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Summary 
Real-Time and high-quality video coding is gaining a wide 
interest in the research and industrial community for different 
applications. H.264/AVC, a recent standard for high 
performance video coding, can be successfully exploited in 
several scenarios including digital video broadcasting, high-
definition TV and DVD-based systems, which require to 
sustain up to tens of Mbits/s. To that purpose this paper 
proposes optimized architectures for H.264/AVC most critical 
tasks, Motion Estimation and Context Adaptive Binary 
Arithmetic Coding. Post synthesis results on sub-micron 
CMOS standard-cells technologies show that the proposed 
architectures can actually process in real time 720×480 video 
sequences at 30 frames/s and grant more than 50 Mbits/s. The 
achieved circuit complexity and power consumption budgets 
are suitable for their integration in complex VLSI multimedia 
systems based either on AHB bus centric on-chip 
communication system or on novel Network-on-Chip (NoC) 
infrastructures for MPSoC (Multi Processor System on Chip). 
Key words: 
Video Coding, Hardware Architectures, Motion Estimation, 
Entropy Coder, Network on Chip, VLSI Multimedia Systems 

1. Introduction 

H.264/AVC is the new video coding standard released by 
ITU-T and ISO/IEC [1]. Compared to previous H.26x 
and MPEGx standards, H.264/AVC superior 
compression efficiency and high scalability make it 
suitable for different scenarios. Target applications range 
from low bit-rate video communications, supported by 
the Baseline Profile of H.264/AVC, with maximum data 
rates of few hundreds of kbits/s and QCIF (174×144) 
formats up to high-quality video delivery and storage at 
tens of Mbits/s and with large formats. The high quality 
scenario, covered by the Main Profile of the standard, 
includes applications such as digital video broadcasting-
terrestrial and handheld (DVB-T/H), high definition TV 
and DVD-based systems. The implementation of 
hardware co-processors, able to sustain real-time and 
high-quality H.264/AVC video coding, is needed to grant 
high performance.  
Figure 1 shows a block diagram of the H.264/AVC 
encoder. Like its H.26x/MPEGx ancestors it is based on 
a hybrid scheme compressing the information both in the 
temporal domain by INTER-frame Motion Estimation 
and Compensation (ME and MC in Figure 1) and in the 
spatial domain by INTRA-frame Transform coding and 

Quantization of the residual estimation error (T and Q 
units in Figure 1). The block scheme shown in Figure 1, 
that is referred to INTRA-frame coding, can be 
straightforwardly adapted to INTER-frame coding 
feeding the adder and the subtracter with the MC 
multiblock size multiframe block output (inter). An 
Entropy Coder further reduces data redundancy in the 
bit-stream. The compressed output stream is then passed 
to a Network Abstraction Layer (NAL) unit where data 
are packaged depending on the characteristics of the 
specific communication network. 

 
Fig. 1. Block diagram of the H.264/AVC Video Coding Layer 

With respect to previous coding standards, H.264/AVC 
includes additional features, particularly in the ME task 
for inter frame prediction, adopting multi-reference 
frames and variable block sizes, and in the Entropy 
Coding task, adopting a Context Adaptive Binary 
Arithmetic Coder (CABAC). The performance and 
complexity profiling analysis on the reference C model 
of the encoder proves that these features improve the 
coding efficiency by a factor two at the expense of 
increased computation and memory costs up to one order 
of magnitude [2-4]. 
Variable block size and multi reference frame ME is 
supported in both Baseline and Main Profiles; CABAC is 
supported in the Main Profile while for the Baseline 
Profile a Context Adaptive Variable Length Coder 
(CAVLC) is used. With respect to CAVLC the CABAC 
scheme allows up to 15% bit-rate saving for a fixed 
visual quality at the expense of computation and memory 
complexity overheads of 30% [2, 5]. As proved in 
literature [2-4], ME and CABAC are the bottlenecks of 
the standard in terms of required computation complexity 
and the design of hardware co-processors to support such 



  

features is mandatory for the real-time and cost-effective 
realization of H.264/AVC-based systems. To this aim 
two VLSI intellectual property (IP) macrocells, 
dedicated to ME and CABAC processing, are presented 
in the paper. They allow for real time implementation of 
H.264/AVC coding in high quality scenarios where up to 
tens of Mbits/s are reached, as in the Main Profile. 
Optimizations are addressed at algorithmic and 
architectural level and their complexity and power 
consumption budgets are suitable for integration in 
complex VLSI multimedia systems targeting real-time up 
to 30 frames/s 720x480 formats. To ease the IP 
assembling, two interfaces towards an AHB bus centric 
infrastructure and a Network-on-Chip (NoC) 
communication backbone are provided. 
Hereafter, Section 2 briefly reviews state of the art in 
hardware design for H.264/AVC video coding. Section 3 
describes a novel context-aware low-complexity ME 
technique. The ME hardware architecture and the 
relevant synthesis results in submicron CMOS 
technology are presented in Section 4. Section 5 deals 
with CABAC algorithmic description. CABAC hardware 
architecture and CMOS implementation results are 
detailed in Section 6. Section 7 is about the design of a 
Network Interface (NI) for the proposed IPs towards a 
Spidergon NoC platform; the latter is configured to 
connect AHB bus based H.264/AVC blocks to a NoC 
thus taking advantage of parallel computing. Conclusions 
are drawn in Section 8. 

2. Hardware Design for H.264/AVC 

In the literature several works have been proposed 
concerning the hardware implementation of building 
blocks of the H.264/AVC codec [6-15], [18-20], [23]. 
Single-chip coders have been also proposed, as in [4] 
where a RISC programmable core supports the control 
tasks while the signal processing functions are all 
realized by dedicated hardware units. All the cores in the 
above cited works are connected by means of a standard 
shared-bus communication model. The single-chip coder 
in [4], realized in a 0.18 µm CMOS technology, 
implements the Baseline Profile of the standard targeting 
30 frames/s CIF (352×288) and CCIR (720×480) formats. 
However the support of CABAC and hence of the Main 
Profile is still missing since the basic CAVLC entropy 
coder is adopted in [4]. 
Due to the advances in on-chip communication 
paradigms, new solutions are available for future 
embedded sub-micron MPSoC. NoCs [25, 26] allow 
large bandwidth data delivery in parallel multi-core 
systems and offer a better performance for video 
encoding standards [27-32, 34] compared to single/ 
hierarchical bus systems. That means future MPSoC can 
implement video encoding applications designing 
specific blocks for the different tasks and connecting 
them through high throughput NoC-based parallel 
communication. The burden of CABAC and Motion 

Estimation operations is still the bottleneck in 
H.264/AVC even if efficient on-chip networking 
improves overall performance. 
Some works in the literature concern CABAC 
implementation: in [7] a mixed hardware/software 
system is proposed, whereas [8, 9, 36] concentrate on 
CABAC dedicated coprocessors. Optimized hardware 
implementations limited to the CABAC unit are 
proposed also in [18, 19, 20, 37]. In [18] an FPGA based 
RISC CPU extension is proposed to accelerate CABAC 
in a rate distortion framework. The works [19, 37] deal 
with the architecture of a CABAC decoder while in [20] 
an encoder implementation is investigated.  
As far as ME is concerned, the adopted solution in [4] is 
a large systolic array of 256 processing elements 
implementing a classic Full Search (FS) technique, 
known to be not efficient in terms of performance vs. 
complexity trade-off [11-13], [23]. Hardware engines 
based on a systolic array of processing elements for FS 
ME with variable block sizes have been also proposed in 
other works, e.g. [15]. To reduce the complexity of the 
conventional brute force FS while keeping similar coding 
efficiency many fast ME techniques have been 
investigated in the literature [11-15], [23]. Among them 
UMHexagonS (UMHS) [11] has been officially accepted 
as the fast ME technique in the JM reference software 
model of the standard [16, 17]. It realizes a predictive 
search, which adopts a hexagonal window in the refining 
phase plus proper stop criteria. A hardware architecture 
for UMHS ME has been discussed in [23]. The 
implementation of a different approach based on the 
Phase Plane Correlation was described in [38]. 
It is worth noting that in FS, in UMHS and in most of 
known ME techniques, the basic search is repeated 
multiple times in case of multiple reference frame or 
variable block sizes (7 block sizes in H.264/AVC: 16×16 
macroblock and its sub partitions 16×8, 8×16, 8×8, 8×4, 
4×8 and 4×4 blocks). Since ME operations increase with 
the number of blocks and reference frames, unnecessary 
redundancy is introduced by UMHS and most of known 
ME techniques in terms of computations and memory 
accesses. Adaptive ME techniques have been proposed 
by the authors in [14, 24, 40] but the ME algorithms 
were mainly optimized for low/mid image formats 
(QCIF/CIF), with fixed search ranges and moderate 
dynamic scenarios (telconferencing or video phone 
applications) while this work extends the research to 
larger formats (CCIR) and search sizes (from 4 to 64), 
considering higher dynamic scenes and higher quality 
video applications. Moreover, the architectures in [14, 
40] have a single search area local buffer which, as 
discussed later, is a bottleneck when working with high 
dynamic scenes using always more than 1 reference 
frame. Our previous ME architecture was also conceived 
as a coprocessor with a simple interface, tightly coupled 
to a single RISC core; however high quality video 
systems are based on multi core architectures requiring 



 

  

more complex communication infrastructures whose 
design are addressed in this paper. 
This paper concentrates on the whole H.264/AVC frame-
work and deals with the most computationally intensive 
tasks, showing architectures suited for real-time and 
high-quality video coding in VLSI multimedia systems. 
As far as CABAC is concerned a high speed FIFO-based 
architecture is presented. Since the FIFO size impacts 
both on the performance and the complexity of the 
CABAC architecture, it should be consciously sized. In 
this paper the FIFO sizing is thoughtfully discussed to 
grant very high performance with a reduced complexity 
increase. For ME an innovative adaptive algorithm with 
its relevant hardware architecture is proposed. The novel 
technique avoids unnecessary computations and memory 
accesses, whereas it achieves the same high coding 
quality of FS.  
To ease their integration in complex embedded systems, 
the CABAC and ME architectures have been designed as 
reusable IP VHDL macrocells and have a wrapper to 
AMBA AHB bus, which is a defacto standard for 
system-on-chip (SoC) communication. To facilitate the 
IP integration in MPSoC also a Network Interface has 
been designed which wraps the AHB interface of the IPs 
to the Spidergon NoC protocol. The two IP macro-cells 
have been also characterized in terms of area, power and 
computing performance on 180 nm and 65 nm CMOS 
standard-cells technologies. 

3. Adaptive Fast ME Technique 

To avoid unnecessary computations and memory 
accesses for the ME task in H.264/AVC-compliant 
coders we propose to add a low complexity context-
adaptive controller to a basic search engine, FS or Fast 
ME as UMHS. The controller extracts from the search 
engine partial results, i.e. Motion Vectors (MV) and Sum 
of Absolute Difference (SAD) cost, information on the 
input signal statistic, using them to automatically 
configure run-time the following ME search parameters: 
number of reference frames, valid block sizes and search 
area for each 16×16 macroblock and its sub-partitions 
down to 4×4-pixel blocks. This section presents briefly 
the algorithmic level design and performance, focusing 
on performance over search area displacements ranging 
from ±4 to ±64. The global context-adaptive controller 
combines three basic algorithms which have been proven 
efficient in both FS and fast ME engines in the case of a 
fixed search area displacement of 16 [24]. In this work 7 
middle format video sequences with high-dynamic 
scenarios are codified using the basic UMHS ME and 
our adaptive-controlled UMHS ME with search 
displacements ranging from 4 to 64. The adopted test 
videos are reported in Table 1. They have been encoded 
at 30 frames/s with a Quantization factor of 28 using the 
reference JM10 software implementation of H.264/AVC 
with UMHS ME. Bit-rate and ME time performances are 
reported in the case of a search displacement of 4. 

Sequence Format Bit-rate, kbit/s ME Time (s) 
Stefan SIF 1190.9 49.5 
Mobile SIF 1668.1 46.6 
Garden SIF 2280.5 62 

Bus CIF 1265.1 78.3 
Foreman CIF 840.1 72.8 

TennisTable CCIR 5625.8 248.9 
Mobile CCIR 5937.2 223.6 

Table 1 – Absolute performance of UMHS (search displacement of 4) 
 

In Figure 2 bit-rate performances, normalized vs. the 
values in Table 1, are reported for sequences using 
UMHS ME with displacements of 4, 8, 16, 32, 64. 
Figure 3 reports normalized ME time performances 
obtained in the same conditions of Figure 2. For the 
horizontal axes in Figures 2 and 3 a logarithmic scale is 
used. In Figures 2 and 3 it can be seen that displacements 
greater than 16 do not add meaningful improvements in 
the compression efficiency, while the ME processing 
time is increased by a factor 3 when sweeping from 16 to 
64. It is then a waste of resource trying to estimate each 
macroblock (MB) position in all the possible interpolated 
positions of the search area. These results depend on the 
fact that ME engines use motion vector predictors, which 
centers the search area in the most probable location of a 
local minimum cost. Block matching operations do not 
start around the position of the current processed MB but 
the starting point is translated elsewhere depending on 
statistic data. 
The aim of our work is to improve the results in Figures 
2 and 3 and Table 1 applying a dynamic control to the 
ME search engine. Basically the trade-off between 
compression efficiency (measured in terms of bit-rate for 
a given PSNR) and ME complexity (evaluated in terms 
of ME processing time inside the JM coding framework) 
must be improved when the search area, the number of 
reference frames and the block types grow. 

 
Fig. 2 Normalized bit-rate for search displacements ranging from 4 to 

64 (in log2 scale) using the UMHS ME 



  

 
Fig. 3  UMHS ME Time growth factor vs. search displacements 

ranging from 4 to 64 in log2 scale 
 

The three controls implemented to adjust the ME 
parameters at coding time are summarized hereafter: 
A) The Search Area Control. It was originally proposed 
for the automatic search range configuration of a FS 
engine in [14] and then extended for fast ME engines 
[24], but limited to a fixed search displacement of 16. In 
this work the optimal horizontal and vertical search 
displacements for the block under estimation, using a 
Fast ME engine, are selected in the range (1, 64) by 
comparing with proper thresholds the SAD and MV 
values of already encoded neighboring blocks: 3 spatial 
blocks in up, up-left and up-right positions in the current 
frame and 1 temporal block, occupying in the previous 
frames the same position of the block under estimation in 
the current frame.  
B) The Modes Control. As far as variable block sizes is 
concerned, a profiling analysis of the JM standard 
software model conducted by the authors in [2] proves 
that using the smaller block sizes is useful for images 
with complex texture while it can be avoided for 
homogenous ones to reduce complexity. Thus, we have 
devised a control over smaller block sizes (4×8, 8×4 and 
4×4 partitions) to decide which of them must be enabled 
for ME each time a 16×16 macroblock is encoded. It 
accomplishes its task by comparing the SAD cost of the 
current 16×16 partition with 3 thresholds. The objective 
of such comparisons is to enable smaller partitions when 
the SAD cost is high. So when the first threshold is 
exceeded 4x8 partition is enabled, if the second threshold 
is exceeded even 4x8 is enabled. The third threshold 
controls if the 4x4 partition has to be enabled. 
C) The Reference Frame Control. It decides the 
maximum number of reference frames RF to be used in 
the range (1, 5) for the ME of a 16×16 macroblock and 
its selected sub-partitions. According to the flow chart in 
Fig. 4, the SAD cost (SADmin) and optimal reference 
frame RF are initially detected for the 16×16 partition 
and then are used to decide how many reference frames 

are useful for the enabled smaller sub partitions in the 
current frame and for the same 16×16 partition in the 
next frame. To this aim SADmin is compared to 5 
thresholds from THR1 to THR5. Details on how 
thresholds are worked out and how they impact ME 
parameters are similar to what we discussed in [24].  

Fig. 4 Reference frame decision scheme 
 

The encoding process using all the three controls is 
accomplished following these 5 steps. 
• Step 1. The first frame of a video sequence is coded in 
INTRA mode and the ME technique is not used. The 
second frame is the first frame coded INTER and for the 
ME of all its macro blocks the basic search engine (FS or 
a FAST engine as UMHS) is used without the new 
context-aware control. Starting from the third frame, the 
steps as reported in Figure 5 are repeated iteratively. 
• Step 2. The optimal search area and reference frame 
number for the 16×16 macroblock are preliminarily sized 
using the algorithms in A) and C).  
• Step 3. The basic search engine, UMHS or FS, 
performs the ME for the 16×16 partition. 
• Step 4. Using data (SADmin value and optimal reference 
frame RF) from the previous operation the controls in B) 
and C) decide which sub partitions must be enabled for 
the ME and how many reference frames (see flowchart in 
Fig. 4) must be used for the search. The search size for 
the enabled sub-partitions is the same derived for the 
16×16 partition in Step 2. 
• Step 5.  The search engine completes the ME task for 
the current macroblock and then starts with a new 
macroblock processing by iterating the same flow from 
Step 2 to Step 5.   
With reference to the test videos with different image 
formats and target bit-rates, Figures 6 and 7 compare the 
performance of the new control technique applied to 
UMHS vs. the original UMHS.  



 

  

 
Fig. 5 Operations' flow for ME (Steps 2-5) using search parameters 
dynamic control 

 
Results in Figures 6 and 7 are expressed in terms of: 
- ∆BR% which is the bit-rate deviation measured as 
(BR2 – BR1)/BR1. BR2 is the bit-rate obtained by our 
ME adaptive-controlled encodings, while BR1 is the one 
obtained with the basic ME. 
- ∆MET% which is the saved % of the ME processing 
time when integrating our controller into the JM 10 
model and running it on a general purpose AMD Athlon 
processor. It is measured as (MET1 – MET2)/MET1. 
MET1 refers to ME encoding time with basic ME, while 
ME2 refers to ME encoding time when the proposed 
controls are applied. 

 
Fig. 6  ∆BR% for test sequences vs. search displacements from 4 to 64 

 

The bit-rate deviation of our adaptive controlled ME vs. 
original UMHS is always below 3% with an average bit-
rate slightly over 1%, while the saved ME time averages 
in the range of 60 – 70% (see Figures 6 and 7). This is 
true for all displacements. The longer the search 
displacement, the higher the saved ME time. This is 
because at displacements greater than 16 the adaptive 
control of the search area detects optimal motion 
estimation in a sub region of the available one. As seen 
in Figure 2, costs found for MB in searches with a 32 or 
64 displacement are not better than those for 16, thus the 
algorithm is able to find such costs adapting the 
displacement to a much smaller one. The results in 
Figures 2 and 3, Figures 6 and 7 refer to a fixed 

quantization parameter QP=28 for the encoder. The same 
results can be obtained for other QP values. As example, 
Fig. 8 shows the Stefan sequence with a search 
displacement of 16. The comparisons are reported in 
terms of PSNR and bit-rate values changing the QP in a 
typical range 20 to 40. To be noted that Stefan is one of 
the most demanding sequences in terms of ME resources 
and the two curves have a gap limited to 0.1 db at fixed 
bit-rate. Time savings obtained with our adaptive 
controlled ME vs. basic UMHS are always in the range 
of 60% - 70% for every point in the curve.  

 
Fig. 7 ∆MET% for test sequences vs. search displacements from 4 to 

64 
 

Table 2 shows how FS ME behaves when coupled with 
our adaptive control for a search displacement of 16. Bit 
rate deviations are on average very close to the ones 
obtained on UMHS. The saved ME time is slightly better 
on FS achieving an average value of about 70%. This is 
because the area control reduction has more influence in 
FS, where all points inside a given area are used to 
perform a block matching operation. These results, 
achieved with FS and UMHS, demonstrate that out 
adaptive controls can be applied and behave well with 
different ME engines. 

 
Fig. 8 Rate-distortion curves for Stefan SIF 



  

Sequence ∆BR% ∆MET%  
Stefan 2.5 69.8 

Mobile SIF 2.3 64.8 
Garden 0.9 66.2 

Bus 2.3 72.7 
Foreman 0.7 75.4 

Tennis Table 1.4 77.2 
Mobile CCIR 1.1 74.1 

Table 2 – Bit-rate deviation and saved ME time percentages for the 
test sequences applying our adaptive ME controls to FS 

4. ME Architectural Design 

4.1 Architecture Description  

The results reported in Section 3 for the ME refer to a 
software implementation on a general purpose Athlon 
processor at 2 GHz with 1GB RAM and Windows XP 
operating system. The original UMHS software 
implementation is far from real-time coding. However, 
thanks to the complexity reduction of our technique, real-
time is achieved for the 30 frames/s QCIF videos; for 
CIF ones the real-time is allowed at a frame rate between 
15 and 30 frames/s depending on the sequence dynamism. 
To achieve real-time for larger formats and/or to reduce 
the power consumption of the software approach for low-
power terminals, a dedicated hardware architecture is 
needed. In this case the proposed technique can be 
implemented according to the block diagram in Figure 9. 
For the realization of the relevant building blocks 
(hardware search engine, ME parameters and I/O 
controller, AHB wrapper) we have reused pre-designed 
IP VHDL cores already described in [21, 22]. The 
overall architecture has been synthesized, characterized 
and tested in 65 nm and 180 nm CMOS standard-cells 
technologies.   

 
Fig. 9  Block diagram of the ME hardware architecture 

In Figure 9 a microcontroller core is used to implement 
all the ME context-aware control tasks plus the 

scheduling of UMHS operations and the management of 
I/O data flow. Such tasks can be easily realized in real–
time for the target video formats by the power optimized 
8051-compliant microcontroller core that we described 
in [21, 35]. It features a fully synchronous 8-bit 
architecture executing most of instructions in one clock 
cycle. Its circuit complexity amounts to roughly 10 
kgates. The HW search engine in Figure 9 is realized 
reusing the parametric array architecture we proposed in 
[22] to calculate the SAD and MV cost functions. The 
implementation adopted in this work features an array of 
64 basic processing elements (PE), organized as a matrix 
of 8×8 units, each implementing the SAD calculation at 
pixel level on 8-bit data plus a parallel adder tree and a 
module for minimum SAD and MV detection. As 
detailed in [22] each PE consists of a combinatorial core 
implementing absolute difference (AD) and 
accumulation operations, see Figure 10, plus registers for 
data propagation and synchronization within the 8×8 
array. When sizing the NxN PE array a trade-off has to 
be found between area occupation and processing 
throughput while the PE array size do not limit the size 
of the search area or the size of the macroblock. In this 
paper a size 8x8 has been selected with a resulting PE 
array complexity of 24 kgates. The throughput is one 
8×8 block matching operation, i.e. 64 SAD cost function 
evaluation, per clock cycle. 
An overall local SRAM of 48 kbits is used to implement 
search area buffers (buffer 1 and buffer 2 in Figure 9) to 
reduce access frequency to large background frame 
memories. The SRAM is organized with two buffers, 
each of 18 kbits, to store search areas from different 
reference frames plus 6 kbits of memory for each buffer 
to perform efficient updates when passing from a 
macroblock to the spatial adjacent one (their search area 
overlap). Further details on spatial data reuse strategy by 
exploiting search area overlap for a single buffer can be 
found in [40]. Statistical data (mainly MVs and SADs) 
are stored in a smaller local memory. Finally an AHB 
wrapper is inserted to exchange data with an AMBA 
AHB-compliant bus (a defacto standard for high data-
rates communication in embedded systems). 

 
Fig. 10 Combinatorial part of each PE unit 

Figure 11 sketches the operation flow for both the search 
engine and the controller core, counting also the number 
of clock cycles needed to perform bottleneck tasks, 
which in this case study are the load of data from frame 



 

  

memory into the local buffer and MB SAD evaluations. 
The search engine starts performing the setup of ME of 
the current MB, accessing MV predictors, MB data and 
initial search point. If it is the first MB of a sequence 
also the search area relative to the first reference frame is 
loaded. Then, for each loaded reference frame two 
operations are done: 

A) MB motion estimation. 16x16 partition ME is 
performed and results are processed by the controller 
(8051 Analysis I in Figure 11) to decide how to perform 
sub-partitions ME. Depending on the SAD it evaluates if 
going on with the next reference frame and which sub-
blocks must be enabled for ME. The clock cycles needed 
for MB ME are roughly 1050 (150 for 16x6 ME and 
roughly 900 for sub-blocks ME in Figure 11), while 
other 8051 operations are done mostly in background 
and introduce a negligible stall (about 2%, i.e. 20 clock 
cycles). The number of SADs for a given MB has been 
evaluated counting their average number when 
performing ME with a UMHS adapted ME in the most 
difficult sequences. So Figure 11 reports the average 
number of cycles needed to do a MB ME in one single 
reference frame (determining the timing diagram of the 
control flow) in the case of worst reduction complexity. 

B) Next Frame preload. During the ME of the current 
reference frame, the next reference frame is preloaded in 
the second buffer (buffer2) of the on-chip RAM. 
Depending on the decisions taken by the adaptive 
controller (reference frame control algorithm in Section 
3) the new uploaded search area in buffer 2 can be 
related to: (i) the next reference frame of the current MB 
or (ii) the first reference frame of the next MB (no more 
reference frame will be processed for the current MB). 
Loading a search area (48x48 pixels) via a 32 bit bus 
takes about 576 clock cycles; as reported in the timing 
diagram of Figure 11 such clock cycles are in parallel to 
the 900 clock cycles spent for sub-block ME. 

 
Fig. 11 Timing diagram and parallelization of operations between the 

8051 IP adaptive controller and the hardware search engine  
 

Then the maximum clock cycles needed to process one 
MB is about n x 1070 clock cycles being n the umber of 

used reference frames. Considering that the adaptive 
controls impose an average frame number per MB 
around 3 for most difficult sequences (see Table 3), the 
engine will perform on average the ME of a MB in 3210 
clock cycles. In a CCIR format 40500 MB (30 frames 
each of 1350 MB) must be estimated in one second for 
real time performance. Considering the above calculated 
clock cycles this can be achieved clocking the system at 
roughly 132 MHz. For a 30 frames/s CIF sequence such 
performance can be obtained clocking at 38 MHz. In the 
case of a 30 frames/s CCIR format to perform real-time 
ME a search area must be loaded from main memory via 
AHB bus in 4.7 µs. That means a bandwidth of 3.8 
Gbits/s, which can be obtained with a clocking speed of 
132 MHz and a 32 bit AHB interface. 
 

Sequence Avg. Ref 
Frames  

Avg. 16x16 MB 
processed each second  

Stefan 2.6 9900 
Mobile SIF 3.3 9900 

Garden 2.8 9900 
Bus 2.6 11880 

Foreman 2 11880 
Tennis Table 2.6 40500 
Mobile CCIR 2.5 40500 

Table 3 – Average number of reference frames used to encode 
sequences with our adaptive ME 

4.2 CMOS Implementation Results 

The whole ME architecture in Section 4.1 has been 
synthesized according to a semi-custom design flow in: 
A) 0.18 µm CMOS technology using a device low-
leakage standard-cells library with 1.8 V supply voltage 
and with 6 metal layers.  
B) 65 nm CMOS technology using a device low-
leakage standard cells library with 1.1 V supply voltage 
and 9 metal layers. 
The global circuit complexity of the architecture detailed 
in Figure 9 amounts to roughly 35 kgates plus 48 kbits of 
SRAM. Both in 180 nm 1.8 V and 65 nm 1.1 V CMOS 
technologies the required system clock frequency (132 
MHz for 30 frames/s CCIR) for real–time processing is 
met. The power consumption for real time processing of 
30 Frame/s CCIR amounts to roughly 135 mW for the 
implementation in 180 nm CMOS technology and 18 
mW for that in 65 nm CMOS technology. A comparison 
of our architecture with a recent hardware architecture 
proposed in literature [15] for H.264/AVC-compliant FS 
ME, is addressed in Table 3. The hardware engine in 
[15] is based on a systolic array of 256 PEs supporting 
variable block size FS. Reported values in Table 4 are 
the circuit complexity, logic gates and SRAM memory, 
and the clock frequency required to process in real-time 
video formats up to 30 frames/s CCIR using 5 reference 
frames and a search displacement of 16. The gain in 
terms of reduced circuit complexity and clock frequency, 
and hence power consumption, of our ME architecture 
vs. that in [15] to achieve real-time processing of the 
same format mainly depends on the computational 



  

complexity reduction addressed at algorithmic level (see 
Section 3).  Indeed the architecture in [15] implements a 
FS algorithm while our architecture implements UMHS 
plus the novel context-aware controller. As reported in 
Section 3 the efficiency loss, i.e. bit-rate increase for a 
fixed PSNR value, of our technique vs. FS is in average 
about 1.5%. A hardware implementation of the basic 
UMHS ME has been proposed recently in [23]. Such 
architecture requires a 30 MHz clock frequency to 
implement in real-time the UMHS technique for a 30 
frames/s CIF video with a search displacement of 16. No 
circuit complexity results are provided in [23] for a 
complete comparison with the architecture proposed in 
this paper. However it is worth noting that our ME 
coprocessor, thanks to the computational saving of the 
adaptive parameters control, supports an UMHS-like 
search in real-time up to 30 frames/s CCIR format. 

Table 4 – ME architectures comparison 

5. CABAC Algorithmic Description 

CABAC [5] is the Context Adaptive Binary Arithmetic 
Coder used in H.264/AVC Main Profile as the entropy 
en-coding engine in alternative to basic CAVLC. Table 5 
compares CABAC and CAVLC for different test videos 
when using both techniques within the JM10 encoder 
with the fast ME proposed in Section 3: new context-
aware controller plus UMHS. Results reported in Table 5 
show the % bit-rate saving due to CABAC vs. CAVLC 
for a given PSNR quality (∆BR %) and the % increase in 
processing time (∆ECT %). The results are in line with 
the CABAC analysis in state-of-art [3] proving that 
CABAC and the new fast ME can be successfully 
integrated in the same encoder and that CABAC needs a 
dedicated implementation. The CABAC encoder 
structure is reported in Figure 12(a).  

Table 5 – CABAC vs. CAVLC 

 

Since CABAC arithmetic encoding engine works only on 
a binary alphabet, it requires to binarize input symbols. 
In fact many symbols employed in H.264 are not binary 
symbols (e.g. motion vectors), thus they ought to be 
converted in a sequence of binary symbols (bins). 
Furthermore, as CABAC is a context adaptive coder, for 
each bin a proper context ought to be selected among the 
probability models defined by the standard. 

 

Fig. 12 CABAC structure 

Then the encoding engine performs data compression 
while updating the probability estimation. The 
binarization is achieved through different techniques 
depending on the symbol to be binarized. 
• Unary Binarization : it is used for unsigned syntax 
elements. They are represented as a sequence of ‘1’ 
terminated by a ‘0’. 
• Truncated Unary Binarization : it is used for a limited 
number of unsigned syntax elements. Given a threshold 
cMax, for a syntax element less than cMax, unary 
binarization is employed. A syntax element equal to 
cMax is coded as sequence of ‘1’ with length cMax. 
 • Concatenated Unary/k-th order Exp-Golomb 
Binarization : it is used for signed elements. It is made of 
a pre-fix generated with truncated unary binarization and 
a suffix generated with k-th order Exp-Golomb codes. 
• Fixed length binarization: it is used for a limited 
number of syntax elements whose values are integers 
∈[0,cMax]. 
During the binarization a Context Identifier is assigned 
to each syntax element. This identifier and the current 
bin position, through some thresholds, generate an index 
(ctxIdx) that allows finding the correct context. In fact 
contexts are stored in a table (ContexTable) that contains 
the different initial probability values for the arithmetic 
encoder. Each context can be univocally identified, 
through ctxIdx.  
The coding engine is based on the arithmetic encoding of 
a bin with its context. The arithmetic coder is binary, 
namely only two symbols, least probable symbol (LPS) 
and the most probable symbol (MPS) are allowed. The 
arithmetic coding is based on the recursive partition of 
the probability interval [0,1] in sub-intervals whose 
width is proportional to the probability of the symbol to 
be coded. Given the probabilities of the LPS (pLPS) and 
of the MPS (pMPS=1-pLPS), the sub-interval widths (RLPS, 

Work 
Logic 
Gates 

RAM 
Clock 

Frequency 
ME 

Our 35 k 48 kbits  
(2 buffers) 

132 MHz Adaptive 
ME 

[15] 106 k 24 kbits 
(1 buffer) 

213.7MHz FS 

Sequence Format ∆BR% ∆ECT%  
Stefan SIF -9.1 34 

Foreman CIF -6.9 27.8 
Akiyo CIF -5.8 31.6 

TennisTable CCIR -12.2 30.3 



 

  

RMPS) are updated as in (1) where R is the current interval 
width. 

LPSMPS

LPSLPS

RRR

pRR

−=
⋅=

 (1) 

 
Let us introduce low as the lower point of the current 
interval, the updating of interval bounds follows the rules 
in (2): 

LPS
RR

RRlowlow

MPS
RRR

lowlow

LPSnew

LPSnew

LPSnew

new

=
−+=

−=
=

(2) 

6. CABAC Architecture 

6.1 Architecture Description 

The top level view of the proposed CABAC coprocessor 
is shown in Figure 13. External connection is provided 
through the AHB interface and two buffers are used for 
input and output data exchange with the network. The 
processing core includes four main blocks: 
• CMD decoder dispatches the received commands from 
the AHB interface to the input buffer and to the CABAC 
control unit; 
• CABAC data path and control unit  manage the 
entropy coding, generating “packets” of bits; 
• The de-packetizer block produces the coded bits.  
A critical issue in the proposed CABAC architecture 
design is the FIFO sizing as it impacts both on the 
performance and on the complexity. In the following 
paragraphs the proposed architecture is detailed in order 
to understand the design characteristics and the system 
requirements. These aspects are crucial to size the FIFO 
reducing the complexity overhead while granting high 
performance as detailed in Section 6.2. 
 
6.1.1 CMD decoder 
 
When receiving a new input symbol, three encoding 
modes can be selected, according to the symbol context: 
context based, eq_prob or final mode. In the context 
based mode the context must be explicitly provided to 
the encoding unit, see Figure 12(b), whereas the eq_prob 
mode assumes symbol probabilities equal to 0.5 and the 
final mode allows encoding the last symbol before 
termination.    
The CABAC control unit receives the proper command, 
the input symbol and the related context that are used to 
properly drive the data path and to produce the packed 
data.  
Three main commands can be executed by the CABAC 
core: 
• Init  to initialize the probability interval and internal 
FSMs. 

• Terminate to terminate the encoding on the current 
context. 
• Encode to process the input symbol and to produce the 
output bits. 
 
6.1.2 CABAC data path and control unit  
 
In order to avoid the use of multiplications to perform 
the arithmetic coding, in H.264/AVC significant values 
of the interval width (R) and of the LPS probability (pLPS) 
are pre-calculated and stored in two vectors, usually 
indicated as Q and P [5]; vector Q needs two bits and six 
bits are required for P. Furthermore R·pLPS values, 
obtained with Q and P, are stored into a 4×64 matrix 
(M). The CABAC data path basically implements the 
flow chart shown in Figure 12 (b): it receives the context 
in value from the CABAC control unit and produces the 
packed data that are pushed into the FIFO. Furthermore 
the control unit ought to correctly drive the CABAC data 
path multiplexers in order to select the proper values. 

 
Fig. 13 Proposed CABAC coprocessor 

The CABAC data path block scheme is depicted in 
Figure 14 highlighting four functional units, respectively 
devoted to probability updating, computation of  R·pLPS  
product, range update and data output. Since the 
probability pLPS is derived from the context State, in the 
actual implementation ROM memories are directly 
addressed by context State, so avoiding the generation of 
the intermediate pLPS value. 
In Figure 14, instead of allocating a single ROM memory 
with pre-calculated R·pLPS product values, the context 
State is used to address the four small ROMS M0 to M3 
(64×9 bits), while the current R value selects the correct 
ROM output through a multiplexer; this solution better 
exploits the delayed arrival of R, which is available one 
cycle later than the context.  
The CABAC coder is adaptive and therefore the context 
is continuously updated by means of an FSM that 
generates the Next context State on the basis of the 
received symbol (LPS or MPS) and the current Context 
State. In Figure 14, two small ROMs (64×6 bits) are used 



  

to adaptively generate Next MPS State and Next LPS 
State, depending on the input symbol. 
The range update unit in Figure 14 simply computes 
either RLPS or RMPS according to Equation (2); moreover 
this unit also updates low value. 
In the data output unit, the low value is used to update 
the output bit according to the flow chart depicted in 
Figure 12 (b). When low is greater than half the interval 
width (0x0200) a ‘1’ is output. Similarly when low is 
lower than a quarter of the interval width (0x0100) a ‘0’ 
is generated. Otherwise no coded bits can be produced: 
in this case, the generated output is not valid and the 
follow counter is incremented; the next valid generated 
output bit will be accompanied by the number of 
occurred increments, stored as the follow content. 
Performed simulations on different sequences show that 
the number of increments in counter follow is lower than 
64 and 6 bits are enough [9]. Therefore the data output 
by the CABAC data path is a packet composed by three 
parts: output bit, output valid and follow value. Extensive 
simulations show that, depending on the low value, no 
more than seven packets per input bit can be produced by 
the CABAC data path. 

 

Fig.14  CABAC data path block scheme 

6.1.3 De-packetizer  

Since the data path requires three clock cycles to produce 
a new set of packed data, a de-packetizer is required in 
the CABAC coprocessor (see Figure 13) to obtain the 
coded bit-stream. Figure 15 details the architectural 
block diagram of the de-packetizer. This processing 
block receives packets from the CABAC data path 
through a FIFO and performs two simple operations. 
First it checks the output valid bit to verify whether a 
packet is significant or not. Then, if the packet is 
significant, a 32 bit register is loaded with the output bit 
followed by a sequence of ‘0’ or ‘1’ according to the 
value of output bit; the sequence length is set by the 
value of the follow field of the packet. In order to 
correctly load the bits into the 32 bit register, a start 
pointer (ptri) and an end pointer (ptre) are required. 

Registers and adders shown in Figure 15 allow updating 
the two pointers while packet data are received. When 
the 32 bit register is full, it is written into the output 
buffer. A counter allows signaling to the command 
decoder that the output buffer is full. The architecture 
works at full throughput if a new input symbol is 
available every clock cycle. In this case every command 
is executed in 3 clock cycles. If full throughput is not 
granted, the core requires one additional clock cycle to 
verify when a new input symbol is ready. 

6.2 FIFO Sizing 

The number of clock cycles needed to process symbols is 
affected by the sizing of follow register. In fact if a 
sufficiently high value cannot be represented, stall cycles 
are introduced and more than 3 clock cycles are required 
to complete the current compression step. Sizing of the 
follow register also impacts on the size of the FIFO.  

 

Fig. 15 De-packetizer block scheme 

The relation between the FIFO data width and the follow 
register size is expressed in (3): 

( ) fifocyclesfollowpackets nbitnnbitn ⋅≤+⋅ 2          (3) 

Within the values described in the previous paragraphs, 
we can set-up npackets=7, nbitfollow=6 and ncycles=3, that leads 
to nbitfifo ≥ 19. Even if the FIFO data width is minimized 
when nbitfifo=19, this choice has a negative impact on the 
de-packetizer architecture. In fact with nbitfifo=19, a non 
integer number of packets can be accommodated in the 
FIFO data. In order to simplify the architecture and to 
accommodate an integer number of packets, we accept an 
increase in the FIFO data width. With a 24 bit wide FIFO, 
7 packets can be transferred in 3 clock cycles. On the 
other hand, sizing the FIFO depth depends on both the 
distribution of follow values and on the distribution of 
valid packets. If the number of free positions in the 32 bit 
register is larger than follow, nfree ≥ follow+1, then 2 
clock cycles are required to process a packet; otherwise 3 
or 4 clock cycles are required depending on the follow 
value.  Adding two 32 bit shadow registers, the de-
packetizer can always process a packet in 2 clock cycles. 



 

  

However, even if 6 bits for representing the follow value is 
a conservative sizing, our simulations show that follow has 
a low probability of achieving values greater than 32. As a 
consequence, instead of using three 32 bit registers (2 
shadow registers), only two 32 bit registers can be 
employed (1 shadow register); the effect of follow values 
greater than 32 can be absorbed by the FIFO. In fact, since 
the follow most probable values are in the [0,31] range, 
most packets are processed in 2 clock cycles, and a few of 
them in 3 clock cycles. As a significant example, in Figure 
16 the distribution of the follow register content for 3 
frames of the Foreman sequence is shown. It is worth 
pointing out that the distribution of valid packets has a 
stronger impact on the FIFO depth. In particular, the 
distance between consecutive valid packets is critical. 
When several consecutive valid packets are generated, a 
deeper FIFO is required. On the other hand even if seven 
consecutive valid packets are generated, but they are 
followed by a reduced number of valid packets, few 
registers can act as a buffer. Unfortunately the distance 
between consecutive valid packets can be determined only 
from the statistical analysis of real sequences. Simulations 
on several sequences show that less than 1024 cells are 
required for buffering the packets in the worst case, As a 
consequence a 25 kbits FIFO (1024×24) can be employed 
to achieve high throughput. In Figure 17, the growing of 
the required FIFO for 3 frames of the Foreman sequence is 
shown as a significant example. As it can be observed in 
this case the maximum number of required cells is 823 
and they can be accommodated in the 1024 cells FIFO. 

 

Fig. 16 Distribution of the follow value for the Foreman sequence: the 
greatest value is 10 but with a very small probability 

It is worth pointing out that the FIFO sizing allows a 
complexity/performance trade-off. Reducing the FIFO 
size the architecture complexity is decreased at the 
expense of reduced performance. In fact reducing the 
FIFO size can cause a stall in the CABAC data path or in 
the de-packetizer.  
As a consequence the number of clock cycles required to 
complete the arithmetic coding operation increases, 
reducing the architecture throughput.  

 
Fig. 17 Required number of cells for packet buffering during the 

elaboration of 3 frames from the Foreman sequence 

6.3 CMOS Implementation Results 

The VHDL model developed for the proposed CABAC 
processor has been synthesized on the aforesaid 0.18 µm 
and 65 nm CMOS standard-cells technologies. 
According to post synthesis results, up to 333 MHz clock 
frequency is achieved for both technologies, with an 
occupation of about 4.5 kgates for the logic and with 
about 25 kbits for the FIFO. Thus the proposed 
architecture is able to sustain an incoming rate of up to 
111 Mbits/s. Down-scaling the clock frequency to 150 
MHz, a data-rate of 50 Mbits/s can be sustained with a 
power consumption of about 22 mW and 3 mW in 0.18 
µm and 65 nm technologies respectively. It is worth 
pointing out that an uncompressed 720×480 video 
sequence at 30 frames/s produces from 83 to 125 Mbits/s 
(8 bits gray scale or YUV 4:2:0). Thus, on the target 
application (720×480 at 30 frames/s), the proposed 
CABAC architecture can sustain also very low 
compression ratios (~2:1), granting high quality video 
compression.  
Compared to the solutions described in [8, 9, 18, 19, 20, 
36] the proposed architecture shows some common 
points and some differences. In particular, since in [18] 
FPGA implementation is considered, a fair comparison is 
not possible, even if  an ASIC complexity of roughly 10 
kgates is estimated. This value appears compatible with 
our architecture complexity. On the other hand we can 
compare the proposed architecture with [8, 9, 19, 20, 
36]. The architecture described in [8] is similar to the 
one proposed in this work, however in [8] the sizing of 
the FIFO is not investigated. Moreover, in [8] a 0.35 µm 
standard cell technology is employed leading to a limited 
clock frequency (186 MHz) and throughput. Since in [8] 
also binarization is taken into account a fair complexity 
comparison is not possible. 
To the best of our knowledge the architecture described 
in [9] is one of the highest performance implementations 
available in the literature. Comparing the architectures 
described in [9, 20, 36] that are all implemented on a 



  

0.18 µm technology, we can observe that [9] has a higher 
complexity and can run at 263 MHz sustaining 87 
Mbits/s, whereas [20] achieves 4 Mbits/s with a clock 
frequency of 190 MHz. The solution in [36] is based on 
fully pipelining all the encoding process and achieves a 
throughput of an encoded symbol per clock cycle at the 
expense of 14 kgates for the logic and 15 kbits of RAM. 
In Table 6 we compare the proposed architecture with [9, 
19, 36]. For a fair comparison the proposed architecture 
results are shown only for the 0.18 µm standard cell 
technology. As it can be inferred the proposed 
architecture has a lower critical path with near the same 
complexity of [9]. The comparison with [19] is not 
completely fair as our single-symbol architecture is 
compared to [19] which is a multi-symbol encoder. The 
proposed architecture is smaller than [19], with a 
reduced critical path. However, since the proposed 
architecture requires three clock cycles to elaborate an 
input symbol, the number of processed symbols per cycle 
is lower than [19]. Finally, compared with [36] the 
proposed architecture requires less logic but more 
memory, in fact [36] requires 14 kgates for the logic and 
15 kbits for the memory respectively, whereas the 
proposed architecture features 4.5 kgates for the logic 
and 25 kbits for the memory 

Table 6 –  CABAC architectures comparison 

7. IP Interface for NoC Parallel Computing 

As proved in literature [27, 32] since the H.264 standard 
is computing intensive the requirements of real time 
performance can be met not only through complexity 
reduced new algorithms but also through parallel 
hardware configuration by means of innovative 
communication infrastructures such as NoC. Motion 
Estimation operations are suitable to follow a parallel 
operation flow since many kind of searches (e.g.: 
searches for different partitions or different MBs) can be 
done independently and thus parallelized. As proved in 
[27], which analyzes an MPEG encoder architecture 
varying the number of ME processors used, a NoC 
communication approach outperforms classic point-to-
point and hierarchical bus interconnections in terms of 
scalability for area, power and throughput.  
Therefore is important an evaluation of the complexity of 
a Network Interface (NI) able to connect the proposed 
CABAC and ME IPs to a NoC. Among the several NoC 
topologies proposed in literature here we refer to the 
Spidergon STNoC topology [26, 33]. In our case study, 
application of NoC solutions on video encoders, the NoC 
capabilities can be reduced to basic networking/routing 

schemes with appropriate NI towards the AMBA AHB 
IP bus. So Spidergon STNoC building blocks need to 
just implement basic functionality to guarantee efficient 
parallel communication between cores and memory 
spaces. The NI converts protocols, data size and 
frequency between the IP domain and the NoC domain. 
Once the NI injects packets on the network, 4-port 
Routers (R) apply routing schemes across the network, 
whose topology is the same as the Ring one except that 
one more port connects opposing routers (Figure 18). 
The architecture of the NI we have designed is organized 
in two main modules, see Figure 19. The first one, the 
Shell, implements protocol handshaking with the 
connected IP and abstracts the transport and network 
layers. The second one, the Kernel, manages packet 
assembling and, depending on the configuration, also 
frequency and data size conversion. A NI Shell has been 
designed to adapt the AHB bus interface of the two 
H.264/AVC blocks to the Kernel module. The whole NI 
has been then configured in two ways depending on the 
wished interconnect capabilities, as reported in Table 7. 
Then it was synthesized in a standard cells CMOS 65 nm 
1.1V and CMOS 180nm 1.8V processes. The parameters 
that have been configured are: 
- The number of retiming stages in the pipeline, 
determining the clock latency. 
- Frequency conversion scheme, patent filed [39], based 
on bi-synchronous FIFOs with Gray coded pointers and 
brute force synchronizers to transmit payload and header 
data through separate clock domains. 
- The data width at AHB and NoC interfaces. 
- The amount of internal buffering for payload and 
header data. 
 

Feature Config 1 Config 2 
Latency 0 clock cycles 1 clock cycle 

Frequency 
conversion 

off on 

Header FIFO no 240 bits 
Payload FIFO no 288 bits 

NoC data width 32 bits 64 bits 
AMBA AHB 32 bits 32 bits 

Table 7 – NI synthesis configurations for video coding computations 

A 0 clock cycle NI with Configuration 1 in Table 7 can 
work up to 500 MHz clock frequencies in  65 nm (using 
a low-leakage library version), which is well above the 
working frequencies of the proposed CABAC and ME 
H.264/AVC building blocks. Therefore frequency 
conversion is not strictly necessary and a single clock IP-
NoC design can be done. In case of Configuration 2 a 
FIFO-based frequency conversion is enabled in the case 
the NoC works at maximum speed. The complexity in 
terms of kgates is roughly 1.5 for Configuration 1 and 3 
kgates for Configuration 2 with leakage power 
consumption of few tens of µW. Configuration 2 
performs also a size conversion packing 32 bit AHB data 
into 64 bit payload data carried by the network (the small 
FIFOs are realized using Flip-Flops and hence no 
embedded RAM is needed).  

 0.18 µm area 

 [kgate] [mm2] 

Critical 
path [ns] 

Symbols 
per cycle 

[9] - 0.423  3.8  1/3 
[19] 32.1 - 5.2 3.32 
[36] 15 - 3.2 1 
Our 4.5 0.513 3 1/3 



 

  

Comparing such data with the complexity of ME and 
CABAC cores it can be seen that the overhead of a NI, 
particularly configuration 1 in Table 7, is minimal. The 
maximum achievable bandwidth, if the NoC is clocked at 
500 MHz, is 15 Gbits/s; such value is much higher than 
the one needed by the ME engine to transfer pixel data 
from background frame memories to the local buffers 
(~3.8 Gbits/s, see Section 4.1). The NoC bandwidth also 
sustains CABAC throughput which is roughly 0.11 
Gbits/s (see Section 6). The whole throughput 
requirement is then 3.9 Gbits/s and can be sustained 
clocking the NoC at 125 MHz, a target frequency 
achievable also in 180 nm 1.8 V technology. 
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Fig. 18 – Spidergon STNoC topology 
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Fig. 19 – NI subdivision in Shell and Kernel  

8. Conclusions 

In this paper two optimized hardware co-processors for 
real-time and high-quality H.264/AVC video coding are 
proposed. Stemming from complexity and profiling 
analysis the two architectures are derived in a NOC 
framework as AHB interfaced IP cells for high-
performance H.264/AVC-based VLSI multimedia systems. 
CMOS implementation results highlighted that both the 
co-processors have interesting figures in terms of 
performance, complexity and power consumption also 
compared to other published solutions. The design of a 
Network Interface is also presented to allow direct 
integration of the IP cores in advanced on-chip 

communication infrastructures, NoC, used in MPSoC for 
video encoding. 
This work has been supported by NEWCOM++ NoE. 
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