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Abstract

This paper compares the performance of large scale Support
Vector Machine training algorithms tested on a language recog-
nition task.
We analyze the behavior of five SVM approaches for training
phonetic and acoustic models, and we compare their perfor-
mance in terms of number of iterations to reach convergence,
training time and scalability towards large databases. Our re-
sults show that the accuracy of these algorithms is asymptoti-
cally equivalent, but they have different behavior with respect
to the time required to converge. Some of these algorithms not
only scale linearly with the training set size, but are also able to
give their best results after just a few iterations on the database.

1. Introduction

Fast algorithms for training Support Vector Machines (SVM)
often rely on the so called kernel trick, where a kernel matrix is
computed and loaded in main memory. The kernel trick not only
allows speeding up the computation required to find the solution
of the SVM objective function but also nonlinear classification
in very high dimension spaces to be performed. This approach
however does not scale well because the required amount of
memory grows quadratically with the number of training sam-
ples. Since several real–world classification tasks are performed
on large dimension feature vectors and large databases, the al-
location of the kernel matrix in main memory becomes unfea-
sible even for large memory modern computers. We are thus
interested in SVM approaches scaling linearly with the num-
ber of training patterns. In this paper we compare large scale
Support Vector Machine training algorithms using as testbed
a language recognition task. In particular, we train both pho-
netic and acoustic SVM models, comparing the performance
of several algorithms in terms of training time, number of it-
erations required to reach convergence, and scalability towards
large databases.

The paper is organized as follows: Section 2 gives a short
overview of the SVM classifier. Section 3 illustrates four dif-
ferent approaches that have been proposed to solve large scale
SVM problems. Section 4 summarizes the acoustic and pho-
netic features and models that have been used, and highlights
that we have to deal with high dimension patterns. The details
of the implementation of some SVM algorithms and the exper-
imental results are presented and commented in Section 5, and
conclusions are drawn in Section 6.

2. Support Vector Machines
A Support Vector Machine [1] is a two–class classifier which
looks for the hyperplane that best discriminates two given
classes of patterns according to a maximum separation margin
criterion. The separation hyperplane is obtained by solving an
unconstrained regularized risk minimization problem

min
w

1

2
‖w‖2 + C ·

n∑
i=1

l(w, xi, yi)

where vector w is a vector perpendicular to the hyperplane and
the squared L2–norm of w is the regularization term. The sec-
ond term, where xi ∈ R

d denotes a (d–dimensional) training
pattern with associated label yi ∈ {−1, +1}, is the loss func-
tion, which is an approximation of the generalization error of
the classifier estimated on the training set itself weighted by pa-
rameter C.
The standard loss function for the SVM problem, which gives
the maximum (soft–)margin classifier, is the so–called L1–loss
function

lL1 = max(0, 1− yiw
T xi)

though other choices are possible, such as the L2–loss function
(squared soft margin SVM)

lL2 = max (0, 1− yiw
T xi)

2

The standard primal SVM formulation is then

w = arg min
w

1

2
wT w + C ·

n∑
i=1

max(0, 1− yiw
T xi)

While it is possible to solve the SVM optimization problem
in its primal form, many approaches prefer to solve the dual
problem

min
α

f(α) = 1
2
αT Hα− eT α

subject to 0 ≤ αi ≤ C ∀i
where α are the Lagrange multipliers, e is a vector of ones, and
H is the matrix of dot–products Hij = yiyjx

T
i xj for L1–loss.

For L2–loss Hij = yiyjx
T
i xj +Dij and D is the diagonal ma-

trix Dii = 1
2C

.
The dual formulation exposes the direct dependency of the op-
timal hyperplane on the dot–products between pairs of training
patterns, which in turns allows easily extending SVM to non–
linear classification. This is done by performing non–linear
classification in the feature space X by means of linear clas-
sification in a higher dimensionality space F . The so–called



kernel trick allows mapping Φ : X → F to be performed im-
plicitly by simply substituting the dot–product matrix H by the
kernel matrix K defined as Kij = Φ(xi)Φ(xj) = K(xi, xj)
given that the resulting matrix is positive semi–definite.

3. Large–scale Support Vector Machines
The ever–increasing size of the training databases for real–
world classification tasks makes it impractical to solve the SVM
problem resorting to medium–scale techniques which assume
that the entire dataset can be stored in main memory. Since in
speaker and language recognition a large number of high di-
mensional patterns have to be learned, we are then interested in
SVM training approaches whose time complexity and memory
consumption scale at most linearly with the number of train-
ing patterns. Many algorithms have been proposed to handle
SVM optimization for large–scale problems. Most of these al-
gorithms are efficient only for linear kernel SVMs, but these are
actually the ones we need in language recognition, as will be il-
lustrated in Sections 4.1 and 4.2. In this Section we present five
training algorithms focusing on their complexity and possibility
to be executed on a distributed environment. In the following, n
will denote the number of training patterns, d the dimensional-
ity of such patterns, C the regularization parameter of the SVM
and ε the optimization accuracy.

3.1. SVMLight

SVMLight [2] is one of the first proposed “fast” linear–space
SVM solvers. It decomposes the SVM problem into a set of
subproblems and works with only a small subset of such sub-
problems at a time. Memory occupation for this algorithm
scales linearly with the number of training patterns and of
support vectors. Since SVMLight solves the dual problem, it
provides a way to easily include kernels and it provides the
Lagrange multipliers needed in language recognition by the
pushed–GMMs approach that will be described in Section 4.2.1.
The main limitation of this algorithm comes from its time com-
plexity, which has been empirically shown to be in the order of
O(n2d). When memory occupation is not a constraint, a fast
implementation of SVMLight can be obtained by caching all the
kernel evaluations. However, the resulting kernel matrix has a
size, and thus a computational cost, which grow quadratically
with the training set size.

3.2. SVMPerf

SVMPerf [3], [4], [5] is one of the most popular linear–time
SVM solvers. Though the package provides different algo-
rithms for solving the SVM problem, the main innovation is its
Cutting–Plane Space–Pursuit (CPSP) approach [5]. Cutting–
Plane algorithms are based on a different formulation of the
problem [4]

min
w,ξ

1

2
wT w + Cξ

subject to ∀ŷ1 . . . ŷn ∈ {−1, +1} :

wT

(
n∑

i=1

(yixi − ŷixi)

)
≥

n∑
i=1

∆(yi, ŷi)− ξ

where ∆(y, ŷ) is the zero–one loss function.
The solution is found by iteratively building a working set of
constraints over which a Quadratic Problem (QP) is solved. An
accuracy of ε can be obtained using at most O

(
1
ε

)
constraints.

The CPSP algorithm modifies the traditional Cutting–Plane al-
gorithms by iteratively building, along with the solution, a set of
basis vectors bi whose span is approximatively the sub–space
where the optimal solution lies. The solution, thus is given by

w ≈
k∑

i=1

βibi

Basis vectors are similar to support vectors, the difference being
that they are not taken among the training set patterns.
The idea of using basis vectors is actually motivated by non–
linear SVMs, since the use of kernels usually induces a
quadratic behavior in those algorithms which are linear for lin-
ear kernels. Since the basis vectors are associated with the Cut-
ting Plane constraints, which are a constant number with respect
to the training set, the number of basis vectors is actually inde-
pendent from the training set size. This algorithm can be easily
modified to be executed in a distributed environment.

3.3. Pegasos

Standard gradient descent (GD) techniques try to reach the min-
imum of the objective function by iteratively moving an ap-
proximate solution along the direction that gives the greatest
decrease of the (L1–loss) objective function

wt+1 = wt − ηt(wt + C

n∑
i=1

∇max(0, 1− yiw
T xi))

where ηt is the learning parameter, whose value is crucial for
fast convergence of the algorithm. Since the L1–loss function is
not completely differentiable but still convex we actually com-
pute a subgradient of the loss function

∇max(0, 1− yiw
T xi) =

{ −yi if yiw
T xi ≤ 1

0 otherwise

Stochastic Gradient Descent (SGD) approximates the gra-
dient computation step by evaluating the gradient of the objec-
tive function on a single sample (or on a small subset of sam-
ples)

wt+1 = wt − ηt(wt + C∇l(w, xit , yit))

where it is chosen randomly for each iteration.
An interesting application of stochastic subgradient descent

to L1–loss SVM has been proposed in [6]. The Pegasos algo-
rithm combines stochastic gradient descent with a projection
step ensuring that we get closer to the optimal solution. A set
of training patterns At is chosen at each iteration, and the sub-
gradient of the objective function is evaluated on this subset as

∇t = wt − C

|At|
∑

i|xi∈At

yiw
T xi<1

yixi

and the hyperplane is then updated by

wt+ 1
2

= wt − ηt∇t

where ηt is the learning rate at iteration t. The next step consists
in projecting the solution onto a ball of radius

√
C, since it is

possible to show that the optimal solution lies inside this ball.
This is done by simply scaling wt+ 1

2
according to

st = min

{
1,

√
C

‖wt+ 1
2
‖

}



wt+1 = stwt+ 1
2

This projection step, combined with a fast–decaying learning
rate, allows to bound the average number of iterations required
to achieve ε optimization accuracy in O

(
1
ε

)
.

Since Pegasos solves the primal formulation of the SVM prob-
lem it does not produce the Lagrange multipliers, which are
necessary in the pushed–GMMs approach. In [6] the authors
propose an extension of their algorithm that allows the hyper-
plane to be estimated as a linear combination of training patterns
w =

∑
i αixi where the set of α’s are obtained as

αt+1 =

[
αt − ηt

(
αt +

C

‖At‖χ
i
t

)
st

]
where

χi
t =

{
1 if xi ∈ At

0 if xi /∈ At

Since Pegasos is based on stochastic gradient descent it can-
not take advantage of a distributed environment.

3.4. Dual Coordinate Descent

In [7] the authors have proposed a coordinate descent approach
applied directly to the dual problem, referred to in the following
as DCDM. Coordinate descent splits the multivariate problem
into a sequence of univariate optimizations which are iteratively
solved until convergence to the optimal multivariate solution is
attained. Dual coordinate descent applies this idea to the dual
formulation of the SVM problem. Assuming that a sub–optimal
solution α is known, the i–th component of the optimal solution
given all the other coordinates can be evaluated by solving

min
h

f(α + hei) subject to 0 ≤ αi + h ≤ U

where ei is the i–th versor of the solution space and U is an
upper bound depending on the loss function (in particular, U =
C for L1–loss and U = +∞ for L2–loss). This function is
quadratic in h and its Taylor expansion is given by

f(α + hei) =
1

2
Hiih

2∇if(α) + K

for a given constant K. This function has a minimum in h = 0
if and only if

∇P
i f(α) = 0

where∇P
i f(α) is the projected gradient

∇P
i f(α) =

 ∇if(α) if 0 < αi < U
min(0,∇if(α)) if αi = 0
max(0,∇if(α)) if αi = U

The projection of the gradient is required to ensure that bound-
ary constraints are met. If the projected gradient is not 0, how-
ever, the unconstrained optimal solution is given by

h = −∇if(α)

Hii

which leads to the update rule

αi ← min

(
max

(
αi − ∇if(α)

Hii
, 0

)
, U

)
The computation of the gradient requires the evaluation of

∇if(α) =
n∑

i=1

Hijαj − 1

which is computationally expensive, but simplifies for linear
SVMs as

∇if(α) = yiw
T xi − 1 + Diiαi

The cost of evaluating w given α would be linear in the size of
the training set. However, by keeping the previous value of w
it can be updated according to

w← w + (αi − αold
i )yixi

where αold
i refers to the value the parameter αi had before be-

ing updated.
Since DCDM solves the dual formulation of the SVM prob-
lem, it directly provides the Lagrange multipliers required by
the pushed–GMMs approach.
The complexity of the algorithm is O

(
nd log

(
1
ε

))
. DCDM

is very fast, but like Pegasos, cannot take advantage of a dis-
tributed environment.

3.5. Bundle Methods

Bundle methods approximate a convex function by means of
tangential hyperplanes (sub–gradients) and solving the simpler
optimization problem on the approximated function. The ap-
proach is similar to what is done in SVMPerf [4], where a small
and incremental subset of constraints is built until the solution
approximates the optimal solution up to a given error. However,
Bundle Methods for Regularized Risk Minimization (BMRM)
as presented in [8] offer a general and easily extensible frame-
work to general risk regularization problems, of which SVM is
an example. In particular, an incremental working set of ap-
proximate solutions {w0,w1,w2, . . . } is built by defining, at
each iteration, the set of hyperplanes which are tangent to the
objective function in the working set points (which are com-
puted incrementally starting from w0 = 0)

ft(w) = lemp(wt) +∇lemp(wt) · (wt −w)

where lemp(w) =
∑n

i=1 l(w,xi, yi) is the empirical loss func-
tion. The new working point at each iteration is selected as the
minimizer of the approximated function

wt+1 = arg min
w

[
1

2
‖w‖2 + C ·max

(
0, max

t
′≤t+1

ft
′ (w)

)]
This formulation can been shown to be equivalent to the dual
problem

min
β

Di(β) = C
2
βT AT Aβ + βT b (1)

subject to β ≥ 0, eT β ≤ 1

where A is the matrix [a1a2 . . . ai] of gradients at+1 =

∇lemp(wt) and b is the vector [b1b2 . . . bi]
T of offsets bt+1 =

lemp(wt)− aT
t+1wt, and the new solution is obtained as

wt+1 = −CAβ

It is interesting to observe that even though the algorithm does
not provide the Lagrange multipliers for the dual SVM problem,
it is possible to evaluate an approximation of the α values of the
SVM allowing to reconstruct the hyperplane provided by the
BMRM algorithm and satisfying the SVM constraints.
Both L1 and L2–loss functions can be rewritten to make explicit
their dependency on the dot product between w and a given
pattern xi as

l(x, y,w) = l̃(wT x, y)



Using this formulation, the gradient of l can be expressed as

∇wl(x, y,w) = ∇wT x l̃(wT x, y) · x
If we define the array ãt = [̃l1 l̃2 . . . l̃n]

T
where l̃i =

∇wT x l̃(wT xi, yi) we can express at as

at = Xãt

where X is the complete set of training patterns represented as
a matrix. Matrix A can then be evaluated as A = XÃ with
Ã = [ã1ã2 . . . ãt]. It is easy to see that the resulting expression
for w = −CAβ can now be rewritten as

w = −CXÃβ

Setting α = −CY −1Ãβ, where Y is the diagonal matrix
of target labels, allows expressing the hyperplane as a linear
combination of the training patterns w = XY α =

∑
i yixiαi.

It can be shown [8] that the algorithm converges to its
optimal solution up to the accuracy ε in O

(
1
ε

)
iterations.

Usually the number of required iterations is small, thus the
time required to solve sub–problems 1 can be neglected. In this
case, the global complexity of the algorithm is O

(
nd
ε

)
.

Since BMRM, as SVMPerf, incrementally builds a working set
of approximate solutions, its algorithm can be easily modified
to be executed in a distributed environment.

In the following Sections we will show the results obtained
by training SVM models for a language recognition task with
these algorithms.

4. Language recognition models
Two main approaches are used in state of the art systems for
Language Recognition, both can be referred to the works [9]
and [10].
In the first approach the language models are estimated collect-
ing the statistics of the occurrence of n–grams obtained by run-
ning one or more phonetic decoders that produce strings or lat-
tices [11, 12] of phonetic tokens.
The second approach relies on Gaussian Mixture Models of
acoustic features (GMMs) [13] discriminatively trained [14], or
used in combination with SVM classifiers [15, 16, 17].
The next subsections give more details about the two ap-
proaches, and present the features and models that have been
used for our language recognition task.

4.1. Phonetic models

Phonetic systems model sentences by bags of n–grams extracted
by a phonetic decoder, either by looking for the best matching
sequence of tokens or by exploiting a lattice of word/phoneme
hypotheses. Each sentence is then represented by the set of
probabilities of n–gram occurrences given the sentence stacked
in a vector. Although good performance can been obtained by
classifying the test utterances by means of log–likelihood scor-
ing, state of the art results are obtained by means of linear SVM
classifiers. Among the SVM kernels that have been proposed,
the most used is the TFLLR kernel [18, 19, 17], which approx-
imates a log–likelihood ratio computed from n–gram statistics.
TFLLR is a linear kernel that can be obtained by a simple nor-
malization of the n–gram probabilities

x̂i =

√
1

fi
xi, fi =

1

n

n∑
k=1

xi
k

where the superscript i denotes the i–th component of x.
Using the probabilities of the most frequent n–grams up to the
third or even higher order, the dimension of the resulting vec-
tor can be of the order of a hundred thousand, with a high de-
gree of sparsity. It is possible to improve phonetic language
recognition by using the information provided by lattice decod-
ing, rather than the information provided by the best decoded
phonetic string for each utterance, however the resulting SVM
patterns are much more dense.

In the experiments reported in Section 5 the phonetic sys-
tem includes a single recognizer producing a phone lattice. The
phone tokenizer is the Loquendo–ASR recognizer for Italian
language [20]. It uses a hybrid ANN–HMM model where each
phonetic unit is described by a single or 2–state left–to–right
automaton with self–loops and uniform transitions. The pho-
netic ANN is a four–layer perceptron trained to estimate the
posterior probability of each state (phone class) given a 7 frame
context window of acoustic features including Mel coefficients
and their first and second derivatives. The hidden layers con-
sist of 315 and 300 sigmoidal units respectively, while the last
layer has 733 units with a softmax activation function. The n–
gram probabilities are estimated from the lattice [11] and then
normalized using the TFLLR kernel. In our experiments, the
3–gram vectors have a dimension of 44135.

4.2. Acoustic models

The acoustic models are obtained by estimating Gaussian Mix-
ture Models g(x) =

∑m
i=1 ciN (x, µi,Σi) obtained from a

common Universal Background Model using Maximum A Pos-
teriori adaptation with a low relevance factor [10]. In our ex-
periments, the UBM and the language GMMs consist of mix-
tures of 2048 Gaussians. The observation vectors consist of
56 parameters (7 Mel frequency cepstral coefficients and their
7–1–3–7 Shifted Delta (SDC) coefficients [13]. Nuisance com-
pensation is performed in the feature domain by means of factor
analysis [19]).
A supervector of the stacked Gaussian means g =[
µT

1 µT
2 . . . µT

m

]T
can be used as a pattern representing a

speaker utterance, and classification can be done by estimating
SVM models [17] using the Kullback–Leibler kernel [21, 19]

K(ga,gb) =
m∑

i=1

(√
ciΣ

− 1
2

i µai

)T (√
ciΣ

− 1
2

i µbi

)
Again, appropriately normalized features can be used with a
linear SVM.

4.2.1. Pushed–GMMs

Better performance can be obtained by an hybrid
discriminative–generative approach as proposed in [17].
In particular, two GMMs are estimated for each class: one
modeling the data of the target class g+(x) and the other
modeling all the non target classes (anti–model) g−(x). The
models g+ and g− are obtained using a linear combination
of the supervectors where the combination weights are the
Lagrange multipliers associated to the support vectors of the
SVM

g+ =
1∑

i|yi>0 αi

∑
i|yi>0

αigi

g− =
1∑

i|yi<0 αi

∑
i|yi<0

αigi



Table 1: Phonetic system: asymptotic values for DCF and EER for the 30, 10 and 3 sec conditions

ALGORITHM DCF 30s EER 30s DCF 10s EER 10s DCF 3s EER 3s

SVMLight 0.0375 3.972% 0.0858 8.881% 0.2037 20.772%
SVMPerf 0.0434 4.583% 0.0944 9.782% 0.2061 21.057%
Pegasos 0.0393 4.221% 0.0880 9.139% 0.2029 20.908%

BMRM L1 0.0375 3.941% 0.0860 8.981% 0.2032 20.842%
DCDM L1 0.0376 3.965% 0.0861 8.948% 0.2031 20.785%

BMRM L2 0.0362 3.893% 0.0853 8.843% 0.2037 20.771%
DCDM L2 0.0362 3.890% 0.0853 8.847% 0.2037 20.770%

Table 2: Phonetic system: time (seconds) required to reach SVMLight accuracy within a given error percentage

Algorithm DCF 30s DCF 10s DCF 3s
10% 1% 0.1% 10% 1% 0.1% 10% 1% 0.1%

SVMLight 9372 9372 9372 9372 9372 9372 9372 9372 9372
SVMPerf > 334 > 334 > 334 > 334 > 334 > 334 334 > 334 > 334
Pegasos 2759 > 14930 > 14930 1825 > 14930 > 14930 897 2058 7230

BMRM L1 1901 6971 12199 1470 5773 6971 527 1684 3377
DCDM L1 86 169 169 86 131 131 41 86 86

BMRM L2 2720 3878 3878 2220 3878 4822 667 2960 4114
DCDM L2 91 186 186 91 140 186 42 91 91

Scoring is performed by computing the likelihood ratio between
model and anti–model.

Since the α’s of the dual problem are necessary to apply
this technique, we need to evaluate them even when the SVM
optimization is solved in its primal formulation.

5. Experiments

In this section we compare the above described algorithms by
training both phonetic and acoustic models for the NIST Lan-
guage Recognition Evaluation (LRE) 2009 [22]. The evaluation
task is the detection of the language spoken in a set of speech
segments. The segments are subdivided in categories of 30s,
10s and 3s nominal speech length. In the closed–set core test
condition 23 languages must be recognized, including accented
languages such as American English and Indian English.
System performance is reported in terms of Equal Error Rate
and minimum Detection Cost Function (DCF) for each lan-
guage defined by NIST [22].
It is worth noting that in these experiments we use just a sin-
gle acoustic system based on pushed–GMMs, and a single tok-
enizer for the phonetic models. The models were trained with
a set of 17521 patterns. Both the phonetic and acoustic system
scores are normalized by means of a Gaussian back–end trained
over a separate development set [23].

5.1. SVM training algorithm implementations

SVM training was done using tailored or new implementations
of the algorithms presented in Section 3. The implementa-
tions were done using a Python/C framework. All computa-
tional intensive parts were written in C in order to minimize
the impact of the Python interpreter, with the exception of the
matrix–by–matrix multiplications required by the kernel matrix
for SVMLight, which were performed using machine–optimized
numpy/BLAS libraries [24].

Our baseline training algorithm is SVMLight ([2]). To speed

up the training process, the available software was modified to
use a pre–computed kernel matrix stored in main memory.
DCDM has been implemented as presented in [7] and shrinking
has been exploited to further speed up the execution time. The
shrinking technique [2] tries to reduce the QP problem size by
ignoring a subset of the bounded variables, thus greatly reduc-
ing the number of dot products that have to be computed, with
no impact on the detection performance.
Due to the overhead that can be introduced by the C/Python in-
frastructure, training is performed in “batch” mode. A fraction
of the database is loaded into main memory and then gradient
computations are performed over the loaded data, thus the mem-
ory occupation of our algorithm is essentially determined by the
size of these blocks (however the algorithm itself does not need
to actually store more than a single pattern at once).
The same approach was followed for BMRM: training is per-
formed in batch mode, while the QP problem is solved by means
of the cvxopt [25] Python solver. Since the BMRM algorithm
solves the problem in its primal formulation, no shrinking tech-
nique was adopted, thus each iteration of the algorithm actually
performs a full scan of the training database. The α’s needed
for pushed–GMMs approach have been evaluated as in Section
3.5.
Pegasos has been implemented with a slight variation with re-
spect to the algorithm presented in Section 3.3. Training is per-
formed in epochs, where each epoch corresponds to training
patterns taken randomly from a subset of the database that is
loaded in main memory. The size of the block determines the
memory occupation of the algorithm and allows for a reduction
of the number of accesses to secondary memory.
Finally, SVMPerf was modified to read training patterns only
on demand rather than loading all the dataset in main memory.
Moreover, the database format was modified to fit the other im-
plementations.
It is worth noting that in all the methods that we have imple-
mented from scratch we have taken care to train the language
models in parallel, minimizing disk accesses.
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Figure 1: DCF performance of models as a function of their
training time for the phonetic system (30, 10 and 3 sec condi-
tions)

5.2. System performance comparisons

In this subsection we compare the behavior of the above men-
tioned techniques during the training of the phonetic system.
To evaluate the quality of the trained models, we evaluated the
models obtained after a given numbers of iterations. We used
dense sampling for the first iterations and sparser sampling for
the last ones. For SVMLight and SVMPerf we used just the fi-
nal models because the former is our baseline system, and the
latter is not attractive because it cannot be used for the pushed–
GMMs approach, and moreover does not allow class balancing.
All the algorithms, with the exception of SVMPerf, have been
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Figure 2: Time required for a single iteration over the database
for the phonetic system

executed using a balance factor for the cost function which sim-
ulates the balance between the number of true and false sam-
ples. This is done by simply scaling the cost function for the
true samples. SVMPerf does not provide a simple and direct way
to perform class balancing, thus unbalanced models were cre-
ated. Most of the performance loss of SVMPerf with respect to
the other approaches is due to this problem, even though un-
balanced models created with SVMLight still perform better than
SVMPerf models.
Timings were evaluated on a HP DS160G5 server equipped
with two Xeon X5472 3 GHz quad-core processors, 32 GB of
DDR2-800 RAM and a SATA 7200 RPM hard disk. Compu-
tations were performed using single-threaded processes. Ta-
ble 1 shows the classification performance of the different pho-
netic models in the 30, 10, and 3 sec conditions of the NIST
LRE09 tests. The SVM parameter C is estimated as C =(

1
N

∑N
i=1 xT

i xi

)−1

. The asymptotic behavior of DCDM and

BMRM converges to the DCF and EER obtained by SVMLight.
Pegasos behaves slightly worse, although the results it obtains
before the Gaussian back–end are better of the ones achieved
by the other techniques, possibly because it produces less cal-
ibrated scores. SVMPerf performance is behind the other ap-
proaches because of the lack of a class balance mechanism.

A second set of experiments has been performed to analyze
the convergence properties of the different techniques. The re-
sults are shown in Table 2, which compares the time required to
reach an accuracy within 10%, 1.0% and 0.1% with respect to
our SVMLight baseline, and in Figure 1 that shows the DCF im-
provement as a function of the training time. Symbol > denotes
those conditions which did not meet the convergence condition
at the end of training.

The convergence of the DCDM approach to its optimal
value is much faster than the other two techniques. The ob-
tained results are more than satisfactory after just five iterations
(corresponding to 201 seconds of training time. These models
are even better than the asymptotic ones possibly because they
do not overfit the training data. It is worth noting that BMRM
with L1–loss and SGD have a similar performance if we con-
sider just the raw results, but BMRM is both faster and gives
better performance after back–end normalization of its scores.

Figure 2 shows that the time required for a single iteration
over the database (or over an equivalent number of patterns for
the SGD) rapidly decreases from its initial value for all the tech-
niques to a point where it remains almost constant. The reason



Table 3: Pushed–GMMs system: asymptotic values for DCF and EER for pushed–GMMs

ALGORITHM DCF 30s EER 30s DCF 10s EER 10s DCF 3s EER 3s

SVMLight 0.0276 3.120% 0.0621 6.592% 0.1616 16.594%
Pegasos 0.0272 3.112% 0.0617 6.543% 0.1605 16.623%

BMRM L1 0.0276 3.153% 0.0626 6.587% 0.1618 16.579%
DCDM L1 0.0276 3.157% 0.0626 6.596% 0.1619 16.592%

BMRM L2 0.0272 3.090% 0.0609 6.429% 0.1589 16.359%
DCDM L2 0.0272 3.090% 0.0609 6.431% 0.1589 16.350%

is that less computation is actually required because most of the
gradients become zero approaching the optimal solution.
As far as the BMRM technique is concerned, although the al-
gorithm requires the solution of a QP problem at each iteration,
it does not show a quadratic trend due to the small number of
iterations that are performed compared to the time spent for pro-
cessing the database samples.
The time per iteration required by DCDM is much lower than
the BMRM one. This was expected because the former ap-
proach uses the shrinking technique.

5.3. Pushed–GMMs

Due to the time complexity of the tests on acoustic models,
fewer models were trained and tested in the pushed–GMMs ap-
proach with respect to the phonetic system. Again, we evaluated
the models obtained after a given number of iterations exclud-
ing the baseline models produced by SVMLight.
It is worth noting that SVMPerf cannot be used for the pushed–
GMMs approach because it produces basis vectors whose asso-
ciated weights cannot be mapped to support vectors, neither can
be used to evaluate the required models and anti–models.

To speed–up the experimentation a faster but less precise al-
gorithm for the selection of the best N–best Gaussians per frame
has been used with respect to the one used for NIST LRE 2009.
The results are presented in Figure 3 and Table 3. Looking at the
asymptotic behavior of the training algorithms, it can be noticed
that all of them — even BMRM and SGD, which do not directly
solve the dual SVM problem — estimate sets of α values that
allow good pushing–GMMs to be generated.

The use of L2–loss function improves performance,
possibly because the Lagrange multipliers do not saturate to
the C value as it often happens optimizing for the L1–loss
function.
Surprisingly, good or even better results are obtained, for the
3s and 10s conditions, even by models whose pushing weights
are far from the SVM optimum. Even more surprising are
the results given by the first iteration of the BMRM, which
actually corresponds to evaluating model and anti–model as the
arithmetic mean of the true and false GMMs respectively.

6. Conclusions
A comparison of four SVM training algorithms for large scale
features problems has been presented. All these algorithms
scale linearly with the training set size.
We have shown that the accuracy of these algorithms is asymp-
totically equivalent, in that they all reach approximately the
same classification performance given enough training time, but
that they have different convergence and scalability properties.
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Figure 3: DCF performance of models as a function of their
training time for the pushed–GMMs system (30, 10 and 3 sec
conditions)



Table 4: Comparison of the properties of the SVM algorithms

ALGORITHM Formulation Complexity Parallelizable Provides α’s

SVMLight Dual O(n2d) Yes Yes
SVMPerf Dual* O(nd

ε
) Yes No

Pegasos Primal Õ(nd
δε

)** No Yes
BMRM Primal O(nd

ε
) Yes Yes

DCDM Dual O(nd log 1
ε
) No Yes

*Solves the problem for basis vectors, **Reaches accuracy ε with probability 1 − δ

A comparison of the properties of the SVM algorithms that we
analyzed are summarized in Table 4.
SVMPerf is fast to reach convergence, behind DCDM only, and
can be parallelized, but it has two drawbacks: classes cannot
be easily balanced and there are no means to estimate Lagrange
multipliers for the pushing approach.
Pegasos is not attractive because it is slower than the other im-
plementations and cannot be parallelized.
BMRM is almost as slow as Pegasos but it can be implemented
to exploit a distributed environment, furthermore it is the most
flexible with respect to the loss function beyond L1 and L2.
DCDM is the fastest to converge both in time and number of
required iterations on a single processor, but it cannot exploit a
distributed architectures.
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