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a b s t r a c t

Closed-form solutions of free-vibration problems of simply supported multilayered shells made of
Functionally Graded Material have been examined in the present paper. A variable kinematic shell model,
which is based on Carrera’s Unified Formulation is extended, in this work, to dynamic shell cases.
Classical shell theories are compared to refined ones as well as to layer-wise kinematics and mixed
assumptions based on the Reissner mixed variational theorem. A comparison with the few results
available in the open literature is presented and conclusions are drawn regarding the accuracy of classical
and advanced shell modeling to evaluate lower and higher vibration modes as well as the behavior of
these modes in the shell thickness direction.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) have been the subject of
numerous studies in the recent past. FGMs are classified as a family
of composite materials; they are characterized by a functional
variation in the composition of the material properties through an
assigned direction, which often coincides with the thickness
direction. Their particular feature is that they have the character-
istic behavior of composite materials, but they do not show mate-
rial discontinuities at the interfaces of a classical laminate. Their
composition, and therefore their manufacturing, are designed to
optimize the use of materials, mostly by reducing the weight of the
structure. This is obtained by modifying the constituent phases
through grading (mathematical) laws. FGMs are able to offer
benefits compared to traditional laminates. The constituent phases,
which may be more than two, are adjusted by varying the volume
fractions whose rates are in turn related to the mathematical law
that is used. The benefits associated with the presence of such
materials are significant: the possibility of reducing the interlam-
inar discontinuities which are the main cause of delamination and
the consequent failure of classical laminates.

Various FGM power laws have been used in the open literature,
some of which have been provided by Mori and Tanaka (1973),

Kashtalyan (2004) and Zenkour (2006). Among the various topics
related to FGM, reference can be made to the review articles by
Birman and Bird (2007). The present work is focused on refined
shell models for accurate free-vibration analysis of layered shell
with FGM layers. Several works concerning FG shell vibration have
been presented over the last year. A short review, that is useful for
our purpose, is given below.

Loy et al. (1999) have studied the vibrations of functionally
graded cylindrical shells. The results show that the frequency
characteristics are similar to those observed for homogeneous
isotropic cylindrical shells and that the frequencies are affected by
the constituent volume fractions and the configurations of the
constituent materials. The analysis was carried out with strain-
displacement relations from the Love shell theory and the eigen-
value governing equation was obtained using the RayleigheRitz
method. Pradhan et al. (2000) have examined the vibration char-
acteristics of functionally graded cylindrical shells under various
boundary conditions. The Rayleigh method was used to derive the
governing equations. The effects of boundary conditions and
volume fractions (power law exponent) on the natural frequencies
were studied; it has been shown that the frequency characteristics
of the FG shell are found to be similar to those of isotropic cylin-
drical shells. Chen et al. (2004) have proposed a three-dimensional
vibration analysis of fluid-filled orthotropic FGM cylindrical shells.
A state equation, with variable coefficients, was derived in a unified
matrix form on the basis of the three-dimensional fundamental
equations of anisotropic elasticity. A laminate approximate model,
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which is suitable for an arbitrary variation of the material constants
along the radial direction was employed; numerical examples are
presented and compared with existing results. Tornabene (2009)
has conducted a free-vibration analysis of functionally graded
conical, cylindrical shell and annular plate structures with
proposed a four-parameter power law distribution. Based on the
First-order Shear Deformation Theory (FSDT), the discretization of
the system equations was made by means of the Generalized
Differential Quadrature. Few works are available on the free
vibration of FGM shells and none of these quotes the assessment of
advanced or classical theories.

The present work deals with variable kinematic models in the
framework of Carrera’s Unified Formulation (CUF) for the analysis of
FGM shells. CUF was originally developed for classical layered
structures (Carrera, 1998a, 2003); it has has been extended to FGM
structure by Carrera et al. (2008). The generalized expansion, upon
which the CUF is based, relies on a set of functions which are indi-
cated as thickness functions. CUF reduces a three-dimensional
problem to a bi-dimensional one and the order of expansion along
the thickness of the plate is taken as a freeparameter of the problem.
As a result, an exhaustive variable kinematic model is obtained.

The principle of virtual displacements (PVD) has been employed
in Carrera et al. (2008), while Reissner’s mixed variational theorem
(RMVT) has been extended to FGM in Brischetto and Carrera (in
press). RMVT permits one to assume both displacement and
transverse shear/normal stress variables. Related plate/shell
bending problems have recently been analyzed in Carrera et al. (in
press). Application to FGM beams has been given in Giunta et al. (in
press) where several refined beam theories were applied to the
linear static analysis of beams made of FGM. The extension of CUF
to vibration analysis for plates has been discussed in Cinefra and
Soave (in press).

In thepresentwork thevariablekinematicmodel is extended to the
dynamic analysis of FGM shells, and the natural frequencies of single-
layered shells are compared to other available solutions. Both PVD and
RMVT are employed to compare classical and mixed shell theories.

The article has been organized as follows: the shell geometry is
given in Section 2; the used variational statements and constitutive
equations are given in Sections 3 and 3.3, respectively; the
considered shell theories are described in Sections 4 and 5; the
closed-form solution for the considered free-vibration problem is
described in Section 6; the numerical discussion is conducted in
Section 7.

2. Geometry

Shells are two-dimensional structures with one dimension, in
general the thickness in the z direction, negligible with respect to
the other two in the plane directions. The shells present radii of
curvature Ra and Rb along the two in-plane directions a and b,
respectively. A curvilinear reference system (a, b, z) for shells is
indicated in Fig. 1. In the case of layered shells, the reference surface
of the k-layer is denoted by Uk, and the curvilinear coordinates are
ak and bk. The following differential relation holds (Kraus, 1967):

ds2k ¼ Hk
ada

2
k þ Hk

bdb
2
k þ Hk

zdz
2
k

dUk ¼ Hk
aH

k
bdakdbk

dV ¼ Hk
aH

k
bH

k
zdakdbkdzk

(1)

In the case of shells with constant radii of curvature, the
geometrical relations are written in the following matrix form:

ekpG ¼
h
ekaa; e

k
bb;g

k
ab

iT ¼ ðDk
p þ Ak

pÞuk; (2)

eknG ¼
h
gkaz;g

k
bz; e

k
zz

iT ¼ ðDk
np þ Dk

nz � Ak
nÞuk; (3)

where for each layer k the vector of displacement components is
uk¼ (uk, vk, wk). The explicit form of the introduced arrays follows:

Dk
p ¼

2666664
va
Hk

a
0 0

0 vb
Hk

b

0

vb
Hk

b

va
Hk

a
0

3777775; Dk
np ¼

26664
0 0 va

Hk
a

0 0 vb
Hk

b

0 0 0

37775;

Dk
nz ¼

264 vz 0 0
0 vz 0
0 0 vz

375: ð4Þ

Ak
p ¼

2664
0 0 1

Hk
aRk

a

0 0 1
Hk

b
Rk
b

0 0 0

3775; Ak
n ¼

2664
1

Hk
aRk

a
0 0

0 1
Hk

b
Rk
b

0

0 0 0

3775: (5)

The coefficients Hk are:

Hk
a ¼ Ak

 
1þ zk

Rka

!
;Hk

a ¼ Bk
 
1þ zk

Rk
b

!
;Hk

z ¼ 1

where Ak and Bk are the coefficients of first fundamental form of
reference surface and them, for shells to have constant curvature,
have unit value. (Ak¼ Bk¼ 1).

3. Variational statements

3.1. Principle of Virtual Displacement e PVD

Classical displacements formulations consider displacements u
as primary variables. The following two-dimensional approxima-
tion is introduced in a very general form:

u ¼ Fsus; s ¼ 1;.;N (6)

where

u ¼
�
ua;ub;uz

�
and us ¼

�
uas;ubs;uzs

�
(7)

u are displacements in each point P(a, b, z), us are displacements in
each point PU(a, b) on the reference surface U. Fs are the introduced
thickness functions.

α
β

α

β

RR

Z

Fig. 1. Geometry and reference system for multilayered shells.
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The Principle of Virtual Displacements (PVD) states (Washizu,
1968):Z
V

�
deTpGspC þ deTnGsnC

�
dV ¼

Z
V

rdu€udV þ dLe; (8)

where T indicates the transpose of considered array and V is
the volume of body; r indicates the mass density. The subscript p
indicates the in-plane component of strains and deformations,
sp¼ [saa, sbb, sab], and ep¼ [eaa, ebb, gab]. The subscript n indicates the
out-of-plane components, sn¼ [saz, sbz, szz], and en¼ [gaz, gbz, ezz]. dLe
is the external virtual work. ü indicates the second derivative of
displacementswith respect to time. SubscriptC andG indicate theuse
of constitutive equations and geometrical relations, respectively.

3.2. Reissner Mixed Variational Theorem e RMVT

In order to fulfill ‘a priori’ interlaminar continuity of transverse
shear and normal stress component in laminated structures,
Reissner (1984) introduced Reissner Mixed Variational Theorem
(RMVT) (Carrera, 2001):

u ¼ Fsus;snM ¼ FssnMs; (9)

The subscript M indicates assumed (modeled) values:
snMs¼ [saz, sbz, szz]. RMVT states:Z
V

�
deTpGspC þ deTnGsnM þ dsT

nMðenG � enCÞ
�
dV
�

¼
Z
V

rdu€udVþdLe: (10)

3.3. Hooke Law for PVD and RMVT

Classical Hooke law for a layer k embedded in a multilayered
structure is:

sk
pC ¼ Q k

ppðzÞekpG þ Q k
pnðzÞeknG; (11)

sk
nC ¼ Q k

npðzÞekpG þ Q k
nnðzÞeknG: (12)

where Qpp
k , Qpn

k , Qnp
k , Qnn

k are [3� 3] sub-arrays containing the elastic
coefficients for an orthotropic layer in the structure reference
system (see Carrera, 1995).

In case of RMVT applications, Hooke law is rewritten in the
following mixed form:

sk
pC ¼ bQ k

ppðzÞekpG þ bQ k
pnðzÞsk

nM; (13)

eknC ¼ bQ k
npðzÞekpG þ bQ k

nnðzÞsk
nM; (14)

where the new coefficients are:

bQ k
ppðzÞ ¼ Q k

ppðzÞ � Q k
pnðzÞQ k

nnðzÞ�1Q k
npðzÞ;bQ k

pnðzÞ ¼ Q k
pnðzÞQ k

nnðzÞ�1;bQ k
npðzÞ ¼ �Q k

nnðzÞ�1Q npðzÞ; bQ k
nnðzÞ ¼ Q k

nnðzÞ�1: (15)

In case of FGM layers, the coefficients in Eqs. (11), (15), and (13)
vary in the thickness direction z according to a given law:

Q ðzÞ ¼ Q0 � gðzÞ; (16)

where C0 is the reference stiffness matrix and g(z) gives the varia-
tion along z. For convenience, the thickness functions given in Eq.
(3), are used to approximate Q(z):

Q ðzÞ ¼ FbðzÞQ b þ FtðzÞQ t þ FgðzÞQg ¼ FrQ r with

r ¼ 1;.;10 ð17Þ
whereQr are constant in z and thickness functions Fr are a combination
of Legendre polynomials. Previous formula consists of the unique
novelty for the introductionof FGMinthevariablekinematicmodel in
the CUF. By considering the approximation given in Eq. (17), it is
possible to obtain a general form of constitutive relations for the PVD
and RMVT case, they are valid for both cases of functionally graded
materials and materials with constant properties through the thick-
ness direction z. For the PVDmodels, the constitutive equations are:

sk
pC ¼ FrQ k

ppre
k
pG þ FrQ k

pnre
k
nG; (18)

sk
nC ¼ FrQ k

npre
k
pG þ FrQ k

nnre
k
nG: (19)

In the case of RMVT models, the constitutive equations state:

sk
pC ¼ Fr bQ k

ppre
k
pG þ Fr bQ k

pnrs
k
nM; (20)

eknC ¼ Fr bQ k
npre

k
pG þ Fr bQ k

nnrs
k
nM; (21)

where k¼ 1, ., Nl indicates the considered layers, and r¼ 1, ., 10 is
the loop to approximate the FGM properties varying with the z coor-
dinate. In the case of materials with constant properties in z, the loop
on r index is not necessary and the material coefficients are constant.

4. Considered shell theories

CUF permits to introduce several two-dimensional models for
shells. The governing equations are written, in a unified form, in
terms of few fundamental nuclei which form do not formally
depend on the order of expansion N that is used in the z direction as
well as on the variables description used in the multilayered
structure (Layer-Wise (LW) or Equivalent Single Layer (ESL)).

The generic variable a(a, b, z) and its variation da(a, b, z) can be
written according to the following general expansions:

aða;b; zÞ ¼ FsðzÞasða;bÞ; daða; b; zÞ ¼ FsðzÞdasða; bÞ with
s; s ¼ 1;.;N ð22Þ

Bold letters denote arrays; the summing convention with repeated
indexes s and s is assumed. Depending on the used thickness func-
tions, amodel can be: ESLwhen the variable is assumed for thewhole
multilayerorLWwhenthevariable is considered independent ineach
layer. Any shell configuration embedding FGM layers can be consid-
ered: a single-layer FGM shell or a multilayered structure with
a functionally graded core. The proposed two-dimensional models
have been coded according to the CUF. Details can be found in
previous authors’works (Carrera et al., 2008; Carrera, 1995, 2002).

4.1. Equivalent single-layer theories

Higher Order Theories (HOTs) for displacement variables u can
be formulated according to the following expansion:

usða; b; zÞ ¼ u0sða; bÞ þ zi uisða; bÞ with s ¼ a; b and

i ¼ 1;N: (23)

where u0 denotes the displacements value in correspondence to the
reference surface U and ui is the i-th derivative of u. The summing
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convention for the repeated indexes has been adopted. N is the
order of expansion, which is taken as a free parameter. In the
numerical investigation N is considered to range from 1 to 4.

According to the acronym system developed within CUF, the
related theories are namedas ED1eED4. The letterEdenotes that the
kinematic is preserved for thewhole layers, as in the ESL approach.D
denotes that only displacement unknowns are used and the last
number states the through-the-thickness expansion order. Classical
Lamination Theory (CLT), based on Cauchy (1828), Poisson (1829) or
Kirchhoff (1850) assumptions type, discards transverse shear and
through-the-thickness deformations. The displacement model
related to CLT can be written in the following form:

usða; b; zÞ ¼ u0sða; bÞ � zvu0zða;bÞ
vs with s ¼ a; b

uzða; b; zÞ ¼ u0zða; bÞ:
(24)

It states that the section remains plane and orthogonal to the
plate reference surface U. Transverse shear/normal stresses are
discarded by CLT.

Transverse shear deformations can be introduced according to
Reissner and Mindlin’s (see Reissner, 1945 and Mindlin, 1951)
kinematic assumptions:

usða; b; zÞ ¼ u0sða; bÞ þ z u1sða; bÞ with s ¼ a; b
uzða; b; zÞ ¼ u0zða; bÞ: (25)

This theory is also denoted as First-order Shear Deformation
Theory (FSDT) in case of laminated structures. Transverse shear
stresses show “a priori” constant piece-wise distribution.

FSDT can be obtained from ED1 theory considering a constant
transverse displacement through the thickness. In both CLT and
FSDT, Poisson locking phenomena is contrasted by means of the
plane-stress conditions as indicated in Carrera and Brischetto
(2008a,b). That correction is also used in the ED1 cases.

4.2. Layer-Wise Theories

Multilayered shells can be analyzed by kinematics assumptions
which are independent in each layer k. According to Reddy (2004)
these approaches are herein stated as Layer-Wise theories.

LW description yields, thus, displacement variables that are
independent in each layer. The Taylor thickness expansion, adopted
in the previous paragraphs for ESL cases, is not convenient for LW

description. Displacements interlaminar continuity can be imposed
more conveniently by employing interface values as unknown
variables. LW description assumes the following form:

uks ¼ Ftukst þ Fbu
k
sb þ Fruksr with

s ¼ a;b; z; r ¼ 2;3;.;N; k ¼ 1;2;.;Nl: (26)

where Nl indicates the number of layers. Subscripts t and b denote
values related to the top and the bottom of layer, respectively. The
thickness functions Fs(zk) have been defined by:

Ft ¼ P0þP1
2

; Fb ¼
P0�P1

2
; Fr ¼ Pr�Pr�2; r ¼ 2;3;.;N; (27)

inwhich Pj¼ Pj(zk) is the Legendre’s jth-order polynomial defined in
the zk-domain: �1� zk� 1. In the numerical investigations the
maximum order is considered to be four, related polynomials are:

P0 ¼ 1; P1 ¼ zk; P2 ¼
�
3z2k � 1

�.
2;

P3 ¼ 5z3k
2

� 3zk
2

; P4 ¼ 35z4k
8

� 15z2k
4

þ 3
8
:

The previous functions have the following interesting
properties:

zk ¼
�
1 : Ft ¼ 1; Fb ¼ 0; Fr ¼ 0
�1 : Ft ¼ 0; Fb ¼ 1; Fr ¼ 0: (28)

The top and bottom values have been used as unknown vari-
ables. The interlaminar compatibility of displacement can be
therefore easily linked:

ukst ¼ uðkþ1Þ
sb ; k ¼ 1; Nl � 1: (29)

The acronyms for these theories are LD1eLD4where Lmeans LW
approach. LW mixed models based on RMVT consider the letter M
instead of D. Related layer-wise analysis are denoted as LM1eLM4.

5. Governing equations

This section presents the dynamic governing equations based on
the variational statements of Section 2. The derivation of governing
equation permits to obtain the so-called fundamental nuclei. These

Table 1
Comparison of frequency parameter u ¼ uh

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
vs thickness ratio h/R, vibration modes m and exponent p. Shell data: b/R¼ 2, FGM Al/Al2O3.

h/R m Ref. Matsunaga (2009) LM4 ED4 CLT FSDT

p¼ 1
0.500 2 0.2720E0 0.2765E0 0.2768E0 0.2725E0 0.2725E0
0.200 4 0.7218E�1 0.7117E�1 0.7113E�1 0.7206E�1 0.7137E�1
0.100 6 0.2821E�1 0.2771E�1 0.2766E�1 0.2792E�1 0.2770E�1
0.050 6 0.1020E�1 0.1013E�1 0.1013E�1 0.1015E�1 0.1014E�1
0.010 10 0.9454E�3 0.9446E�3 0.9434E�3 0.9438E�3 0.9436E�3
0.001 18 0.3068E�4 0.3090E�4 0.3090E�4 0.3090E�4 0.3090E�4
p¼ 4
0.500 2 0.2209E0 0.2258E0 0.2261E0 0.2233E0 0.2233E0
0.200 4 0.5995E�1 0.5884E�1 0.5879E�1 0.5980E�1 0.5912E�1
0.100 6 0.2391E�1 0.2334E�1 0.2330E�1 0.2359E�1 0.2336E�1
0.050 6 0.8449E�2 0.8381E�2 0.8372E�2 0.8395E�2 0.8384E�2
0.010 10 0.7879E�3 0.7856E�3 0.7856E�3 0.7859E�3 0.7858E�3
0.001 18 0.2571E�4 0.2569E�4 0.2569E�4 0.2569E�4 0.2569E�4
p¼ 10
0.500 2 0.1972E0 0.2018E0 0.2021E0 0.2000E0 0.2000E0
0.200 4 0.5438E�1 0.5348E�1 0.5345E�1 0.5468E�1 0.5384E�1
0.100 6 0.2224E�1 0.2178E�1 0.2174E�1 0.2210E�1 0.2182E�1
0.050 6 0.7667E�2 0.7609E�2 0.7600E�2 0.7628E�2 0.7615E�2
0.010 10 0.7219E�3 0.7198E�3 0.7198E�3 0.7203E�3 0.7201E�3
0.001 18 0.2351E�4 0.2349E�4 0.2349E�4 0.2349E�4 0.2349E�4
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consist of [3� 3] arrays that represent the basic items fromwhich the
stiffness matrix of the whole structure can be computed. Detailed
derivationprocedure is given in thepreviousworks (Carrera,1999a,b).

For a laminate with Nl layers, the PVD (Eq. (5)) for pure
mechanical analysis, neglecting any body forces and considering
only applied mechanical loads, is formulated as:

XNl

k¼1

Z
Uk

Z
Ak

fdek T
pG sk

pCþdek T
nG sk

nCgdUkdz ¼
XNL

k¼1

dLke�
XNL

k¼1

dLkin (30)

where the integration domains Uk and Ak indicate respectively the
reference plane of the lamina and its thickness.

Similarly, the RMVT (Eq. (7)) for a laminate becomes:

XNl

k¼1

Z
Uk

Z
Ak

�
deTpGspC þ deTnGsnM þ dsT

nMðenG � enCÞ
	
dUkdz

¼
XNL

k¼1

dLke �
XNL

k¼1

dLkin (31)

The steps to obtain the consistent governing equations are: e
choice of the opportune variational statement (PVD or RMVT); e
substitutions of the consistent constitutive equations; e use of the
geometrical relations; e introduction of CUF for the two-dimen-
sional approximation.

In order to obtain a strong form of differential equations on
the domain Uk, as well as the correspondence boundary condi-
tions on edge Gk, the integration by parts is required. Further
details on this integration procedure are reported in Carrera et al.
(2008). The governing equations on the domain Uk, in the PVD
case, are:

duk T
s : Kkssr

uu uk
s ¼ Pk

us �Mkssr
uu €uk

s (32)

Boundary conditions of are:

Pkssr
uu uk

s ¼ Pkssr
uu uk

s (33)

In Eq. (32), Pus
k is the external mechanical load and the funda-

mental nucleus Kuu
kssr has to be assembled through the depicted

indexes: the internal loop is on index r; s and s consider the order of

Table 2
Comparison of frequency parameter u ¼ uh

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
vs thickness ratio h/R, vibration modes m and exponent p. Shell data: b/R¼ 5, FGM Al/Al2O3.

h/R m Ref. Matsunaga (2009) LM4 ED4 FSDT CLT

p¼ 1
0.500 2 0.8324E�1 0.8808E�1 0.8808E�1 0.8835E�1 0.8824E�1
0.200 4 0.3046E�1 0.2923E�1 0.2923E�1 0.2972E�1 0.2927E�1
0.100 6 0.9585E�2 0.9436E�2 0.9436E�2 0.9482E�2 0.9458E�2
0.050 6 0.3739E�2 0.3726E�2 0.3726E�2 0.3732E�2 0.3731E�2
0.010 10 0.3783E�3 0.3778E�3 0.3778E�3 0.3779E�3 0.3779E�3
0.001 18 0.1201E�4 0.1201E�4 0.1200E�4 0.1200E�4 0.1200E�4
p¼ 4
0.500 2 0.6737E�1 0.7289E�1 0.7289E�1 0.7322E�1 0.7311E�1
0.200 4 0.2614E�1 0.2481E�1 0.2481E�1 0.2533E�1 0.2488E�1
0.100 6 0.8072E�2 0.7771E�2 0.7910E�2 0.7953E�2 0.7928E�2
0.050 6 0.3075E�2 0.3061E�2 0.3061E�2 0.3066E�2 0.3065E�2
0.010 10 0.3114E�3 0.3108E�3 0.3108E�3 0.3109E�3 0.3109E�3
0.001 18 0.1004E�4 0.1004E�4 0.1004E�4 0.1004E�4 0.1004E�4
p¼ 10
0.500 2 0.5975E�1 0.6373E�1 0.6372E�1 0.6404E�1 0.6390E�1
0.200 4 0.2325E�1 0.2345E�1 0.2345E�1 0.2411E�1 0.2358E�1
0.100 6 0.7449E�2 0.7453E�2 0.7307E�2 0.7362E�2 0.7332E�2
0.050 6 0.2766E�2 0.2752E�2 0.2751E�2 0.2757E�2 0.2756E�2
0.010 10 0.2809E�3 0.2804E�3 0.2804E�3 0.2805E�3 0.2805E�3
0.001 18 0.9247E�4 0.9241E�4 0.9241E�4 0.9241E�4 0.9241E�4

Table 3
Comparison of frequency parameter u ¼ uh

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
vs thickness ratio h/R, vibration modes m and exponent p. Shell data: b/R¼ 10, FGM Al/Al2O3.

h/R m Ref. Matsunaga (2009) LM4 ED4 FSDT CLT

p¼ 1
0.500 2 0.2695E�1 0.2820E�1 0.2820E�1 0.2824E�1 0.2823E�1
0.200 4 0.1038E�1 0.1063E�1 0.1063E�1 0.1064E�1 0.1064E�1
0.100 6 0.5164E�2 0.5230E�2 0.5230E�2 0.5231E�2 0.5231E�2
0.050 6 0.1831E�2 0.1808E�2 0.1808E�2 0.1810E�2 0.1809E�2
0.010 10 0.1897E�3 0.1896E�3 0.1895E�3 0.1896E�3 0.1896E�3
0.001 18 0.5994E�5 0.5992E�5 0.5992E�5 0.5992E�5 0.5992E�5
p¼ 4
0.500 2 0.2190E�1 0.2345E�1 0.2345E�1 0.2350E�1 0.2349E�1
0.200 4 0.8399E�1 0.8694E�1 0.8694E�1 0.8699E�1 0.8698E�1
0.100 6 0.2391E�2 0.4250E�2 0.4250E�2 0.4251E�2 0.4251E�2
0.050 6 0.1568E�2 0.1543E�2 0.1543E�2 0.1545E�2 0.1543E�2
0.010 10 0.1547E�3 0.1545E�3 0.1545E�3 0.1545E�3 0.1545E�3
0.001 18 0.4963E�5 0.4961E�5 0.4961E�5 0.4961E�5 0.4961E�5
p¼ 10
0.500 2 0.1947E�1 0.2037E�1 0.2037E�1 0.2042E�1 0.2040E�1
0.200 4 0.7411E�1 0.7601E�1 0.7601E�1 0.7604E�1 0.7604E�1
0.100 6 0.3677E�2 0.3728E�2 0.3728E�2 0.3729E�2 0.3729E�2
0.050 6 0.1478E�2 0.1457E�2 0.1457E�2 0.1460E�2 0.1458E�2
0.010 10 0.1378E�3 0.1377E�3 0.1377E�3 0.1377E�3 0.1377E�3
0.001 18 0.4515E�5 0.4512E�5 0.4512E�5 0.4512E�5 0.4512E�5
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expansion in z for the displacements; superscript k indicates the
assembling on the number of layers. üs

k denotes the second deriv-
ative with respect to the time of the displacement components and
matrix Muu

kssr represents the fundamental nucleus for the inertial
array:

Mkssr ¼
Z
Ak

Irkr FsFsFrdz; (34)

the fundamental nucleus Kuu
kssr for the stiffness matrix and the

fundamental nucleus Puu
kssr for the boundary conditions are:

Kkssr
uu ¼

Z
Ak

½ð�Dk
pþAk

pÞT ðFrQ k
pprðDk

pþAk
pÞþFrQ k

pnrðDk
npþDk

nz�Ak
nÞÞ

þð�Dk
npþDk

nz�Ak
nÞT ðFrQ k

nprðDk
pþAk

pÞ
þFrQ k

nnrðDk
npþDk

nz�Ak
nÞÞ�FsFsHk

aH
k
bdz; ð35Þ

Pkssr
uu ¼

Z
Ak

½IkTp ðFrQ k
pprðDk

p þ Ak
pÞ þ FrQ k

pnrðDk
np þ Dk

nz � Ak
nÞÞ

þ IkTnpðFrQ k
nprðDk

p þ Ak
pÞ þ FrQ k

nnrðDk
np þ Dk

nz � Ak
nÞÞ�

� FsFsHk
aH

k
bdz: ð36Þ

Ipk and Inpk are identity matrices to perform the integration by parts.

I ¼
241 0 0
0 1 0
0 0 1

35; Ikp ¼

26664
1
Hk

a
0 0

0 1
Hk

b

0
1
Hk

b

1
Hk

a
0

37775; Iknp ¼

2664
0 0 1

Hk
a

0 0 1
Hk

b

0 0 0

3775: (37)

Further details about fundamental nuclei in Eqs. (34)e(36) can
be found in Carrera et al. (2008).

The governing equations in the RMVT case are:

duk
s : K

kssr
uu uk

s þ Kkssr
us sk

ns ¼ Pk
us �Mkssr€uk

s
dsk

ns : K
kssr
su uk

s þ Kkssr
ss sk

ns ¼ 0
(38)

Table 5
Comparison of frequency parameter u ¼ uh

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
vs thickness ratio h/R, vibration modes m and exponent p. Shell data: b/R¼ 2, FGM Al/Al2O3.

p h/R m Ref. Matsunaga (2009) Natural frequency

LM4 ED4 LD3 ED2 CLT FSDT

1 0.500 2 0.2720E0 0.2768E0 0.2765E0 0.2768E0 0.2771E0 0.2811E0 0.2778E0
0.200 4 0.7218E�1 0.7113E�1 0.7117E�1 0.7113E�1 0.7119E�1 0.7206E�1 0.7137E�1
0.100 6 0.2821E�1 0.2766E�1 0.2771E�1 0.2766E�1 0.2768E�1 0.2792E�1 0.2770E�1
0.050 6 0.1020E�1 0.1013E�1 0.1013E�1 0.1013E�1 0.1013E�1 0.1015E�1 0.1014E�1
0.010 10 0.9454E�3 0.9434E�3 0.9446E�3 0.9434E�3 0.9434E�3 0.9438E�3 0.9436E�3
0.001 18 0.3068E�4 0.3090E�4 0.3090E�4 0.3090E�4 0.3090E�4 0.3090E�4 0.3090E�4

4 0.500 2 0.2209E0 0.2261E0 0.2258E0 0.2262E0 0.2267E0 0.2313E0 0.2280E0
0.200 4 0.5995E�1 0.5879E�1 0.5884E�1 0.5880E�1 0.5893E�1 0.5980E�1 0.5912E�1
0.100 6 0.2391E�1 0.2330E�1 0.2334E�1 0.2330E�1 0.2335E�1 0.2359E�1 0.2336E�1
0.050 6 0.8449E�2 0.8372E�2 0.8381E�2 0.8372E�2 0.8375E�2 0.8395E�2 0.8384E�2
0.010 10 0.7879E�3 0.7856E�3 0.7856E�3 0.7856E�3 0.7856E�3 0.7860E�3 0.7858E�3
0.001 18 0.2571E�4 0.2569E�4 0.2569E�4 0.2569E�4 0.2569E�4 0.2569E�4 0.2569E�4

10 0.500 2 0.1972E0 0.2021E0 0.2018E0 0.2021E0 0.2030E0 0.2000E0 0.2000E0
0.200 4 0.5438E�1 0.5344E�1 0.5348E�1 0.5345E�1 0.5367E�1 0.5469E�1 0.5384E�1
0.100 6 0.2224E�1 0.2174E�1 0.2178E�1 0.2174E�1 0.2181E�1 0.2210E�1 0.2182E�1
0.050 6 0.7667E�2 0.7601E�2 0.7609E�2 0.7601E�2 0.7604E�2 0.7628E�2 0.7615E�2
0.010 10 0.7219E�3 0.7198E�3 0.7198E�3 0.7198E�3 0.7199E�3 0.7203E�3 0.7201E�3
0.001 18 0.2351E�4 0.2349E�4 0.2349E�4 0.2349E�4 0.2349E�4 0.2349E�4 0.2349E�4

Table 4
Comparison of frequency parameter u ¼ uh

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
vs thickness ratio h/R, vibration modes m and exponent p. Shell data: b/R¼ 20, FGM Al/Al2O3.

h/R m Ref. Matsunaga (2009) LM4 ED4 FSDT CLT

p¼ 1
0.500 2 0.7990E�2 0.7732E�2 0.7731E�2 0.7738E�2 0.7737E�2
0.200 4 0.2875E�2 0.2905E�2 0.2905E�2 0.2906E�2 0.2906E�2
0.100 6 0.1413E�2 0.1426E�2 0.1426E�2 0.1427E�2 0.1427E�2
0.050 6 0.7032E�3 0.7076E�3 0.7076E�3 0.7076E�3 0.7076E�3
0.010 10 0.7733E�4 0.7714E�4 0.7714E�4 0.7716E�4 0.7716E�4
0.001 18 0.2783E�5 0.2782E�5 0.2782E�5 0.2782E�5 0.2782E�5
p¼ 4
0.500 2 0.6562E�2 0.6445E�2 0.6444E�2 0.6451E�2 0.6450E�2
0.200 4 0.2331E�2 0.2377E�2 0.2377E�2 0.2377E�2 0.2377E�2
0.100 6 0.1143E�2 0.1160E�2 0.1160E�2 0.1160E�2 0.1160E�2
0.050 6 0.5684E�3 0.5735E�3 0.5735E�3 0.5735E�3 0.5735E�3
0.010 10 0.6564E�4 0.6543E�4 0.6543E�4 0.6544E�4 0.6544E�4
0.001 18 0.2319E�5 0.2318E�5 0.2317E�5 0.2318E�5 0.2318E�5
p¼ 10
0.500 2 0.5913E�2 0.5584E�2 0.5583E�2 0.5590E�2 0.5589E�2
0.200 4 0.2064E�2 0.2076E�2 0.2076E�2 0.2076E�2 0.2076E�2
0.100 6 0.1008E�2 0.1017E�2 0.1017E�2 0.1017E�2 0.1017E�2
0.050 6 0.5007E�3 0.5038E�3 0.5038E�3 0.5039E�3 0.5039E�3
0.010 10 0.6144E�4 0.6126E�4 0.6126E�4 0.6128E�4 0.6127E�4
0.001 18 0.2125E�5 0.2124E�5 0.2123E�5 0.2124E�5 0.2124E�5
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Fig. 3. Through the thickness distributions of stresses and displacements far various p values. Data b ¼ R ¼ 2 and h ¼ R ¼ 0.001.
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Fig. 2. Through the thickness distributions of stresses and displacements far various p values. Data h ¼ R ¼ 0.001 b ¼ R ¼ 10, ED4 results.
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four fundamental nuclei relative to stiffness array are obtained.
These are completely different from those obtained in the PVD case
while the inertial array does not change.

Corresponding boundary conditions of Neumann type are:

Pkssr
uu uk

s þPkssr
us sk

ns ¼ Pkssr
uu uk

s þPkssr
us sk

ns (39)

The fundamental nuclei can be obtained:

Kkssr
uu ¼

Z
Ak



ð�Dk

pþAk
pÞT
�
Fr bQ k

pprðDk
pþAk

pÞ
�

FsFsHk
aH

k
bdz; (40)

Kkssr
us ¼

Z
Ak



ð � Dk

p þ Ak
pÞT
�
Fr bQ k

pnr

�
þ ð � Dk

np þ Dk
nz � Ak

nÞT


�FsFsHk
aH

k
bdz; (41)

Kkssr
su ¼

Z
Ak



ðDk

np þ Dk
nz � Ak

nÞ �
�
Fr bQ k

npr

�
ðDk

p þ Ak
pÞ


�FsFsHk
aH

k
bdz; (42)

Kkssr
ss ¼

Z
Ak



� Fr bQ k

nnr


FsFsHk

aH
k
bdz; (43)

The nuclei for boundary conditions on edge Gk are:

Pkssr
uu ¼

Z
Ak



IkTp Fr bQ k

pprðDk
p þ Ak

pÞ

FsFsHk

aH
k
bdz; (44)

Pkssr
us ¼

Z
Ak



IkTp Fr bQ k

pnr þ IkTnp


FsFsHk

aH
k
bdz: (45)

6. Closed-form solution for free-vibration problem

For the derived boundary value problem, for particular geom-
etry, material symmetry and boundary conditions, an analytical
solution can be derived. For simply supported shells, a Navier-type
closed-form solution may be found with the following harmonic
assumptions for the field variables:�
ukas

; skazs

�
¼P

m;n

�bU k

as

; bSkazs�cos mpak
ak

sin
npbk
bk

eiumnt ; k ¼ 1;Nl;

�
ukbs

;skbzs

�
¼
X
m;n

�bUk
bs
; bSkbzs�sin mpak

ak
cos

npbk
bk

eiumnt ; s ¼ t;b; r;

�
ukzs ; s

k
zzs

�
¼
X
m;n

�bUk
zs ;
bSkzzs�sin mpak

ak
sin

npbk
bk

eiumnt ; r ¼ 2;N;

(46)

where ak and bk are the lengths of the shell along the two curvi-
linear coordinates a and b. m and n represent the number of half-
waves in a and b direction, respectively. These numbers charac-
terize the vibration mode associated to the circular frequency umn.
i ¼

ffiffiffiffiffiffiffi
�1

p
is the imaginary unit and t the time. The quantities with

ˇ

indicate the amplitudes. These assumptions correspond to the
simply supported boundary conditions. Upon substitution of Eq.
(46), the governing equations on Uk assume the form of a linear
system of algebraic equations in the domain, while the boundary
conditions are exactly fulfilled.

Only the free-vibration analysis is addressed in this article.
Therefore, the external mechanical loading is set to zero and the
linear system of algebraic equations is:

K* bU ¼ u2
mnM bU ; (47)

where K* is the equivalent stiffness matrix obtained by means of
static condensation (for further details see Carrera, 1998b, 2000),M
is the inertial matrix and bU is the vector of unknown variables. By
defining lmn¼umn

2 , the solution of the associated eigenvalue
problem becomes:

jjK* � lmncM jj ¼ 0: (48)

The eigenvectors bU associated to the eigenvalues lmn (or to
circular frequencies umn) define the vibration modes of the struc-
ture in terms of primary variables. Once the wave numbers (m,n)
have been defined in the in-plane directions, the number of
obtained frequencies becomes equal to the degrees of freedom of
the employed two-dimensional model. It is possible to obtain the
related eigenvector, in terms of primary variables, for each value of
frequency, in order to plot the modes in the thickness direction.

7. Numerical results

The developed shell theories have first been applied to compare
the resultswith the available reference solutions (Matsunaga, 2009)
in which higher order ESL type shell theories were developed
(N¼ 1,2,3,4). The adopted grading lawdistribution is that of Zenkour
(2006); Young’s Modulus, shear modulus and density, vary
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continuously through the thickness, accordingly to the change in
volume fractions of thematerials,which takes place according to the
law:

§ ¼ §m þ ð§c �§mÞ
�
1
2
þ z
h

�p

(49)

where§m is the property of the metallic phase, §c is the property
of the ceramic phase, h is the global thickness and z is the variation
in the thickness coordinate, which varies between e h/2 and h/2,
and p is the power law exponent.

In order to validate the accuracy of the proposed theories for
free-vibration analysis of FGM shells, various shell configuration
have been examined by changing the length (a,b), radius (R),
thickness (h), vibration modes (m) and grading law exponent (p) in
the FGM layer of the cylindrical shell.

For the sake of conciseness, only the results related to significant
shell theories have been reported in the following analysis. In most

classical cases CLT and FSDT results are compared to the higher
order ESLM theory (ED4) and to layer-wise mixed analysis with
fourth-order expansion in each layer. The last shell theory has been
proved in previous works by the authors Carrera (1998a), Carrera
et al. (2008), to lead to a quasi three-digressional description of
the statics and dynamics of layered structures. Tables 1e4 compare
the present analysis with those in Matsunaga (2009) for a FGM
circular cylindrical, simply supported shell made of aluminium
(Em¼ 70 GPa, rm¼ 2702 kg/m3, n¼ 0.3) at the bottom and alumina
(Al2O3) (Ec¼ 380 GPa, rm¼ 3800 kg/m3, n¼ 0.3) at the top. The
geometry of the shell varies according to the b/R and h/R ratio,
fixing R¼ Ra¼ Rb¼ 1[m] and a¼p, where a is the length along the
a coordinate and b is the length along the b coordinate. The 4 tables
are related to the evaluation of frequency parameter u for the
following values of length-to-radius ratio b/R¼ 2, 5, 10, 20,
respectively. Various values of the thickness-to-radius h/R
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Fig. 6. Through the thickness distributions of stresses for p = 10 for a three layered
shell. Comparison between LD4 and ED4 results. Data b ¼ R ¼ 2, m ¼ 2 and
h ¼R ¼ 0.001.
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Table 6
Comparison of frequency parameter u ¼ uh

ffiffiffiffiffiffiffiffiffiffiffiffi
rc=Ec

p
vs thickness ratio h/R, vibration modes m and exponent p for multilayered shell. Data: b/R¼ 20, m¼ 2.

p LM4 LD4 ED4 LD3 ED2 FSDT CLT

h/R¼ 0.5
1 0.2905E0 0.2905E0 0.2905E0 0.2906E0 0.2908E0 0.2764E0 0.2768E0
4 0.2521E0 0.2521E0 0.2521E0 0.2520E0 0.2523E0 0.2393E0 0.2397E0
10 0.2368E0 0.2368E0 0.2368E0 0.2368E0 0.2369E0 0.2237E0 0.2243E0
h/R¼ 0.001
1 0.5165E�3 0.5165E�3 0.5165E�3 0.5165E�3 0.5165E�3 0.4995E�3 0.4995E�3
4 0.4407E�3 0.4407E�3 0.4408E�3 0.4407E�3 0.4408E�3 0.4263E�3 0.4263E�3
10 0.4056E�3 0.4056E�3 0.4058E�3 0.4056E�3 0.4058E�3 0.3924E�3 0.3924E�3
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parameter, the wave number m of the vibration modes along the
a direction (n value is fixed to 1) and the grading law exponent are
considered in each table. For thin single-layered shells, the highest
forth-order ED4 theory provides almost the same results of the
reference solution (Matsunaga, 2009); classic theories are not able
to describe the correct dynamic behavior, especially for a thick shell
geometry. Such a discrepancy is almost negligible in thin shell
cases. The use of refined theories appears mandatory in order to
obtain accurate results; this is confirmed in Table 5 where
a comparison with additional classical and advanced theories is
given. Since three-dimensional elasticity solutions are not available
for the considered shell problems, the authors advice is to consider
the present LM4 analysis as a quasi-3D solution, i.e. as a reference
solution.

Since frequency parameters are global characteristic of a shell
dynamic response, a better exploitation of the response of various
shell theories could be obtained by considering the distribution of
vibration modes in the thickness shell directions. This has been
done in Figs. 2 and 3.The displacements and stresses are compared
in Fig. 2 which accounts for three different values of grading
parameter p. The ED4 results show that the differences in the
response of the considered p values are affected to a greater extent
by the values of the thickness coordinate z. Layer-wise results with
N¼ 4 (LD4) are compared in Fig. 3 with classical CLT and first-order
SDT (FSDT). The differences increase in the case of the transverse
shear and normal stress evaluation. It appears clear that classical
theories even though, such as CLT and FSDT, could lead to accept-
able results in the evaluation of free-vibration parameters, they
could fail completely to describe stress/displacement fields in the
thickness direction of the considered vibration modes. In other
words CLT and FSD are not adequate to detect failures of FGM shells
due to vibrations.

The differences between the CLT and ED4 results D¼
(ED4� CLT)/ED4 are given in Fig. 4. It has been confirmed that the
errors of classical theories increase by vibration mode increasing.
It has also been confirmed that ED4 provides good results
according to the reference solution, for single-layer shells. A
multilayered shell made up of two isotropic skins (Al at the top
and Al2O3 at the bottom) embedding a FGM core is presented.
Fundamental free frequency values are reported in Table 6, where
several theories are compared. A thick and a thin shell are
analyzed.

Table 6 confirms the convenience of referring to refined
models, especially in the case of thick shells. In addition, Figs. 5
and 6 show the limitations of ESL type models in tracing
through-the-thickness distributions of various stress variables. The
use of layer-wise models, such as LD4, appears mandatory in these
cases.

8. Conclusions

A free-vibration problem of multilayered shells embedding FGM
layers has been considered in this work by referring to variable
kinematic shell theories developed in the framework of the Carrera
Unified Formulation. Attention has been restricted to orthotropic,
simply supported, shells. Classical theories are compared to higher
order ones as well as to layer-wise kinematic and mixed shell
formulations based on the Reissner Mixed Variational Theorem.
The conducted numerical analysis has shown that the accuracy of
various theories depends to a great extent on various geometrical
parameters as well as on the dynamic modes. The proposed vari-
able kinematic model therefore appears to be able to obtain exact
values and to establish the accuracy of classical shell theories,
especially for multilayered shells.
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