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Snow metamorphism: A fractal approach
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Snow is a porous disordered medium consisting of air and three water phases: ice, vapor, and liquid. The ice
phase consists of an assemblage of grains, ice matrix, initially arranged over a random load bearing skeleton.
The quantitative relationship between density and morphological characteristics of different snow microstruc-
tures is still an open issue. In this work, a three-dimensional fractal description of density corresponding to
different snow microstructure is put forward. First, snow density is simulated in terms of a generalized Menger
sponge model. Then, a fully three-dimensional compact stochastic fractal model is adopted. The latter approach
yields a quantitative map of the randomness of the snow texture, which is described as a three-dimensional
fractional Brownian field with the Hurst exponent H varying as continuous parameters. The Hurst exponent is
found to be strongly dependent on snow morphology and density. The approach might be applied to all those
cases where the morphological evolution of snow cover or ice sheets should be conveniently described at a

quantitative level.

I. INTRODUCTION

Physical and mechanical properties of snow greatly vary
over space and rapidly evolve in time (snow metamorphism),
affecting thermal conductivity, strength, heat capacity, den-
sity, and texture [1-3]. Density and texture depend on me-
teorological conditions, temperature, pressure, and humidity,
which, together with the mechanical strains cause metamor-
phism and, ultimately, instability of snow [4—14]. Density is
the parameter used for classifying and assessing snow prop-
erties, thanks to the simplicity of in situ measurements and
can be adopted as a parameter for quantifying characteristics
as viscosity, shear stress and strength, cohesion, and me-
chanical properties, such as Young’s Modulus and Poisson’s
ratio. Usually, researchers refer to the specific density, de-
fined as the ratio of the snow density py,,,, to the ice density
pice=917 kg/m? and ranging from 0.05 to 0.60, to describe
mechanical properties of snow. However, different types of
snow having the same density might exhibit completely dif-
ferent mechanical features. Elucidating the quantitative rela-
tion between density and mechanical characteristic of snow
is an open issue worthy of investigation beyond purely
speculative interests. For example, the knowledge of density
of added or lost snow is needed in altimeter measurements of
dynamic thinning of Arctic and Antarctic ice sheets and
monitoring of incipient avalanches [15-17].

Scaling properties and fractional calculus have been ex-
tensively adopted to characterize different classes of materi-
als [18]. In particular, fractal concepts have been already
used for modeling snow crystals and reproducing snowflake
morphology (see, e.g., the von Koch snowflake curves and
the application of general iterated function systems). In the
last two decades, fractal theories of snow have resulted in
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several applications: from the measure of fractal dimension
of images, to remote sensing and mapping of snow cover and
depth distribution by satellite and Lidar images, from the
study of the roughness of the snowpack, to the determination
of the air flux across snow surface and to the definition of the
spatial variation of the snow water equivalent [19-26]. The
fractal character of snow has been recently studied by the
Centre Etudes de Neige of Météo France [27,28] by analyz-
ing three-dimensional tomography obtained for cubic
samples with 2.5 mm size and different densities. Relation-
ships between mechanical properties (tension, shear strength,
toughness) and specific density in terms of power laws with
noninteger exponents suggesting fractal features of snow are
reported in [29-31]. Furthermore, fractal theory has been
used to investigate the stability of the snow cover at larger
scales. Based on the renormalization group model, the prob-
ability of occurrence of snow avalanche events, assuming
scale invariance of the snowpack at the smallest scales with a
consequent implication of the same behavior at the largest
scales [32,33].

The present work is addressed to investigate the multi-
scale character of snow density, by adopting a fractal de-
scription of the distribution of ice grains, able to reproduce
the local randomness of real microstructure. The paper is
organized as follows. In Sec. II, snow density is simulated by
means of a generalized Menger sponge model, characterized
by a discrete set of Hurst exponent values. In Sec. III, a fully
three-dimensional fractional Brownian model is reported.
This model has the advantage to reproduce the randomness
of the local microstructure of snow samples in a more real-
istic way. Snow density is mapped to the three-dimensional
fractional Brownian field, with the Hurst exponent H con-
tinuously ranging from O to 1. The proposed model provides
a fully three-dimensional analysis in terms of a continuum
fractional Brownian field rather than the discrete Menger
model description [34,35]. In the framework of this model,
fractal dimension D and Hurst exponent H quantify ice dis-
tribution and reproduce the values of snow density for dif-
ferent microstructures. This fully three-dimensional fractal
model can be used to relate snow texture, obtained by in situ
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FIG. 1. (Color online) Solid homogeneous cube at the initial
stage of the iteration process (a), Menger sponge at the first iteration
(b), Menger sponge at the second iteration (c). Size, density and
porosity are, respectively: r,, p, and ¢,=0 (a); r=3r, p
=(20/27)p, and ¢=7/27 (b); r,=9r,, p,=(400/729)p, and ¢,
=329/729 (c) [18].

measurements o remote imaging techniques, and density
changes, important for monitoring snow cover and ice sheets
dynamics, through the estimate of Hurst exponent at differ-
ent snow metamorphism stages.

II. MENGER SPONGE MODEL

In this section, the fractal, known as Menger sponge, is
used to characterize scale invariant features of porosity and
density of snow. The Menger sponge is generated as shown
in the scheme of Fig. 1. First, the bulky cube (a) is divided
into 3 X 3 X3=27 equal subcubes (b). Then, seven subcubes
are removed from the center of each face and from the center
of the cube, resulting in N,;=20 filled subcubes and N,=33
—N;=T7 empty subcubes. This single step is repeatedly ap-
plied to the remaining cubes. For a solid cube with linear
size r, the first step Menger sponge is characterized by lin-
ear size r|=3r, [Fig. 1(b)]. The second step Menger sponge
is characterized by linear size r,=9r, as shown in Fig. 1(c).
In general, r,=(3')r, is the linear dimension of the fractal
cube (Menger sponge) at the iteration i.

The fractal dimension of the Menger sponge is given by
D=In N;/In3=2.727. Here, we assume self-similarity
which implies a linear relationship H=3-D==0.273 between
fractal dimension D and Hurst coefficient H.

The Menger sponge has been widely used to model po-
rous media, whose relevant parameter is the porosity ¢ [18].
The porosity ¢;, defined as the relative volume of voids per
unit volume, can be expressed by the following relationship:

¢i=l_(i>9 (l)

where p, is the initial density of the bulky cube and p; is the
density of the Menger sponge at the iteration i. By taking
into account that p; and p, are inversely proportional to the
volumes and, then, to the linear sizes ry and r;, Eq. (1) can be

written as
3-D
¢i=1- (@) : 2)

i

where D is the fractal dimension, that is the scale-
independent parameter characterizing the morphology of a
porous material. Therefore, density and void index of the
Menger sponge, as a function of the linear dimensions of the

solid cube r, and fractal cube r; can be written at the ith
iteration as

pi_ (E>3—D=(E)S—(lnf\/f/lnﬁ:(E)H- )
Po i i i

For the Menger sponge shown in Fig. 1(b), the porosity is
¢=7/27 and the density is p;=20py/27, while for the
Menger sponge of Fig. 1(c), the porosity is ¢,=329/729 and
the density is p,=400p,/729.

The above described procedure can be generalized by re-
moving an arbitrary number N, of subcubes (instead of 7)
out of an arbitrary number of solid cubes N (instead of 20).
This generalized construction results in fractal structures
with Hurst exponent different than H=0.273.

To model snow samples, a homogeneous ice cube charac-
terized by density py=p;..=917 kg/m> and linear size r,
=rgrain 18 considered at the initial step. Then, snow is ob-
tained as a Menger sponge, i.e., a fractal form of ice, char-
acterized by density p,,,,=p;, and linear size r,,,,,=r; at the
iteration i. Thus, Eq. (3) is rewritten for snow as follows:

_ (rgrain)S_(ln Nyfin'3) _ (rgmin)S_D _ ( rgrain)H (4)

T, rsnow rSVLUW
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Fractal dimension D and Hurst exponent H can be taken
as a measure of porosity of the snow sample. The fractal
character of snow can be analyzed by using images obtained
on various cubic samples with same size and different den-
sities, showing the granular structure and the spatial distribu-
tion of its voids. By means of the box-counting method, the
fractal dimension of four snow samples, characterized by
grains with different diameter, could be determined [28]. By
applying the generalized Menger sponge model the fractal
dimension D of different classes of snow can be calculated
(Table I). These values have been obtained by using the same
size of the samples: rg,,,=r;=100 mm and the grain size
Tgrain Tanging between 0.05 and 0.25 mm. By analyzing den-
sity and void index as a function of the linear sample dimen-
sion r; (grain size), we observe that as the grain size in-
creases, snow differs more and more from ice. We also
observe that the values of the fractal dimension D measured
by the box-counting method, ranging between D=2.62 to
D=3 [28], are consistent with the values calculated by the
Menger sponge model (Table I). At small scales, ice and
snow approximately show the same behavior while the spa-
tial variability of the density does not greatly influence the
mechanical properties. Therefore, we argue that snow density
is a function of the scale and the probability to find large
defects (e.g., superweak zones in a weak layer) increases
with the dimension of the snow grain, as for example pro-
viding more intrinsic brittleness for large snow slopes
[32,33]. Numerical results reported in Table I confirm that D
is an accurate measure of the distribution of the ice mass into
snow samples.

III. THREE-DIMENSIONAL FRACTIONAL
BROWNIAN MODEL

In the previous section, the generalized Menger sponge
model, characterized by scale invariant porosity, is used to
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TABLE 1. Classification of snow and ice (first column) according to the density (second column). The values of the Hurst exponent H
have been calculated for a sample with linear size ry,,,=100 mm for different grain sizes ry,,;, on the basis of the generalized Menger
sponge model discussed in Sec. II. The snow type and density are taken from the classification reported in [3].

Density
Snow type [kg/m?] Ferain=0.05 mm Ferain=0.15 mm Ferain=0.25 mm
Dry snow 50<p<<200 0.3827<H<0.2003 0.4474<H<0.2342 0.4855<H<0.2542
Snow 200<p<550 0.2003 <H<0.0673 0.2342<H<0.0786 0.2542 <H <0.0853
Firn 550<p<<820 0.0673<H<0.0147 0.0786 <H<0.0172 0.0853<H<0.0187
Porous ice 820<p<917 0.0147 < H <0.0000 0.0172 < H < 0.0000 0.0187 <H < 0.0000

develop a fractal description of snow density of samples with
different microstructures. This description is of significant
practical relevance, however it does not fully capture the
fractal structure of snow samples. One drawback is due to
the discreteness of fractal dimension. Moreover, the porosity
of a real-world fractal should be free of scale requiring an
infinite number of iterations for generating the sponge. On
account of these limitations, in order to describe snow as a
sintered porous material consisting of a continuous ice net-
work, a generalization of the random midpoint displacement
algorithm is implemented to model snow as a three-
dimensional fractal heterogeneous medium [35]. The method
for generating compact fractal disordered media relies on
fractional Brownian functions, which are characterized by
correlation depending on the distance r as a power law. The
approach is based on the function,

1
Ju(r)= 2_,12fk(r)+o'j,d’ (5)
k

with r=(i;,i,,i3). The sum is calculated over the k end points
of the lattice and the quantity o, is a random variable de-
fined at each iteration j as

[ 2H
|[dN
”—) [1-2201-0], (©)

J» 2}

|
where the quantity oy is drawn from a Gaussian distribution
with zero mean and unitary variance. The Hurst exponent H,
ranging from O to 1, is the input of the algorithm which is
implemented at each iteration j according to the following
procedure. Initially, the lattice is fully homogeneous, with
the function f(r) describing the fractal property taken as a
constant, e.g., fy(r)=0. Then, the values of the function
fu,j(r) are seeded as random variables at the eight vertices of
the cube. The value assigned to the central point is obtained
by means of Egs. (5) and (6), by using the eight vertices as
input. The value at the center of each face is assigned in the
same way, but with the sum calculated over the four vertices
corresponding to each face. Finally, the midpoint values of
each of the twelve edges are calculated with the sum calcu-
lated over the vertices at the end points of the edges. The first
iteration of this algorithm results in 27 subcubes. These
steps, except the initial seeds of the eight vertices, are itera-
tively repeated for each of the 27 subcubes. Eventually, the
number of subcubes will become (3/)¢, where j is the itera-

tion number and d=3. Further details about this construction
can be found in [35].

By using the detrending moving average (DMA) algo-
rithm [34], the Hurst exponent of the fractal structure can be
subsequently estimated. The core of the DMA algorithm is
the generalized variance o7,,,,(s), that for d=3 writes

O%MA(S) = ‘l/% [fH(r) _fnl,nz,n3(r)]2’ (7)

where fy(r)=fg(i;,iy,i3) is the fractional Brownian field
with i1=1,2,...,N1, i2=1,2,...,N2 and i3=1,2,...,N3.

The function fnp”z,ng(r) is given by

~ 1
fnl,nz,nS(r) = _2 E EfH(il —kiiy—kyiz—ks),  (8)

Vi kb ks

with the size of the subcubes (n;,n,,n5) ranging from (3,3,3)
to the maximum values (171 max»>M2 maxs 73 max)- V=N111203 1S
the volume of the subcubes. The quantity V=(N,
=111 max) (N2 =19 max) (N3 =113 may) 1S the volume of the fractal

cube over the average fis defined. Equations (7) and (8) are
defined for any geometry of the subarrays. In practice, it is
computationally more suitable to use n;=n,=n3 to avoid
spurious directionality and biases in the calculations. In Fig.
2, the log-log plots of a5,,,(s) vs s are shown for fractal
cubes generated according to the above described procedure.
The cubes have Hurst exponent H=0.1, H=0.2, H=0.3, H
=0.4 and H=0.5, respectively. The log-log plots of a3, ,(s)
as a function of s are straight lines according to the power-
law behavior,

Oya(s) = (n3 +nd+nd) o sH, 9)

because of the fundamental property of fractional Brownian
functions.

By using these algorithms, the fractality of the snow
structure can be related to the snow density by mapping the
fractional Brownian field f5(r) to a density field p(r). In this
framework, the Hurst exponent, varying as a continuous pa-
rameter, should be intended as an index of specific snow
compactness. Different snow textures have been simulated
by varying the minimum value of the density p,,;, between 0
and 917 kg/m?, while the maximum density is constant and
equal to the ice density ppa=pice=917 kg/m?>.

In Fig. 3 snow structures corresponding to cubes with size
ro=100 mm and granular size r.,,=0.25 mm, with H
=0.1 are shown. The density ranges from 900 to 917 kg/m?
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FIG. 2. (Color online) Log-log plot of the function opy, as a
function of scale s. The Hurst exponent is estimated by the slope of
the best fit (red solid lines), respectively, H=0.1, H=0.2, H=0.3,
H=0.4 and H=0.5.

(a) and from 0 to 917 kg/m? (b). One can observe the dif-
ference between the more compact solid ice structure (a) and
the almost fully porous media featured by several areas of
lower density (b). Colors are scaled in such a way that darker
areas correspond to higher densities. Finally, the average
density pyperqee Of the fractals generated according to the
above procedure has been calculated. The results are plotted
in Fig. 4. One can notice that the average density decreases
more rapidly with lower values of p,;, as the Hurst exponent
increases, while the average density is practically unchanged
as H is changed, by taking p,;, close to the value
917 kg/m?. The present approach might have interesting ap-
plications for monitoring ice losses and snow metamor-
phism. By independent measures of snow density and Hurst
exponent, one can map the morphological evolution of snow/
ice by using curves similar to those of Fig. 4.

IV. CONCLUSIONS

Physical and mechanical properties of snow are usually
defined in terms of the specific density thanks to its simplic-
ity of in situ measurements. Unfortunately, the density is not
univocally related to the snow microstructure, since different

FIG. 3. (Color online) Fractal cubes generated according to the
three-dimensional fractional Brownian model presented in Sec. III.
The Hurst exponent is H=0.1 and the density p(r) ranges respec-
tively between 800-917 kg/m> (a) and 0-917 kg/m> (b). The
ratio between the cube edge and the grain size is 400, implying that
there are 400 X 400 X 400 values in each cube.
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FIG. 4. (Color online) Snow density as a function of the Hurst
exponent. The different curves have been obtained by generating
fractional Brownian functions defined over a cubic lattice [35].
Then, the fractional function has been mapped to a density function.
In order to simulate different snow microstructures, the minimum
value of the density p,;, has been varied between 0 and
917 kg/m?, while the maximum value of the density is kept con-
stant and equal to the ice density py.x=pi.=917 kg/m?. Different
curves, from bottom to top, correspond to values of p;, ranging
from 0 to 917 kg/m?, with step 100 kg/m?. Dashed horizontal
lines indicate density ranges for dry snow (50<p<<200); snow
(200<p<550); firn (550<p<820) and porous ice (820<p
<917) after [3].

snow microstructure might exhibit the same global density. A
scale invariant parameter is needed to quantify snow meta-
morphism in terms of the multiscale properties of snow den-
sity and porosity. We have proposed a fractal model for snow
density based on (i) a generalized Menger sponge and (ii) a
stochastic fractional Brownian field. The present approach
shows that different Hurst exponents correspond to the same
value of density, implying that density alone does not yield
complete information about snow microstructure. Nonethe-
less, thanks to this model, one should be able to investigate
how the local structure evolves according to the fractal di-
mension in relation to other physical properties. The present
work is the first step toward the investigation of the scaling
properties of snow in a fully three-dimensional fractal frame-
work, relevant to the validation of experimental results, such
as those reported in [11,16], and the description of the physi-
cal and mechanical properties which are of great interest for
many application areas.
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