
21 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding / Saponara, S.;
Martina, Maurizio; Casula, M.; Fanucci, L.; Masera, Guido. - In: MICROPROCESSORS AND MICROSYSTEMS. - ISSN
0141-9331. - STAMPA. - 34:(2010), pp. 316-328. [10.1016/j.micpro.2010.06.003]

Original

Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

Publisher:

Published
DOI:10.1016/j.micpro.2010.06.003

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2371931 since:

Elsevier

Motion Estimation and CABAC VLSI Co-Processors for
Real-Time High-Quality H.264/AVC Video Coding

*Sergio Saponara, †Maurizio Martina, *Michele Casula, *Luca Fanucci, †Guido Masera
*Department of Information Engineering, University of Pisa, via Caruso 16, I-56122 Pisa, Italy

† Department of Electronics, Politecnico di Torino, C.so Duca degli Abruzzi 24, I-1029 Torino, Italy

Summary
Real-Time and high-quality video coding is gaining a wide
interest in the research and industrial community for different
applications. H.264/AVC, a recent standard for high
performance video coding, can be successfully exploited in
several scenarios including digital video broadcasting, high-
definition TV and DVD-based systems, which require to
sustain up to tens of Mbits/s. To that purpose this paper
proposes optimized architectures for H.264/AVC most critical
tasks, Motion Estimation and Context Adaptive Binary
Arithmetic Coding. Post synthesis results on sub-micron
CMOS standard-cells technologies show that the proposed
architectures can actually process in real time 720×480 video
sequences at 30 frames/s and grant more than 50 Mbits/s. The
achieved circuit complexity and power consumption budgets
are suitable for their integration in complex VLSI multimedia
systems based either on AHB bus centric on-chip
communication system or on novel Network-on-Chip (NoC)
infrastructures for MPSoC (Multi Processor System on Chip).
Key words:
Video Coding, Hardware Architectures, Motion Estimation,
Entropy Coder, Network on Chip, VLSI Multimedia Systems

1. Introduction

H.264/AVC is the new video coding standard released by
ITU-T and ISO/IEC [1]. Compared to previous H.26x
and MPEGx standards, H.264/AVC superior
compression efficiency and high scalability make it
suitable for different scenarios. Target applications range
from low bit-rate video communications, supported by
the Baseline Profile of H.264/AVC, with maximum data
rates of few hundreds of kbits/s and QCIF (174×144)
formats up to high-quality video delivery and storage at
tens of Mbits/s and with large formats. The high quality
scenario, covered by the Main Profile of the standard,
includes applications such as digital video broadcasting-
terrestrial and handheld (DVB-T/H), high definition TV
and DVD-based systems. The implementation of
hardware co-processors, able to sustain real-time and
high-quality H.264/AVC video coding, is needed to grant
high performance.
Figure 1 shows a block diagram of the H.264/AVC
encoder. Like its H.26x/MPEGx ancestors it is based on
a hybrid scheme compressing the information both in the
temporal domain by INTER-frame Motion Estimation
and Compensation (ME and MC in Figure 1) and in the
spatial domain by INTRA-frame Transform coding and

Quantization of the residual estimation error (T and Q
units in Figure 1). The block scheme shown in Figure 1,
that is referred to INTRA-frame coding, can be
straightforwardly adapted to INTER-frame coding
feeding the adder and the subtracter with the MC
multiblock size multiframe block output (inter). An
Entropy Coder further reduces data redundancy in the
bit-stream. The compressed output stream is then passed
to a Network Abstraction Layer (NAL) unit where data
are packaged depending on the characteristics of the
specific communication network.

Fig. 1. Block diagram of the H.264/AVC Video Coding Layer

With respect to previous coding standards, H.264/AVC
includes additional features, particularly in the ME task
for inter frame prediction, adopting multi-reference
frames and variable block sizes, and in the Entropy
Coding task, adopting a Context Adaptive Binary
Arithmetic Coder (CABAC). The performance and
complexity profiling analysis on the reference C model
of the encoder proves that these features improve the
coding efficiency by a factor two at the expense of
increased computation and memory costs up to one order
of magnitude [2-4].
Variable block size and multi reference frame ME is
supported in both Baseline and Main Profiles; CABAC is
supported in the Main Profile while for the Baseline
Profile a Context Adaptive Variable Length Coder
(CAVLC) is used. With respect to CAVLC the CABAC
scheme allows up to 15% bit-rate saving for a fixed
visual quality at the expense of computation and memory
complexity overheads of 30% [2, 5]. As proved in
literature [2-4], ME and CABAC are the bottlenecks of
the standard in terms of required computation complexity
and the design of hardware co-processors to support such

features is mandatory for the real-time and cost-effective
realization of H.264/AVC-based systems. To this aim
two VLSI intellectual property (IP) macrocells,
dedicated to ME and CABAC processing, are presented
in the paper. They allow for real time implementation of
H.264/AVC coding in high quality scenarios where up to
tens of Mbits/s are reached, as in the Main Profile.
Optimizations are addressed at algorithmic and
architectural level and their complexity and power
consumption budgets are suitable for integration in
complex VLSI multimedia systems targeting real-time up
to 30 frames/s 720x480 formats. To ease the IP
assembling, two interfaces towards an AHB bus centric
infrastructure and a Network-on-Chip (NoC)
communication backbone are provided.
Hereafter, Section 2 briefly reviews state of the art in
hardware design for H.264/AVC video coding. Section 3
describes a novel context-aware low-complexity ME
technique. The ME hardware architecture and the
relevant synthesis results in submicron CMOS
technology are presented in Section 4. Section 5 deals
with CABAC algorithmic description. CABAC hardware
architecture and CMOS implementation results are
detailed in Section 6. Section 7 is about the design of a
Network Interface (NI) for the proposed IPs towards a
Spidergon NoC platform; the latter is configured to
connect AHB bus based H.264/AVC blocks to a NoC
thus taking advantage of parallel computing. Conclusions
are drawn in Section 8.

2. Hardware Design for H.264/AVC

In the literature several works have been proposed
concerning the hardware implementation of building
blocks of the H.264/AVC codec [6-15], [18-20], [23].
Single-chip coders have been also proposed, as in [4]
where a RISC programmable core supports the control
tasks while the signal processing functions are all
realized by dedicated hardware units. All the cores in the
above cited works are connected by means of a standard
shared-bus communication model. The single-chip coder
in [4], realized in a 0.18 µm CMOS technology,
implements the Baseline Profile of the standard targeting
30 frames/s CIF (352×288) and CCIR (720×480) formats.
However the support of CABAC and hence of the Main
Profile is still missing since the basic CAVLC entropy
coder is adopted in [4].
Due to the advances in on-chip communication
paradigms, new solutions are available for future
embedded sub-micron MPSoC. NoCs [25, 26] allow
large bandwidth data delivery in parallel multi-core
systems and offer a better performance for video
encoding standards [27-32, 34] compared to single/
hierarchical bus systems. That means future MPSoC can
implement video encoding applications designing
specific blocks for the different tasks and connecting
them through high throughput NoC-based parallel
communication. The burden of CABAC and Motion

Estimation operations is still the bottleneck in
H.264/AVC even if efficient on-chip networking
improves overall performance.
Some works in the literature concern CABAC
implementation: in [7] a mixed hardware/software
system is proposed, whereas [8, 9, 36] concentrate on
CABAC dedicated coprocessors. Optimized hardware
implementations limited to the CABAC unit are
proposed also in [18, 19, 20, 37]. In [18] an FPGA based
RISC CPU extension is proposed to accelerate CABAC
in a rate distortion framework. The works [19, 37] deal
with the architecture of a CABAC decoder while in [20]
an encoder implementation is investigated.
As far as ME is concerned, the adopted solution in [4] is
a large systolic array of 256 processing elements
implementing a classic Full Search (FS) technique,
known to be not efficient in terms of performance vs.
complexity trade-off [11-13], [23]. Hardware engines
based on a systolic array of processing elements for FS
ME with variable block sizes have been also proposed in
other works, e.g. [15]. To reduce the complexity of the
conventional brute force FS while keeping similar coding
efficiency many fast ME techniques have been
investigated in the literature [11-15], [23]. Among them
UMHexagonS (UMHS) [11] has been officially accepted
as the fast ME technique in the JM reference software
model of the standard [16, 17]. It realizes a predictive
search, which adopts a hexagonal window in the refining
phase plus proper stop criteria. A hardware architecture
for UMHS ME has been discussed in [23]. The
implementation of a different approach based on the
Phase Plane Correlation was described in [38].
It is worth noting that in FS, in UMHS and in most of
known ME techniques, the basic search is repeated
multiple times in case of multiple reference frame or
variable block sizes (7 block sizes in H.264/AVC: 16×16
macroblock and its sub partitions 16×8, 8×16, 8×8, 8×4,
4×8 and 4×4 blocks). Since ME operations increase with
the number of blocks and reference frames, unnecessary
redundancy is introduced by UMHS and most of known
ME techniques in terms of computations and memory
accesses. Adaptive ME techniques have been proposed
by the authors in [14, 24, 40] but the ME algorithms
were mainly optimized for low/mid image formats
(QCIF/CIF), with fixed search ranges and moderate
dynamic scenarios (telconferencing or video phone
applications) while this work extends the research to
larger formats (CCIR) and search sizes (from 4 to 64),
considering higher dynamic scenes and higher quality
video applications. Moreover, the architectures in [14,
40] have a single search area local buffer which, as
discussed later, is a bottleneck when working with high
dynamic scenes using always more than 1 reference
frame. Our previous ME architecture was also conceived
as a coprocessor with a simple interface, tightly coupled
to a single RISC core; however high quality video
systems are based on multi core architectures requiring

more complex communication infrastructures whose
design are addressed in this paper.
This paper concentrates on the whole H.264/AVC frame-
work and deals with the most computationally intensive
tasks, showing architectures suited for real-time and
high-quality video coding in VLSI multimedia systems.
As far as CABAC is concerned a high speed FIFO-based
architecture is presented. Since the FIFO size impacts
both on the performance and the complexity of the
CABAC architecture, it should be consciously sized. In
this paper the FIFO sizing is thoughtfully discussed to
grant very high performance with a reduced complexity
increase. For ME an innovative adaptive algorithm with
its relevant hardware architecture is proposed. The novel
technique avoids unnecessary computations and memory
accesses, whereas it achieves the same high coding
quality of FS.
To ease their integration in complex embedded systems,
the CABAC and ME architectures have been designed as
reusable IP VHDL macrocells and have a wrapper to
AMBA AHB bus, which is a defacto standard for
system-on-chip (SoC) communication. To facilitate the
IP integration in MPSoC also a Network Interface has
been designed which wraps the AHB interface of the IPs
to the Spidergon NoC protocol. The two IP macro-cells
have been also characterized in terms of area, power and
computing performance on 180 nm and 65 nm CMOS
standard-cells technologies.

3. Adaptive Fast ME Technique

To avoid unnecessary computations and memory
accesses for the ME task in H.264/AVC-compliant
coders we propose to add a low complexity context-
adaptive controller to a basic search engine, FS or Fast
ME as UMHS. The controller extracts from the search
engine partial results, i.e. Motion Vectors (MV) and Sum
of Absolute Difference (SAD) cost, information on the
input signal statistic, using them to automatically
configure run-time the following ME search parameters:
number of reference frames, valid block sizes and search
area for each 16×16 macroblock and its sub-partitions
down to 4×4-pixel blocks. This section presents briefly
the algorithmic level design and performance, focusing
on performance over search area displacements ranging
from ±4 to ±64. The global context-adaptive controller
combines three basic algorithms which have been proven
efficient in both FS and fast ME engines in the case of a
fixed search area displacement of 16 [24]. In this work 7
middle format video sequences with high-dynamic
scenarios are codified using the basic UMHS ME and
our adaptive-controlled UMHS ME with search
displacements ranging from 4 to 64. The adopted test
videos are reported in Table 1. They have been encoded
at 30 frames/s with a Quantization factor of 28 using the
reference JM10 software implementation of H.264/AVC
with UMHS ME. Bit-rate and ME time performances are
reported in the case of a search displacement of 4.

Sequence Format Bit-rate, kbit/s ME Time (s)
Stefan SIF 1190.9 49.5
Mobile SIF 1668.1 46.6
Garden SIF 2280.5 62

Bus CIF 1265.1 78.3
Foreman CIF 840.1 72.8

TennisTable CCIR 5625.8 248.9
Mobile CCIR 5937.2 223.6

Table 1 – Absolute performance of UMHS (search displacement of 4)

In Figure 2 bit-rate performances, normalized vs. the
values in Table 1, are reported for sequences using
UMHS ME with displacements of 4, 8, 16, 32, 64.
Figure 3 reports normalized ME time performances
obtained in the same conditions of Figure 2. For the
horizontal axes in Figures 2 and 3 a logarithmic scale is
used. In Figures 2 and 3 it can be seen that displacements
greater than 16 do not add meaningful improvements in
the compression efficiency, while the ME processing
time is increased by a factor 3 when sweeping from 16 to
64. It is then a waste of resource trying to estimate each
macroblock (MB) position in all the possible interpolated
positions of the search area. These results depend on the
fact that ME engines use motion vector predictors, which
centers the search area in the most probable location of a
local minimum cost. Block matching operations do not
start around the position of the current processed MB but
the starting point is translated elsewhere depending on
statistic data.
The aim of our work is to improve the results in Figures
2 and 3 and Table 1 applying a dynamic control to the
ME search engine. Basically the trade-off between
compression efficiency (measured in terms of bit-rate for
a given PSNR) and ME complexity (evaluated in terms
of ME processing time inside the JM coding framework)
must be improved when the search area, the number of
reference frames and the block types grow.

Fig. 2 Normalized bit-rate for search displacements ranging from 4 to

64 (in log2 scale) using the UMHS ME

Fig. 3 UMHS ME Time growth factor vs. search displacements

ranging from 4 to 64 in log2 scale

The three controls implemented to adjust the ME
parameters at coding time are summarized hereafter:
A) The Search Area Control. It was originally proposed
for the automatic search range configuration of a FS
engine in [14] and then extended for fast ME engines
[24], but limited to a fixed search displacement of 16. In
this work the optimal horizontal and vertical search
displacements for the block under estimation, using a
Fast ME engine, are selected in the range (1, 64) by
comparing with proper thresholds the SAD and MV
values of already encoded neighboring blocks: 3 spatial
blocks in up, up-left and up-right positions in the current
frame and 1 temporal block, occupying in the previous
frames the same position of the block under estimation in
the current frame.
B) The Modes Control. As far as variable block sizes is
concerned, a profiling analysis of the JM standard
software model conducted by the authors in [2] proves
that using the smaller block sizes is useful for images
with complex texture while it can be avoided for
homogenous ones to reduce complexity. Thus, we have
devised a control over smaller block sizes (4×8, 8×4 and
4×4 partitions) to decide which of them must be enabled
for ME each time a 16×16 macroblock is encoded. It
accomplishes its task by comparing the SAD cost of the
current 16×16 partition with 3 thresholds. The objective
of such comparisons is to enable smaller partitions when
the SAD cost is high. So when the first threshold is
exceeded 4x8 partition is enabled, if the second threshold
is exceeded even 4x8 is enabled. The third threshold
controls if the 4x4 partition has to be enabled.
C) The Reference Frame Control. It decides the
maximum number of reference frames RF to be used in
the range (1, 5) for the ME of a 16×16 macroblock and
its selected sub-partitions. According to the flow chart in
Fig. 4, the SAD cost (SADmin) and optimal reference
frame RF are initially detected for the 16×16 partition
and then are used to decide how many reference frames

are useful for the enabled smaller sub partitions in the
current frame and for the same 16×16 partition in the
next frame. To this aim SADmin is compared to 5
thresholds from THR1 to THR5. Details on how
thresholds are worked out and how they impact ME
parameters are similar to what we discussed in [24].

Fig. 4 Reference frame decision scheme

The encoding process using all the three controls is
accomplished following these 5 steps.
• Step 1. The first frame of a video sequence is coded in
INTRA mode and the ME technique is not used. The
second frame is the first frame coded INTER and for the
ME of all its macro blocks the basic search engine (FS or
a FAST engine as UMHS) is used without the new
context-aware control. Starting from the third frame, the
steps as reported in Figure 5 are repeated iteratively.
• Step 2. The optimal search area and reference frame
number for the 16×16 macroblock are preliminarily sized
using the algorithms in A) and C).
• Step 3. The basic search engine, UMHS or FS,
performs the ME for the 16×16 partition.
• Step 4. Using data (SADmin value and optimal reference
frame RF) from the previous operation the controls in B)
and C) decide which sub partitions must be enabled for
the ME and how many reference frames (see flowchart in
Fig. 4) must be used for the search. The search size for
the enabled sub-partitions is the same derived for the
16×16 partition in Step 2.
• Step 5. The search engine completes the ME task for
the current macroblock and then starts with a new
macroblock processing by iterating the same flow from
Step 2 to Step 5.
With reference to the test videos with different image
formats and target bit-rates, Figures 6 and 7 compare the
performance of the new control technique applied to
UMHS vs. the original UMHS.

Fig. 5 Operations' flow for ME (Steps 2-5) using search parameters
dynamic control

Results in Figures 6 and 7 are expressed in terms of:
- ∆BR% which is the bit-rate deviation measured as
(BR2 – BR1)/BR1. BR2 is the bit-rate obtained by our
ME adaptive-controlled encodings, while BR1 is the one
obtained with the basic ME.
- ∆MET% which is the saved % of the ME processing
time when integrating our controller into the JM 10
model and running it on a general purpose AMD Athlon
processor. It is measured as (MET1 – MET2)/MET1.
MET1 refers to ME encoding time with basic ME, while
ME2 refers to ME encoding time when the proposed
controls are applied.

Fig. 6 ∆BR% for test sequences vs. search displacements from 4 to 64

The bit-rate deviation of our adaptive controlled ME vs.
original UMHS is always below 3% with an average bit-
rate slightly over 1%, while the saved ME time averages
in the range of 60 – 70% (see Figures 6 and 7). This is
true for all displacements. The longer the search
displacement, the higher the saved ME time. This is
because at displacements greater than 16 the adaptive
control of the search area detects optimal motion
estimation in a sub region of the available one. As seen
in Figure 2, costs found for MB in searches with a 32 or
64 displacement are not better than those for 16, thus the
algorithm is able to find such costs adapting the
displacement to a much smaller one. The results in
Figures 2 and 3, Figures 6 and 7 refer to a fixed

quantization parameter QP=28 for the encoder. The same
results can be obtained for other QP values. As example,
Fig. 8 shows the Stefan sequence with a search
displacement of 16. The comparisons are reported in
terms of PSNR and bit-rate values changing the QP in a
typical range 20 to 40. To be noted that Stefan is one of
the most demanding sequences in terms of ME resources
and the two curves have a gap limited to 0.1 db at fixed
bit-rate. Time savings obtained with our adaptive
controlled ME vs. basic UMHS are always in the range
of 60% - 70% for every point in the curve.

Fig. 7 ∆MET% for test sequences vs. search displacements from 4 to

64

Table 2 shows how FS ME behaves when coupled with
our adaptive control for a search displacement of 16. Bit
rate deviations are on average very close to the ones
obtained on UMHS. The saved ME time is slightly better
on FS achieving an average value of about 70%. This is
because the area control reduction has more influence in
FS, where all points inside a given area are used to
perform a block matching operation. These results,
achieved with FS and UMHS, demonstrate that out
adaptive controls can be applied and behave well with
different ME engines.

Fig. 8 Rate-distortion curves for Stefan SIF

Sequence ∆BR% ∆MET%
Stefan 2.5 69.8

Mobile SIF 2.3 64.8
Garden 0.9 66.2

Bus 2.3 72.7
Foreman 0.7 75.4

Tennis Table 1.4 77.2
Mobile CCIR 1.1 74.1

Table 2 – Bit-rate deviation and saved ME time percentages for the
test sequences applying our adaptive ME controls to FS

4. ME Architectural Design

4.1 Architecture Description

The results reported in Section 3 for the ME refer to a
software implementation on a general purpose Athlon
processor at 2 GHz with 1GB RAM and Windows XP
operating system. The original UMHS software
implementation is far from real-time coding. However,
thanks to the complexity reduction of our technique, real-
time is achieved for the 30 frames/s QCIF videos; for
CIF ones the real-time is allowed at a frame rate between
15 and 30 frames/s depending on the sequence dynamism.
To achieve real-time for larger formats and/or to reduce
the power consumption of the software approach for low-
power terminals, a dedicated hardware architecture is
needed. In this case the proposed technique can be
implemented according to the block diagram in Figure 9.
For the realization of the relevant building blocks
(hardware search engine, ME parameters and I/O
controller, AHB wrapper) we have reused pre-designed
IP VHDL cores already described in [21, 22]. The
overall architecture has been synthesized, characterized
and tested in 65 nm and 180 nm CMOS standard-cells
technologies.

Fig. 9 Block diagram of the ME hardware architecture

In Figure 9 a microcontroller core is used to implement
all the ME context-aware control tasks plus the

scheduling of UMHS operations and the management of
I/O data flow. Such tasks can be easily realized in real–
time for the target video formats by the power optimized
8051-compliant microcontroller core that we described
in [21, 35]. It features a fully synchronous 8-bit
architecture executing most of instructions in one clock
cycle. Its circuit complexity amounts to roughly 10
kgates. The HW search engine in Figure 9 is realized
reusing the parametric array architecture we proposed in
[22] to calculate the SAD and MV cost functions. The
implementation adopted in this work features an array of
64 basic processing elements (PE), organized as a matrix
of 8×8 units, each implementing the SAD calculation at
pixel level on 8-bit data plus a parallel adder tree and a
module for minimum SAD and MV detection. As
detailed in [22] each PE consists of a combinatorial core
implementing absolute difference (AD) and
accumulation operations, see Figure 10, plus registers for
data propagation and synchronization within the 8×8
array. When sizing the NxN PE array a trade-off has to
be found between area occupation and processing
throughput while the PE array size do not limit the size
of the search area or the size of the macroblock. In this
paper a size 8x8 has been selected with a resulting PE
array complexity of 24 kgates. The throughput is one
8×8 block matching operation, i.e. 64 SAD cost function
evaluation, per clock cycle.
An overall local SRAM of 48 kbits is used to implement
search area buffers (buffer 1 and buffer 2 in Figure 9) to
reduce access frequency to large background frame
memories. The SRAM is organized with two buffers,
each of 18 kbits, to store search areas from different
reference frames plus 6 kbits of memory for each buffer
to perform efficient updates when passing from a
macroblock to the spatial adjacent one (their search area
overlap). Further details on spatial data reuse strategy by
exploiting search area overlap for a single buffer can be
found in [40]. Statistical data (mainly MVs and SADs)
are stored in a smaller local memory. Finally an AHB
wrapper is inserted to exchange data with an AMBA
AHB-compliant bus (a defacto standard for high data-
rates communication in embedded systems).

Fig. 10 Combinatorial part of each PE unit

Figure 11 sketches the operation flow for both the search
engine and the controller core, counting also the number
of clock cycles needed to perform bottleneck tasks,
which in this case study are the load of data from frame

memory into the local buffer and MB SAD evaluations.
The search engine starts performing the setup of ME of
the current MB, accessing MV predictors, MB data and
initial search point. If it is the first MB of a sequence
also the search area relative to the first reference frame is
loaded. Then, for each loaded reference frame two
operations are done:

A) MB motion estimation. 16x16 partition ME is
performed and results are processed by the controller
(8051 Analysis I in Figure 11) to decide how to perform
sub-partitions ME. Depending on the SAD it evaluates if
going on with the next reference frame and which sub-
blocks must be enabled for ME. The clock cycles needed
for MB ME are roughly 1050 (150 for 16x6 ME and
roughly 900 for sub-blocks ME in Figure 11), while
other 8051 operations are done mostly in background
and introduce a negligible stall (about 2%, i.e. 20 clock
cycles). The number of SADs for a given MB has been
evaluated counting their average number when
performing ME with a UMHS adapted ME in the most
difficult sequences. So Figure 11 reports the average
number of cycles needed to do a MB ME in one single
reference frame (determining the timing diagram of the
control flow) in the case of worst reduction complexity.

B) Next Frame preload. During the ME of the current
reference frame, the next reference frame is preloaded in
the second buffer (buffer2) of the on-chip RAM.
Depending on the decisions taken by the adaptive
controller (reference frame control algorithm in Section
3) the new uploaded search area in buffer 2 can be
related to: (i) the next reference frame of the current MB
or (ii) the first reference frame of the next MB (no more
reference frame will be processed for the current MB).
Loading a search area (48x48 pixels) via a 32 bit bus
takes about 576 clock cycles; as reported in the timing
diagram of Figure 11 such clock cycles are in parallel to
the 900 clock cycles spent for sub-block ME.

Fig. 11 Timing diagram and parallelization of operations between the

8051 IP adaptive controller and the hardware search engine

Then the maximum clock cycles needed to process one
MB is about n x 1070 clock cycles being n the umber of

used reference frames. Considering that the adaptive
controls impose an average frame number per MB
around 3 for most difficult sequences (see Table 3), the
engine will perform on average the ME of a MB in 3210
clock cycles. In a CCIR format 40500 MB (30 frames
each of 1350 MB) must be estimated in one second for
real time performance. Considering the above calculated
clock cycles this can be achieved clocking the system at
roughly 132 MHz. For a 30 frames/s CIF sequence such
performance can be obtained clocking at 38 MHz. In the
case of a 30 frames/s CCIR format to perform real-time
ME a search area must be loaded from main memory via
AHB bus in 4.7 µs. That means a bandwidth of 3.8
Gbits/s, which can be obtained with a clocking speed of
132 MHz and a 32 bit AHB interface.

Sequence Avg. Ref
Frames

Avg. 16x16 MB
processed each second

Stefan 2.6 9900
Mobile SIF 3.3 9900

Garden 2.8 9900
Bus 2.6 11880

Foreman 2 11880
Tennis Table 2.6 40500
Mobile CCIR 2.5 40500

Table 3 – Average number of reference frames used to encode
sequences with our adaptive ME

4.2 CMOS Implementation Results

The whole ME architecture in Section 4.1 has been
synthesized according to a semi-custom design flow in:
A) 0.18 µm CMOS technology using a device low-
leakage standard-cells library with 1.8 V supply voltage
and with 6 metal layers.
B) 65 nm CMOS technology using a device low-
leakage standard cells library with 1.1 V supply voltage
and 9 metal layers.
The global circuit complexity of the architecture detailed
in Figure 9 amounts to roughly 35 kgates plus 48 kbits of
SRAM. Both in 180 nm 1.8 V and 65 nm 1.1 V CMOS
technologies the required system clock frequency (132
MHz for 30 frames/s CCIR) for real–time processing is
met. The power consumption for real time processing of
30 Frame/s CCIR amounts to roughly 135 mW for the
implementation in 180 nm CMOS technology and 18
mW for that in 65 nm CMOS technology. A comparison
of our architecture with a recent hardware architecture
proposed in literature [15] for H.264/AVC-compliant FS
ME, is addressed in Table 3. The hardware engine in
[15] is based on a systolic array of 256 PEs supporting
variable block size FS. Reported values in Table 4 are
the circuit complexity, logic gates and SRAM memory,
and the clock frequency required to process in real-time
video formats up to 30 frames/s CCIR using 5 reference
frames and a search displacement of 16. The gain in
terms of reduced circuit complexity and clock frequency,
and hence power consumption, of our ME architecture
vs. that in [15] to achieve real-time processing of the
same format mainly depends on the computational

complexity reduction addressed at algorithmic level (see
Section 3). Indeed the architecture in [15] implements a
FS algorithm while our architecture implements UMHS
plus the novel context-aware controller. As reported in
Section 3 the efficiency loss, i.e. bit-rate increase for a
fixed PSNR value, of our technique vs. FS is in average
about 1.5%. A hardware implementation of the basic
UMHS ME has been proposed recently in [23]. Such
architecture requires a 30 MHz clock frequency to
implement in real-time the UMHS technique for a 30
frames/s CIF video with a search displacement of 16. No
circuit complexity results are provided in [23] for a
complete comparison with the architecture proposed in
this paper. However it is worth noting that our ME
coprocessor, thanks to the computational saving of the
adaptive parameters control, supports an UMHS-like
search in real-time up to 30 frames/s CCIR format.

Table 4 – ME architectures comparison

5. CABAC Algorithmic Description

CABAC [5] is the Context Adaptive Binary Arithmetic
Coder used in H.264/AVC Main Profile as the entropy
en-coding engine in alternative to basic CAVLC. Table 5
compares CABAC and CAVLC for different test videos
when using both techniques within the JM10 encoder
with the fast ME proposed in Section 3: new context-
aware controller plus UMHS. Results reported in Table 5
show the % bit-rate saving due to CABAC vs. CAVLC
for a given PSNR quality (∆BR %) and the % increase in
processing time (∆ECT %). The results are in line with
the CABAC analysis in state-of-art [3] proving that
CABAC and the new fast ME can be successfully
integrated in the same encoder and that CABAC needs a
dedicated implementation. The CABAC encoder
structure is reported in Figure 12(a).

Table 5 – CABAC vs. CAVLC

Since CABAC arithmetic encoding engine works only on
a binary alphabet, it requires to binarize input symbols.
In fact many symbols employed in H.264 are not binary
symbols (e.g. motion vectors), thus they ought to be
converted in a sequence of binary symbols (bins).
Furthermore, as CABAC is a context adaptive coder, for
each bin a proper context ought to be selected among the
probability models defined by the standard.

Fig. 12 CABAC structure

Then the encoding engine performs data compression
while updating the probability estimation. The
binarization is achieved through different techniques
depending on the symbol to be binarized.
• Unary Binarization : it is used for unsigned syntax
elements. They are represented as a sequence of ‘1’
terminated by a ‘0’.
• Truncated Unary Binarization : it is used for a limited
number of unsigned syntax elements. Given a threshold
cMax, for a syntax element less than cMax, unary
binarization is employed. A syntax element equal to
cMax is coded as sequence of ‘1’ with length cMax.
 • Concatenated Unary/k-th order Exp-Golomb
Binarization : it is used for signed elements. It is made of
a pre-fix generated with truncated unary binarization and
a suffix generated with k-th order Exp-Golomb codes.
• Fixed length binarization: it is used for a limited
number of syntax elements whose values are integers
∈[0,cMax].
During the binarization a Context Identifier is assigned
to each syntax element. This identifier and the current
bin position, through some thresholds, generate an index
(ctxIdx) that allows finding the correct context. In fact
contexts are stored in a table (ContexTable) that contains
the different initial probability values for the arithmetic
encoder. Each context can be univocally identified,
through ctxIdx.
The coding engine is based on the arithmetic encoding of
a bin with its context. The arithmetic coder is binary,
namely only two symbols, least probable symbol (LPS)
and the most probable symbol (MPS) are allowed. The
arithmetic coding is based on the recursive partition of
the probability interval [0,1] in sub-intervals whose
width is proportional to the probability of the symbol to
be coded. Given the probabilities of the LPS (pLPS) and
of the MPS (pMPS=1-pLPS), the sub-interval widths (RLPS,

Work
Logic
Gates

RAM
Clock

Frequency
ME

Our 35 k 48 kbits
(2 buffers)

132 MHz Adaptive
ME

[15] 106 k 24 kbits
(1 buffer)

213.7MHz FS

Sequence Format ∆BR% ∆ECT%
Stefan SIF -9.1 34

Foreman CIF -6.9 27.8
Akiyo CIF -5.8 31.6

TennisTable CCIR -12.2 30.3

RMPS) are updated as in (1) where R is the current interval
width.

LPSMPS

LPSLPS

RRR

pRR

−=
⋅=

 (1)

Let us introduce low as the lower point of the current
interval, the updating of interval bounds follows the rules
in (2):

LPS
RR

RRlowlow

MPS
RRR

lowlow

LPSnew

LPSnew

LPSnew

new

=
−+=

−=
=

(2)

6. CABAC Architecture

6.1 Architecture Description

The top level view of the proposed CABAC coprocessor
is shown in Figure 13. External connection is provided
through the AHB interface and two buffers are used for
input and output data exchange with the network. The
processing core includes four main blocks:
• CMD decoder dispatches the received commands from
the AHB interface to the input buffer and to the CABAC
control unit;
• CABAC data path and control unit manage the
entropy coding, generating “packets” of bits;
• The de-packetizer block produces the coded bits.
A critical issue in the proposed CABAC architecture
design is the FIFO sizing as it impacts both on the
performance and on the complexity. In the following
paragraphs the proposed architecture is detailed in order
to understand the design characteristics and the system
requirements. These aspects are crucial to size the FIFO
reducing the complexity overhead while granting high
performance as detailed in Section 6.2.

6.1.1 CMD decoder

When receiving a new input symbol, three encoding
modes can be selected, according to the symbol context:
context based, eq_prob or final mode. In the context
based mode the context must be explicitly provided to
the encoding unit, see Figure 12(b), whereas the eq_prob
mode assumes symbol probabilities equal to 0.5 and the
final mode allows encoding the last symbol before
termination.
The CABAC control unit receives the proper command,
the input symbol and the related context that are used to
properly drive the data path and to produce the packed
data.
Three main commands can be executed by the CABAC
core:
• Init to initialize the probability interval and internal
FSMs.

• Terminate to terminate the encoding on the current
context.
• Encode to process the input symbol and to produce the
output bits.

6.1.2 CABAC data path and control unit

In order to avoid the use of multiplications to perform
the arithmetic coding, in H.264/AVC significant values
of the interval width (R) and of the LPS probability (pLPS)
are pre-calculated and stored in two vectors, usually
indicated as Q and P [5]; vector Q needs two bits and six
bits are required for P. Furthermore R·pLPS values,
obtained with Q and P, are stored into a 4×64 matrix
(M). The CABAC data path basically implements the
flow chart shown in Figure 12 (b): it receives the context
in value from the CABAC control unit and produces the
packed data that are pushed into the FIFO. Furthermore
the control unit ought to correctly drive the CABAC data
path multiplexers in order to select the proper values.

Fig. 13 Proposed CABAC coprocessor

The CABAC data path block scheme is depicted in
Figure 14 highlighting four functional units, respectively
devoted to probability updating, computation of R·pLPS
product, range update and data output. Since the
probability pLPS is derived from the context State, in the
actual implementation ROM memories are directly
addressed by context State, so avoiding the generation of
the intermediate pLPS value.
In Figure 14, instead of allocating a single ROM memory
with pre-calculated R·pLPS product values, the context
State is used to address the four small ROMS M0 to M3
(64×9 bits), while the current R value selects the correct
ROM output through a multiplexer; this solution better
exploits the delayed arrival of R, which is available one
cycle later than the context.
The CABAC coder is adaptive and therefore the context
is continuously updated by means of an FSM that
generates the Next context State on the basis of the
received symbol (LPS or MPS) and the current Context
State. In Figure 14, two small ROMs (64×6 bits) are used

to adaptively generate Next MPS State and Next LPS
State, depending on the input symbol.
The range update unit in Figure 14 simply computes
either RLPS or RMPS according to Equation (2); moreover
this unit also updates low value.
In the data output unit, the low value is used to update
the output bit according to the flow chart depicted in
Figure 12 (b). When low is greater than half the interval
width (0x0200) a ‘1’ is output. Similarly when low is
lower than a quarter of the interval width (0x0100) a ‘0’
is generated. Otherwise no coded bits can be produced:
in this case, the generated output is not valid and the
follow counter is incremented; the next valid generated
output bit will be accompanied by the number of
occurred increments, stored as the follow content.
Performed simulations on different sequences show that
the number of increments in counter follow is lower than
64 and 6 bits are enough [9]. Therefore the data output
by the CABAC data path is a packet composed by three
parts: output bit, output valid and follow value. Extensive
simulations show that, depending on the low value, no
more than seven packets per input bit can be produced by
the CABAC data path.

Fig.14 CABAC data path block scheme

6.1.3 De-packetizer

Since the data path requires three clock cycles to produce
a new set of packed data, a de-packetizer is required in
the CABAC coprocessor (see Figure 13) to obtain the
coded bit-stream. Figure 15 details the architectural
block diagram of the de-packetizer. This processing
block receives packets from the CABAC data path
through a FIFO and performs two simple operations.
First it checks the output valid bit to verify whether a
packet is significant or not. Then, if the packet is
significant, a 32 bit register is loaded with the output bit
followed by a sequence of ‘0’ or ‘1’ according to the
value of output bit; the sequence length is set by the
value of the follow field of the packet. In order to
correctly load the bits into the 32 bit register, a start
pointer (ptri) and an end pointer (ptre) are required.

Registers and adders shown in Figure 15 allow updating
the two pointers while packet data are received. When
the 32 bit register is full, it is written into the output
buffer. A counter allows signaling to the command
decoder that the output buffer is full. The architecture
works at full throughput if a new input symbol is
available every clock cycle. In this case every command
is executed in 3 clock cycles. If full throughput is not
granted, the core requires one additional clock cycle to
verify when a new input symbol is ready.

6.2 FIFO Sizing

The number of clock cycles needed to process symbols is
affected by the sizing of follow register. In fact if a
sufficiently high value cannot be represented, stall cycles
are introduced and more than 3 clock cycles are required
to complete the current compression step. Sizing of the
follow register also impacts on the size of the FIFO.

Fig. 15 De-packetizer block scheme

The relation between the FIFO data width and the follow
register size is expressed in (3):

() fifocyclesfollowpackets nbitnnbitn ⋅≤+⋅ 2 (3)

Within the values described in the previous paragraphs,
we can set-up npackets=7, nbitfollow=6 and ncycles=3, that leads
to nbitfifo ≥ 19. Even if the FIFO data width is minimized
when nbitfifo=19, this choice has a negative impact on the
de-packetizer architecture. In fact with nbitfifo=19, a non
integer number of packets can be accommodated in the
FIFO data. In order to simplify the architecture and to
accommodate an integer number of packets, we accept an
increase in the FIFO data width. With a 24 bit wide FIFO,
7 packets can be transferred in 3 clock cycles. On the
other hand, sizing the FIFO depth depends on both the
distribution of follow values and on the distribution of
valid packets. If the number of free positions in the 32 bit
register is larger than follow, nfree ≥ follow+1, then 2
clock cycles are required to process a packet; otherwise 3
or 4 clock cycles are required depending on the follow
value. Adding two 32 bit shadow registers, the de-
packetizer can always process a packet in 2 clock cycles.

However, even if 6 bits for representing the follow value is
a conservative sizing, our simulations show that follow has
a low probability of achieving values greater than 32. As a
consequence, instead of using three 32 bit registers (2
shadow registers), only two 32 bit registers can be
employed (1 shadow register); the effect of follow values
greater than 32 can be absorbed by the FIFO. In fact, since
the follow most probable values are in the [0,31] range,
most packets are processed in 2 clock cycles, and a few of
them in 3 clock cycles. As a significant example, in Figure
16 the distribution of the follow register content for 3
frames of the Foreman sequence is shown. It is worth
pointing out that the distribution of valid packets has a
stronger impact on the FIFO depth. In particular, the
distance between consecutive valid packets is critical.
When several consecutive valid packets are generated, a
deeper FIFO is required. On the other hand even if seven
consecutive valid packets are generated, but they are
followed by a reduced number of valid packets, few
registers can act as a buffer. Unfortunately the distance
between consecutive valid packets can be determined only
from the statistical analysis of real sequences. Simulations
on several sequences show that less than 1024 cells are
required for buffering the packets in the worst case, As a
consequence a 25 kbits FIFO (1024×24) can be employed
to achieve high throughput. In Figure 17, the growing of
the required FIFO for 3 frames of the Foreman sequence is
shown as a significant example. As it can be observed in
this case the maximum number of required cells is 823
and they can be accommodated in the 1024 cells FIFO.

Fig. 16 Distribution of the follow value for the Foreman sequence: the
greatest value is 10 but with a very small probability

It is worth pointing out that the FIFO sizing allows a
complexity/performance trade-off. Reducing the FIFO
size the architecture complexity is decreased at the
expense of reduced performance. In fact reducing the
FIFO size can cause a stall in the CABAC data path or in
the de-packetizer.
As a consequence the number of clock cycles required to
complete the arithmetic coding operation increases,
reducing the architecture throughput.

Fig. 17 Required number of cells for packet buffering during the

elaboration of 3 frames from the Foreman sequence

6.3 CMOS Implementation Results

The VHDL model developed for the proposed CABAC
processor has been synthesized on the aforesaid 0.18 µm
and 65 nm CMOS standard-cells technologies.
According to post synthesis results, up to 333 MHz clock
frequency is achieved for both technologies, with an
occupation of about 4.5 kgates for the logic and with
about 25 kbits for the FIFO. Thus the proposed
architecture is able to sustain an incoming rate of up to
111 Mbits/s. Down-scaling the clock frequency to 150
MHz, a data-rate of 50 Mbits/s can be sustained with a
power consumption of about 22 mW and 3 mW in 0.18
µm and 65 nm technologies respectively. It is worth
pointing out that an uncompressed 720×480 video
sequence at 30 frames/s produces from 83 to 125 Mbits/s
(8 bits gray scale or YUV 4:2:0). Thus, on the target
application (720×480 at 30 frames/s), the proposed
CABAC architecture can sustain also very low
compression ratios (~2:1), granting high quality video
compression.
Compared to the solutions described in [8, 9, 18, 19, 20,
36] the proposed architecture shows some common
points and some differences. In particular, since in [18]
FPGA implementation is considered, a fair comparison is
not possible, even if an ASIC complexity of roughly 10
kgates is estimated. This value appears compatible with
our architecture complexity. On the other hand we can
compare the proposed architecture with [8, 9, 19, 20,
36]. The architecture described in [8] is similar to the
one proposed in this work, however in [8] the sizing of
the FIFO is not investigated. Moreover, in [8] a 0.35 µm
standard cell technology is employed leading to a limited
clock frequency (186 MHz) and throughput. Since in [8]
also binarization is taken into account a fair complexity
comparison is not possible.
To the best of our knowledge the architecture described
in [9] is one of the highest performance implementations
available in the literature. Comparing the architectures
described in [9, 20, 36] that are all implemented on a

0.18 µm technology, we can observe that [9] has a higher
complexity and can run at 263 MHz sustaining 87
Mbits/s, whereas [20] achieves 4 Mbits/s with a clock
frequency of 190 MHz. The solution in [36] is based on
fully pipelining all the encoding process and achieves a
throughput of an encoded symbol per clock cycle at the
expense of 14 kgates for the logic and 15 kbits of RAM.
In Table 6 we compare the proposed architecture with [9,
19, 36]. For a fair comparison the proposed architecture
results are shown only for the 0.18 µm standard cell
technology. As it can be inferred the proposed
architecture has a lower critical path with near the same
complexity of [9]. The comparison with [19] is not
completely fair as our single-symbol architecture is
compared to [19] which is a multi-symbol encoder. The
proposed architecture is smaller than [19], with a
reduced critical path. However, since the proposed
architecture requires three clock cycles to elaborate an
input symbol, the number of processed symbols per cycle
is lower than [19]. Finally, compared with [36] the
proposed architecture requires less logic but more
memory, in fact [36] requires 14 kgates for the logic and
15 kbits for the memory respectively, whereas the
proposed architecture features 4.5 kgates for the logic
and 25 kbits for the memory

Table 6 – CABAC architectures comparison

7. IP Interface for NoC Parallel Computing

As proved in literature [27, 32] since the H.264 standard
is computing intensive the requirements of real time
performance can be met not only through complexity
reduced new algorithms but also through parallel
hardware configuration by means of innovative
communication infrastructures such as NoC. Motion
Estimation operations are suitable to follow a parallel
operation flow since many kind of searches (e.g.:
searches for different partitions or different MBs) can be
done independently and thus parallelized. As proved in
[27], which analyzes an MPEG encoder architecture
varying the number of ME processors used, a NoC
communication approach outperforms classic point-to-
point and hierarchical bus interconnections in terms of
scalability for area, power and throughput.
Therefore is important an evaluation of the complexity of
a Network Interface (NI) able to connect the proposed
CABAC and ME IPs to a NoC. Among the several NoC
topologies proposed in literature here we refer to the
Spidergon STNoC topology [26, 33]. In our case study,
application of NoC solutions on video encoders, the NoC
capabilities can be reduced to basic networking/routing

schemes with appropriate NI towards the AMBA AHB
IP bus. So Spidergon STNoC building blocks need to
just implement basic functionality to guarantee efficient
parallel communication between cores and memory
spaces. The NI converts protocols, data size and
frequency between the IP domain and the NoC domain.
Once the NI injects packets on the network, 4-port
Routers (R) apply routing schemes across the network,
whose topology is the same as the Ring one except that
one more port connects opposing routers (Figure 18).
The architecture of the NI we have designed is organized
in two main modules, see Figure 19. The first one, the
Shell, implements protocol handshaking with the
connected IP and abstracts the transport and network
layers. The second one, the Kernel, manages packet
assembling and, depending on the configuration, also
frequency and data size conversion. A NI Shell has been
designed to adapt the AHB bus interface of the two
H.264/AVC blocks to the Kernel module. The whole NI
has been then configured in two ways depending on the
wished interconnect capabilities, as reported in Table 7.
Then it was synthesized in a standard cells CMOS 65 nm
1.1V and CMOS 180nm 1.8V processes. The parameters
that have been configured are:
- The number of retiming stages in the pipeline,
determining the clock latency.
- Frequency conversion scheme, patent filed [39], based
on bi-synchronous FIFOs with Gray coded pointers and
brute force synchronizers to transmit payload and header
data through separate clock domains.
- The data width at AHB and NoC interfaces.
- The amount of internal buffering for payload and
header data.

Feature Config 1 Config 2
Latency 0 clock cycles 1 clock cycle

Frequency
conversion

off on

Header FIFO no 240 bits
Payload FIFO no 288 bits

NoC data width 32 bits 64 bits
AMBA AHB 32 bits 32 bits

Table 7 – NI synthesis configurations for video coding computations

A 0 clock cycle NI with Configuration 1 in Table 7 can
work up to 500 MHz clock frequencies in 65 nm (using
a low-leakage library version), which is well above the
working frequencies of the proposed CABAC and ME
H.264/AVC building blocks. Therefore frequency
conversion is not strictly necessary and a single clock IP-
NoC design can be done. In case of Configuration 2 a
FIFO-based frequency conversion is enabled in the case
the NoC works at maximum speed. The complexity in
terms of kgates is roughly 1.5 for Configuration 1 and 3
kgates for Configuration 2 with leakage power
consumption of few tens of µW. Configuration 2
performs also a size conversion packing 32 bit AHB data
into 64 bit payload data carried by the network (the small
FIFOs are realized using Flip-Flops and hence no
embedded RAM is needed).

 0.18 µm area

 [kgate] [mm2]

Critical
path [ns]

Symbols
per cycle

[9] - 0.423 3.8 1/3
[19] 32.1 - 5.2 3.32
[36] 15 - 3.2 1
Our 4.5 0.513 3 1/3

Comparing such data with the complexity of ME and
CABAC cores it can be seen that the overhead of a NI,
particularly configuration 1 in Table 7, is minimal. The
maximum achievable bandwidth, if the NoC is clocked at
500 MHz, is 15 Gbits/s; such value is much higher than
the one needed by the ME engine to transfer pixel data
from background frame memories to the local buffers
(~3.8 Gbits/s, see Section 4.1). The NoC bandwidth also
sustains CABAC throughput which is roughly 0.11
Gbits/s (see Section 6). The whole throughput
requirement is then 3.9 Gbits/s and can be sustained
clocking the NoC at 125 MHz, a target frequency
achievable also in 180 nm 1.8 V technology.

IP

Spidergon
Platform

R

R R

R

R

R

R R

NI

NI

NI

NI

NI

NI

NI

NI

IP

IP

IP

IP

IP

IP

IP

Fig. 18 – Spidergon STNoC topology

 SHELL

(IP specific)

Handshaking
& encoding
of AHB data

KERNEL

NoC packet
assembly &
frequency/size
conversion

AHB

NoC
packet

(IP protocol
independent)

IP
side

Router
side

Fig. 19 – NI subdivision in Shell and Kernel

8. Conclusions

In this paper two optimized hardware co-processors for
real-time and high-quality H.264/AVC video coding are
proposed. Stemming from complexity and profiling
analysis the two architectures are derived in a NOC
framework as AHB interfaced IP cells for high-
performance H.264/AVC-based VLSI multimedia systems.
CMOS implementation results highlighted that both the
co-processors have interesting figures in terms of
performance, complexity and power consumption also
compared to other published solutions. The design of a
Network Interface is also presented to allow direct
integration of the IP cores in advanced on-chip

communication infrastructures, NoC, used in MPSoC for
video encoding.
This work has been supported by NEWCOM++ NoE.

References
[1] T. Wiegand, G. Sullivan, G. Bjntegaard, A. Luthra, “Overview of

the H.264/AVC video coding standard”, IEEE Tran. on Circuits
and Systems for Video Tech., vol. 13, n. 7, 2003, pp. 560-576

[2] S. Saponara et al., “Performance and complexity co-evaluation
of the Advanced Video Coding standard for cost-effective
multimedia communications”, J. Applied Signal Processing, vol.
2, 2004, pp. 220-235

[3] J. Ostermann et al., “Video coding with H.264/AVC: tools,
performance and complexity”, IEEE Circ. and Syst. Magazine,
vol. 4, 2004, pp. 7 – 28

[4] S.Y. Chien, Y.W. Huang, C.Y. Chen, H.H. Chen, L.G. Chen,
“Hardware architecture design of video compression for
multimedia communication systems”, IEEE Comm. Mag., 2005,
pp. 123-131

[5] D. Marpe, H. Schwarts, T. Wiegand, “Context-based Adaptive
Binary Arithmetic Coding in the H.264/AVC video compression
standard”, IEEE Trans. on Circuits and Systems for Video Tech.,
vol. 13, July 2003, pp. 620–636

[6] L. H.-Yao, C.Y.-Chih, C. C.-Hong, L. B.-Da, Y. J-Ferr,
“Combined 2-D transform and quantization architectures for
H.264 video coders”, Proc. IEEE ISCAS, 2005, pp. 23-26

[7] V. H. S. Ha, W. S. Shim, J. W. Kim, “Real-time MPEG-4
AVC/H.264 CABAC entropy coder”, Proc. IEEE Int. Conf. on
Consumer Electronics, 2005, pp. 255–256

[8] R. Osorio, J. Bruguera, “High-Throughput Architecture for
H.264/AVC CABAC Compression System”, IEEE Trans. On
Circuits and Systems for Video Technology, vol. 16, n. 11, Nov.
2006, pp. 1376–1384

[9] H. Shojania, S. Sudharsanan, “A high performance CABAC
encoder”, Proc. IEEE NEWCAS, 2005, pp. 19–22

[10] Y. Huang et al., “Analysis, fast algorithm, and VLSI architecture
design for H.264/AVC intra frame coder,” IEEE Trans. Circuits
Sys. Video Tech., vol. 15, n. 3, Mar. 2005, pp. 378–401

[11] Z. Chen, J. Xu, Y. He, “Efficient fast ME predictions and early-
termination strategy based on H.264 statistical characters”, Proc.
ICICS – PCM, Dec. 2003, pp. 213 -218

[12] H. Tourapis, A. Tourapis, “Fast motion estimation within the
H.264 codec”, Proc. IEEE ICME, July 2003, pp. 517-520

[13] P. Kuhn, Algorithms, complexity analysis and VLSI architectures
for MPEG-4 motion estimation, Kluwer, 1999

[14] L. Fanucci et al., “Self-adaptive algorithmic/architectural design
for real-time, low-power video systems”, IEICE Tran. on Inf. and
Systems, n. 7, vol. E88-D, pp. 1538-1545, 2005

[15] Y.W. Huang et al., “Hardware architecture design for variable
block size motion estimation in MPEG-4 AVC/JVT/ITU-T
H.264”, Proc. IEEE ISCAS, 2003, pp. 796-799

[16] http://iphome.hhi.de/suehring/tml
[17] JVT and ITU-T, “Draft ITU-T recommendation and final draft

international standard of joint video specification (ITU-T Rec.
H.264 — ISO/IEC 14496-10 AVC)

[18] J. L. Nunez-Yanez, V. A. Chouliaras, D. Alfonso, “Hardware
assisted rate distortion optimization with embedded CABAC
accelerator for the H.264 video codec”, Proc. IEEE Int. Conf. on
Consumer Electr., 2006, pp. 95–96

[19] Y.J. Chen, C.H. Tsai, L.G. Chen, “Architecture Design of Area-
Efficient SRAM-Based Multi-Symbol Arithmetic Encoder in
H.264/AVC”, Proc. IEEE ISCAS, 2006, pp. 2621-2624

[20] O. Flordal et al., “Accelerating CABAC Encoding for Multi-
standard Media with Configurability”, Proc IPDPS 2006, pp. 1-8

[21] L. Fanucci, S. Saponara, “Power optimization of an 8051-
compliant microcontroller”, IEICE Trans. Electronics, vol. E88-
C, n. 4, April 2005, pp. 597-560

[22] L. Fanucci, S. Saponara, L. Bertini, “A Parametric VLSI
Architecture for Video Motion Estimation”, Integration-The
VLSI Journal, n. 1, vol. 31, pp. 79-100, 2001

[23] C. Rahman, W. Badawy, “UMHexagonS Algorithm Based
Motion Estimation Architecture for H.264/AVC”, IEEE IWSOC
2005, pp. 207-210

[24] S.Saponara, M.Casula, F.Rovati, D.Alfonso, L.Fanucci,
“Dynamic control of motion estimation search parameters for
low complex H.264 video coding”, IEEE Transactions on
Consumer Electronics, vol. 52, n. 1, pp. 232-239, February 2006

[25] L. Benini, G.De Micheli, “Networks on Chip: a New SoC
Paradigm”, IEEE Computer, vol. 35, n. 1, pp. 70-78, Jan 2002

[26] M.D. Grammatikakis, M. Coppola, G. Maruccia, R. Locatelli, L.
Pieralisi, “Design of Cost-Efficient Interconnect Processing
Units: Spidergon Stnoc”, CRC Press, 2008

[27] H. Gyu Lee et al., “On-Chip Communication Architecture
Exploration: A Quantitative Evaluation of Point-to-Point, Bus,
and Network-on-chip approaches”, ACM Trans. on Design
Automation of Electronic Systems, vol. 12, n. 3, Aug. 2007

[28] D. Kim et al., “MPEG-4 Performance Analysis for a CDMA
Network-on-Chip”, Proc. of International Conference on Comm.,
Circuits and Systems, vol. 1, pp 493-496, May 2005

[29] A. Kumala, E. Salminen, M. Hannikainen, T.D. Hamalainen,
“Evaluating SoC Network Performance in MPEG-4 Encoder”,
SIPS 2006, pp. 250-255, Oct. 2006

[30] S. Dutta, W. Wolf, “A Flexible Parallel Architecture Adapted to
Block-Matching Motion-Estimation Algorithms”, IEEE Tran. on
Circ. and Systems for Video Tech., vol. 6, n. 1, pp. 74 – 86, 1996

[31] V.-D. Ngo, H.-N. Nguyen, H.-W. Choi, “Realizing Network on
Chip Design of H.264 Decoder Based on Throughput Aware
Mapping”, ICCE’06, pp. 337-342, Oct. 2006

[32] J. Chang et al, “Performance Analysis for MPEG-4 Video Coded
Based on On-Chip Network”, ETRI Journal, vol. 27, n. 5, 2005

[33] F. Vitullo et al., “Low-Complexity Link Microarchitecture for
Mesochronous Comunication in Networks on Chip”, IEEE
Transactions on Computers, vol. 57, n. 9, pp 1196-1201, 2008

[34] K. Srinivasan, E. Salminen “A Methodology for Performance
Analysis of Network-on-Chip Architectures for Video SoC”,
2009, available at http://www.design-reuse.com/articles/20623/

[35] S. Saponara, L. Fanucci, P. Terreni, “Architectural-level Power
Optimization of Microcontroller Cores in Embedded Systems” ,
IEEE Tran. On Ind. Electr., vol. 54, n. 1, pp. 680-683, Feb. 2007

[36] W. Zheng, D. X. Li, B. Shi, H. S. Le, M. Zhang “Efficient
Pipelined CABAC Encoding Architecture”, IEEE Trans. on
Consumer Electronics, vol. 54, n. 2, May 2008, pp. 681-686

[37] P. Zhang, D. Xie, W. Gao, “Varriable-Bin-Rate CABAC Engine
for H.264 High Definition Real Time Decoding, IEEE Trans. on
VLSI, vol. 17, n. 3 , Mar. 2009, pp. 417-426

[38] A. Molino, F. Vacca, G. Masera, T. Q. Nguyen, “Scalable phase
extraction methods for phase plane motion estimation”, IEE
Proc. – Vision, Image and Signal Proc., vol. 153, n. 6, 2006, pp.
860-868

[39] G. Maruccia, S. Saponara, L. Fanucci M. Casula, R. Locatelli, L.
Pieralisi, M. Coppola, “Method for transferring a stream of at
least one data packet between first and second electronic devices
and corresponding device”, Europe, EP 07121139.5, 2007

[40] S. Saponara, L. Fanucci, “ Data-adaptive motion estimation
algorithm and VLSI architecture design for low-power video
systems”, IEE Proceedings-Computers and Digital
Techniques, vol. 151, n. 1, Jan. 2004, pp. 51-59

