future active state sets
are stored in shared-memory.

4.2 Traversal algorithm
The traversal algorithm follows naturally from the data

structure definition. Many packets are batched together and
mapped 1:1 to CUDA blocks to be processed in parallel;
every thread in each block executes the instructions reported
as pseudo-code in fig. 2. State bit-vectors appear with a
sv subscript and underlined statements are performed in
cooperation by all the threads in a block. More precisely,
the copies in lines 1, 5, 13 are performed by assigning each
thread a different portion of the bit-vectors involved.

Underlined statements also correspond to synchronization
points in the program: after execution, each thread will wait
for the others to reach the same point before proceeding.

Parallelism is exploited not only because at any given time
multiple blocks are active to process multiple packets but
also because for each packet each thread examines a different
transition among those pending for the current symbol when
running the inner while loop (lines 6 – 12). A large number
of transitions can be processed in parallel this way and if
there are enough threads then the time spent in processing
a single symbol will be effectively equal to what would be
required for a deterministic automaton.

With regard to access patterns, the traversal algorithm
requires global memory for reading the current input sym-
bol and for accessing the transition table: both these ac-



1: currentsv ← initialsv
2: while ¬input.empty do
3: c← input.first
4: input← input.tail
5: futuresv ← currentsv ∧ persistentsv
6: while a transition on c is pending do
7: src← transition source
8: dst← transition destination
9: if currentsv[src] is set then

10: atomicSet(futuresv, dst)
11: end if
12: end while
13: currentsv ← futuresv
14: end while
15: return currentsv

Figure 2: Traversal algorithm

cesses can be coalesced. All the threads working on the
same packet access the same symbol (and offset) at the
same time because of synchronization: the card can execute
line 3 with a single transaction. Accesses to the transition
table are structured so that the Nth thread will read the
Nth offset; if multiple iterations are required, the same pat-
tern is repeated because the stride offset equals the number
of threads. These very regular memory patterns are piv-
otal to exploiting all the available bandwidth and provide
big improvements over the almost random patterns that de-
rive from traditional traversal algorithms; even the ’padding’
reads that happen on the last iteration of the inner loop if
there remain more threads than transitions do not cause a
noticeable performance degradation.

The symbol-first representation allows an efficient usage
of the available global memory space by storing only useful
data, a property that would not be provided by e.g. the clas-
sical but potentially very sparse state transition matrix that
requires a storage location for each combination of current
state and input symbol.

The traversal algorithm, moreover, can be executed with
very little divergence among the threads assigned to the
same packet: in the current implementation only the condi-
tional choice corresponding to lines 9-10 in fig. 2 can diverge
and the compiler is able to handle this case with predicated
instructions. Some divergence is possible during initializa-
tion or when writing back results, but these phases execute
quickly and once per batch of packets, so their overhead
is negligible with respect to the total running time of the
algorithm.

Finally, it must be noted that the shared memory accesses
required in the inner loop for reading the current state vector
and setting future states do not follow any predefined pat-
tern. Given the speed of shared memory, its banked struc-
ture and the occasional nature of the updates (performed
only if a transition actually triggers), this is not expected
to be an issue, as confirmed by the results reported in Sec-
tion 5.1.

4.3 NFA multistriding
An interesting property of the iNFAnt algorithm and data

structure is that they easily support multistrided automata.
Multistriding is a transformation that repeatedly squares
the input alphabet of a state machine and adjusts its tran-

sition graph accordingly: intuitively, the alphabet of a 2-
strided automaton consists of all the possible pairs of orig-
inal input symbols and each transition is the composition
of 2 adjacent transitions of the original. The transforma-
tion required for 2-striding a FSA, documented in [2], can
be performed ahead of time and off-line. After multistriding
it is possible for the traversal algorithm to consider pairs of
symbols at once, thus reducing global execution time.

Squaring has multiple effects, most prominently produc-
ing an increase in both transition count and alphabet size.
The former is not a major problem if the source automaton
is small, but can (and it does, in our tests) quickly lead to
memory exhaustion if this is not the case, e.g. when creating
DFAs from large rule sets, thus limiting the applicability of
the procedure when not working with NFAs. The increase
in alphabet size, on the contrary, is particularly troublesome
if the procedure is repeated multiple times, as the length of
each symbol and the cardinality of the alphabet can quickly
approach intractability. In order to avoid this issue iNFAnt
performs an alphabet compression step that removes any
symbol that does not appear on transition labels and re-
names all the remaining ones based on equivalence classes.
Compression also makes the symbol set dense, allowing sim-
pler data structures to be used for look-ups.

Each multistriding step emits a translation table that (in
general) maps pairs of input symbols into a single output
symbol: this is possible without an explosion in symbol
count because in most cases only a small portion of the
possible symbol space is used. In order for a packet to be
processed after multistriding, it must first undergo the same
translation, a procedure currently performed on the host
CPU using a hashed look-up table. The CPU executes this
algorithm in pipeline with GPU-based automaton traversal,
reducing its run-time impact; the number of symbols to be
processed is halved by each rewrite and, by extension, the
time required to process each data unit on the GPU is re-
duced, with no modifications to the traversal algorithm.

4.4 System interface
A major architectural choice is how to interface the iN-

FAnt engine with other external components, both for the
creation of the required data structures and to pass pack-
ets to and from the GPU at run-time. The current iNFAnt
prototype exposes a simple API that allows loading precom-
puted NFAs on the graphics card and submitting a batch
of packets for processing. Packet copies can be performed
through DMA and results are read back in a similar fashion.

While GPU operations such as transfer initiation or kernel
launch are not free, they execute quickly and, in most cases,
have been found to be of little relevance when compared to
the actual time spent in pattern matching.

5. EXPERIMENTAL EVALUATION
iNFAnt has been evaluated by comparing its throughput

and memory consumption with those achieved by HFAs,
that represent the current state of the art for many pur-
poses by following closely the behavior (and speed) of DFAs
on non-troublesome rule sets, while implementing strategies
to prevent state space explosions.

The test plan involved 3 regex sets designed to highlight
different aspects of the applications under scrutiny. The
http-sig rule set is composed of 2 regular expressions that
recognize specific HTTP headers; the resulting automaton is



Figure 3: Throughput measurements

simple and almost completely linear, posing little challenge
both to iNFAnt and HFA and providing baseline results to
compare per-byte costs. The Snort534 set (taken from [3])
consists of 534 regular expressions; it can be divided into
subsets that share an initial portion while the tails differ, a
structure that makes it a good target for HFAs. Finally, all
the protocol signatures from the L7 traffic classifier4 make
up the L7-filter set, which is a very complex and irregular
test set where no common prefixes or other properties can be
exploited. In spite of its limited size (around 120 regexs), the
L7-filter is the largest of our test cases in terms of memory
occupation, regardless of the form in which it is compiled.

All the tests were performed using a single core of the
otherwise-unloaded test machine, a 4-core Xeon machine
running at 3 GHz and provided with 4 GiB of RAM; GPU
tests were conducted on the same platform equipped with an
nVidia GeForce 260 GTX graphics card with 1 GiB of RAM
and 27 multiprocessors clocked at 1.24 GHz. All relevant
caches (e.g. processor, disk) were warmed by performing
unmeasured test runs. As input, a 1 GiB trace of real-world
network traffic was used.

The two platforms (GPU card and CPU host system) are
significantly different in terms of architecture and specifi-
cation, thus making their performance not directly compa-
rable. However, they both represent significant examples
of commercially available middle-tier hardware. Hence, the
throughput measurements reported in the following sections
should be regarded as order-of-magnitude estimates of the
performance obtainable using commodity hardware devices.

5.1 Pattern-matching throughput
Figure 3 reports the best throughputs obtained for all

techniques. In order not to inflate the results, all measure-
ments were performed by taking into account only payload
bytes and excluding packet headers (that were not exam-
ined). The ’NFA++’ data series reports results obtained
by enabling the self-looping states optimization described in
sec. 4.1. iNFAnt allows the user to set the number of threads
per packet and the number of packets submitted to the card
in a batch for parallel processing: the best results obtained
by exploring the possible configuration space are reported
here.

4Available at http://l7-filter.sf.net/.

Figure 4: Memory consumption

As it can be seen, the throughput achieved by non-strided
NFAs is comparable to though lower than corresponding
HFA results. This can be justified by the higher per-byte
traversal cost of NFAs and by the higher instruction execu-
tion time of GPUs: even if parallelism reduces the amount of
time required to process a single packet, this is not enough
to completely compensate for the aforementioned aspects.
However, the situation is vastly improved by the introduc-
tion of multistriding and the self-loop state optimization,
leading to far better throughputs than HFAs.

Given the complexity of the CUDA architecture it is in-
teresting to try to identify the iNFAnt performance bottle-
neck. Global memory bandwidth, commonly found to be
a scalability limitation, is not an issue here: its measured
usage is, in most cases, around 20-40 Gb/s, less than the
card peak performance (around 80 Gb/s). Shared memory
issues can also be ruled out: while it is true that a reduction
of its usage would speed execution up (more blocks could
be scheduled per multiprocessors) the simulated difference
was found to be minimal. Bank conflicts arising from write
contention when updating the future state vector are also
rare: disabling shared memory updates altogether brings
little improvement in run-time performance (1-3% in most
cases). Similar considerations also hold for register usage.

Profiling information5 shows that the vast majority of run-
ning time is spent in processing instructions, even if iNFAnt
performs very little computation. It is therefore likely that
in most cases the bottleneck lies in the relatively large num-
ber of instructions to be executed per packet, coupled with
the high instruction execution time of GPUs. As with most
current traversal algorithms, input symbols must be pro-
cessed in order, leading to large numbers of iterations in the
outer loop of fig. 2. This also explains why multistriding can
improve throughput significantly.

5.2 Global memory consumption
Figure 4 shows the amount of global memory required for

automaton storage, which is by far the largest data struc-
ture used by both the techniques considered; shared memory
occupation in iNFAnt is considerably below the maximum
amount in all test cases (about 6000 states are required for
L7-filter).

5Not reported here due to space constraints.



It appears clear that in general the NFAs used by iN-
FAnt use comparable or less memory than the correspond-
ing HFAs; it is interesting to note that the L7-filter rule
set is impossible to compile in HFA form on our test ma-
chine, regardless of the provisions built into the HFA model;
its column in the chart corresponds to the lower bound of
estimated consumption (4 GiB). A direct comparison with
DFAs yields even better results for NFAs: besides L7-filter,
Snort534 incurs in state space explosion as well. The dif-
ference between NFAs and other approaches is exacerbated
when considering multistriding: given the increment in size,
only the adoption of NFAs makes this technique feasible.

The NFA memory consumption reported must also be
considered as a worst-case measurement: the NFAs consid-
ered were not in a minimal, canonical form and it might be
possible to further reduce their sizes by appropriately mod-
ifying the generation process.

5.3 Multistriding and self-loop handling
Both throughput and memory occupation are affected by

iNFAnt optimizations. As expected, in most cases multi-
striding improves run-time performance, mainly because of
shortened input packets (in term of symbols), requiring less
iterations in the traversal algorithm; the improvements ob-
served are roughly linear with the number of automaton
squarings performed, a result consistent with our bottleneck
analysis. At the same time, multistriding yields larger au-
tomata, mainly because of increased transition counts; this
effect is clearly visible in fig. 4. Nevertheless, iNFAnt is ef-
fective in dealing with this issue. On one side, as it can be
seen from the charts the available amount of global mem-
ory is adequate in all cases; on the other side the increase
in transition counts is somewhat offset by larger alphabets,
making the number of transitions to be examined per sym-
bol grow relatively slowly. As for the rewriting operation
itself, in most practical cases it requires less time than au-
tomata traversal so its cost can be completely absorbed by
pipelining.

Self-looping state optimization, on the contrary, directly
reduces transition counts. While obviously not designed to
completely counteract the effects of multistriding, the intro-
duction of separate handling for self-looping states proves to
be very effective both at reducing the number of transitions
stored in global memory (especially with deeper multistrid-
ing) and at speeding up execution, once again thanks to
lower per-symbol transition counts.

6. CONCLUSIONS AND FUTURE WORKS
This paper presented the design and evaluation of iN-

FAnt, a novel NFA-based pattern matching engine. iN-
FAnt is explicitly designed to run on graphical processing
units, exploiting the large number of execution cores and
the high-bandwidth memory interconnections through its
ad-hoc data structure and traversal algorithm; more in de-
tail, the automaton representation and traversal algorithm
adopted by iNFAnt match well the CUDA architecture, al-
lowing full coalescing of memory accesses and requiring very
little thread divergence.

The adoption of the NFA model allows a significant re-
duction in memory occupation from the get-go, avoiding
state space issues by design and enabling iNFAnt to han-
dle complex rule sets; the optimized handling of self-looping
states further reduces memory consumption while at the

same time improving run-time performance. Additional free
memory, if available, can be traded off for processing speed
with the adoption of multistriding, thus effectively coun-
teracting the higher per-byte cost deriving from the non-
deterministic model and the high instruction execution time
taken by GPUs. Multistriding is especially feasible on the
iNFAnt platform because of the lower baseline memory re-
quirements and because the traversal performance depends
on the number of transitions per input symbol; other FSA
engines, especially if relying on a small alphabet, might be
adversely affected by its introduction.

While iNFAnt might not be the first GPU-based pattern
matching engine, to the best of our knowledge, it is one of
the first to use NFAs to implement a technique specifically
designed for graphical processors. In contrast to most ap-
proaches ported from general-purpose CPUs, the bottleneck
is not memory bandwidth but the execution cores process-
ing speed; higher throughputs could be achieved on the same
architecture with more and/or faster execution units.

With regard to future developments, we are planning to
perform string rewriting directly on the GPU, thus com-
pletely offloading the host CPU: while the task itself is em-
barrassingly parallel, an efficient implementation of look-up
tables on CUDA devices is not. A more thorough evaluation
of run-time behavior is also in progress, comparing iNFAnt
with more alternative techniques and performing additional
scalability tests on more powerful hardware devices.

7. REFERENCES
[1] M. Becchi and P. Crowley. A hybrid finite automaton

for practical deep packet inspection. In proceedings of
CoNEXT ’07, pages 1–12, NY, USA, 2007. ACM.

[2] M. Becchi and P. Crowley. Efficient regular expression
evaluation: theory to practice. In proceedings of ANCS
’08, pages 50–59, NY, USA, 2008. ACM.

[3] M. Becchi, C. Wiseman, and P. Crowley. Evaluating
regular expression matching engines on network and
general purpose processors. In proceedings of ANCS
’09, NY, USA, 2009. ACM.

[4] F. Kulishov. DFA-based and SIMD NFA-based regular
expression matching on Cell BE for fast network traffic
filtering. In proceedings of SIN ’09, pages 123–127, NY,
USA, 2009. ACM.

[5] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and
C. Estan. Evaluating GPUs for network packet
signature matching. In proceedings of ISPASS ’09,
pages 175–184, 2009.

[6] G. Szabo, I. Godor, A. Veres, and S. Malomsoky, Sz.
and. Molnar. Traffic classification over gbit speed with
commodity hardware. In accepted for publication in
IEEE Journal of Communications Software and
Systems, 2010, Vol. 5, Num. 3., 2010.

[7] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P.
Markatos, and S. Ioannidis. Gnort: High performance
network intrusion detection using graphics processors.
In proceedings of RAID ’08, pages 116–134, Berlin,
Heidelberg, 2008. Springer-Verlag.

[8] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P.
Markatos, and S. Ioannidis. Regular expression
matching on graphics hardware for intrusion detection.
In proceedings of RAID ’09, pages 265–283, Berlin,
Heidelberg, 2009. Springer-Verlag.


