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KISS: Stochastic Packet Inspection Classifier
for UDP Traffic

Alessandro Finamore, Student Member, IEEE, Marco Mellia, Senior Member, IEEE, Michela Meo, Member, IEEE,
and Dario Rossi, Member, IEEE

Abstract—This paper proposes KISS, a novel Internet classifica-
tion engine. Motivated by the expected raise of UDP traffic, which
stems from the momentum of Peer-to-Peer (P2P) streaming appli-
cations, we propose a novel classification framework that leverages
on statistical characterization of payload. Statistical signatures are
derived by the means of a Chi-Square ( �)-like test, which extracts
the protocol “format,” but ignores the protocol “semantic” and
“synchronization” rules. The signatures feed a decision process
based either on the geometric distance among samples, or on Sup-
port Vector Machines. KISS is very accurate, and its signatures are
intrinsically robust to packet sampling, reordering, and flow asym-
metry, so that it can be used on almost any network. KISS is tested
in different scenarios, considering traditional client–server proto-
cols, VoIP, and both traditional and new P2P Internet applications.
Results are astonishing. The average True Positive percentage is
99.6%, with the worst case equal to 98.1,% while results are al-
most perfect when dealing with new P2P streaming applications.

Index Terms—Supervised learning algorithms, traffic
classification.

I. INTRODUCTION

L AST year witnessed a very fast-paced deployment of
new Internet applications, ignited by the introduction

of the successful Peer-to-Peer (P2P) paradigm and fueled by
the growth of Internet access rates. This entailed not only a
deep change of the Internet application landscape, but also
undermined the reliability of the traditional Internet traffic
classification mechanisms, typically based on Deep Packet In-
spection (DPI) as for instance simple port-based classification.

As such, research on Internet traffic classification has gained
significant attention, with a large number of proposals (see
Section VI for an overview) that try to circumvent DPI limi-
tations. Indeed, DPI is deemed to fail more and more due to:
1) proliferation of proprietary and evolving protocols; 2) em-
bracement of strong encryption techniques; and 3) adoption
of tunneling techniques [1], [2]. In previous proposals, UDP
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has usually been neglected in favor of applications running
over TCP. Motivated by the rise of UDP traffic volume, which
stems from the momentum of VoIP, streaming, and P2P-TV
applications that deeply rely on UDP at the transport layer, we
propose a novel classification framework that explicitly targets
long-lived UDP traffic flows.

The mechanism we propose is based on the idea of automati-
cally identifying the application protocol “format,” by means of
a statistical packet inspection. This already proved successful in
assisting the identification of particularly tricky traffic such as
the one generated by Skype [2]. In this paper, we push this intu-
ition further, arguing that, due to the connectionless service of
UDP, the very first bytes of the UDP payload of traffic streams
are likely to carry some application layer protocol (L7-protocol)
in which constant values, counters, random identifiers, etc., can
be found. Recalling that a protocol specifies the rules governing
the format, semantics, and synchronization of a communication,
we propose to extract the L7-protocol format while ignoring the
actual semantic and synchronization rules. This is achieved by
statistically characterizing the frequencies of observed values in
the UDP payload by performing a test similar to the Pearson’s

test. The results of the test are then used to compactly repre-
sent application fingerprints, which we call Chi-Square Signa-
tures (pronounced as KISS).

While KISS fingerprints stem from packet inspection, they
have several advantages over classical DPI signatures.

• They can be automatically derived, i.e., no cumbersome
and tedious reverse-engineering is required.

• They can be quickly updated, so they are well apt to the
context of fast-evolving Internet applications.

• They are easily portable across different network settings
since fingerprints depend solely on the L7-protocol format.

• They are robust to routing asymmetry, packet loss or sam-
pling, retransmission, or any possible strange packet ar-
rival pattern since they are built over a statistical character-
ization of protocol format rather than over a deterministic
description.

• They are suitable to both per-flow and per-endpoint
classification.

• Their computational and memory requirements are very
limited, so they are suitable for online classification.

However, KISS shares with DPI classifier the need to look at
application layer messages. As a drawback, in case of encrypted
payload, both approaches become ineffective.

After fingerprints have been extracted, proper classification
must be achieved, i.e., individual items should be placed into
the most likely class. A huge set of methodologies are avail-
able from the literature, from simple threshold-based heuristics

1063-6692/$26.00 © 2010 IEEE
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[4] to Naive Bayesian classifiers [2], [5] to advanced statistical
classification techniques [6]. In this paper, we compare a simple
geometric decision process based on Euclidean distance to sup-
port vector machines (SVMs) [6], which are well known in the
statistical classification field, but have been rarely exploited in
the context of Internet traffic classification.

To prove the performance of the proposed framework, we
implemented KISS in Tstat [7], which we then use to derive the
results presented in this paper. We test KISS on both testbed
and real traffic traces, collected from an operative ISP network
classifying traditional protocols (like DNS and RTP traffic),
affirmed P2P protocols (like eMule, BitTorrent and Skype),
and emerging P2P-TV applications (like PPLive, SopCast,
Joost, TVants). KISS exhibits excellent performance, typically
achieving more than 98.1% of True Positives when SVM is
adopted. These astonishing results are due to both the accurate
characterization of the KISS signatures and the precise classifi-
cation of the SVMs.

The reminder of the paper is organized as follows. Section II
introduces general concepts and specify the metrics chosen to
evaluate KISS performance. Section III describes the KISS ar-
chitecture, detailing both feature extraction and decision pro-
cesses. Section IV describes the set of traces used in the ex-
periments, and Section V reports a deep investigation of KISS,
testing its performance and parameters in many different sce-
narios. An overview of other classification techniques is pre-
sented in Section VI, while Section VII concludes the paper.

II. GENERAL FRAMEWORK

Before entering into the details of KISS, we briefly summa-
rize the key ideas behind classification tools and the methodolo-
gies to test them and evaluate their performance.

A. Classifiers

Classifiers are defined by two main processes (see [6] and [8]
for a more extended description):

• Feature extraction: the process of extracting the subset of
information that summarizes a large set of data or samples;

• Decision process: the algorithm that assigns a suitable class
to an observed sample.

Examples of features are specific strings in the payload (as
in DPI), packet size, or amount of exchanged bytes. Potentially,
any summary of a packet stream can be used, and its choice has
a deep impact on the classifier performance. In our tool, features
are defined from the statistical observation of the values taken
by portions of the payload.

For the decision process, any machine learning technique can
be adopted. In this paper, we focus on supervised learning al-
gorithms [6], in which a training set composed of known traffic
is used to build a model; the model is then used during the
classification task. Given a geometric representation of features
in a multidimensional space, during the training phase, labeled
samples are used to identify and to define the “volume” into
which samples of the considered class fall. During the classi-
fication process instead, the sample to be classified has to be

TABLE I
DEFINITION OF FALSE/TRUE POSITIVE AND FALSE/TRUE NEGATIVE

labeled with the most likely class according to the volume it
falls into. For example, assuming that there are two classes of
objects, i.e., red and yellow apples, if the features of a sample
place it in a volume dense of red apples, we are inclined to clas-
sify it as a red apple, too. However, defining the surface that
delimits the volumes (to later take the decision) is tricky since
training points can be spread out on the multidimensional space
and complex surfaces must be described. In this paper, we con-
sider both simple geometric decision process and SVM-based
algorithm, which is considered to be among the most powerful
supervised learning algorithms.

B. Testing Methodology

Once a classifier has been designed, its performance must be
evaluated and proper metrics must be defined. Assessing the per-
formance of Internet traffic classifiers is not a trivial task due to
the difficulty in knowing the “ground truth,” i.e., what was the
actual application that generated the traffic [9]; for the ground
truth, an “oracle” is needed. Testing the classification engine by
means of artificial traffic (e.g., by generating traffic in a testbed)
solves the problem of knowing the ground truth (you are the
oracle), but reduces the representativeness of the experiments
since synthetic traces are hardly representative of real-world
traffic. Assessing the performance against traffic traces collected
from operative networks is therefore mandatory. To extract the
ground truth from the real traces, we developed an ad hoc oracle,
based on DPI mechanisms, and we manually tuned and checked
those results. However, the oracle may still be fooled.

Classification accuracy is often reported in terms of False
Positive (FP) and True Positive (TP), and the False Negative
(FN) and True Negative (TN). A test is said to be “True” if the
classification result and the oracle are in agreement. A test is
said “False” on the contrary. The result of a test is “Positive”
if the classifier accepts the sample as belonging to the specific
class. On the contrary, a test is “Negative.” For example, con-
sider a flow. The oracle states that this flow is an eMule flow.
If the flow is classified as an eMule flow, then we have a True
Positive. If not, then we have a False Negative. Consider instead
a flow that is not an eMule flow according to the oracle. If the
flow is classified as an eMule flow, then we have a False Posi-
tive. If not, then we have a True Negative. Table I summarizes
the definitions.

The corresponding percentages must be evaluated as the
following.

• False Positive percentage (%FP) is the percentage of
negative samples that were erroneously reported as being
positive.



FINAMORE et al.: KISS: STOCHASTIC PACKET INSPECTION CLASSIFIER FOR UDP TRAFFIC 1507

False Negative percentage (%FN) is the proportion of pos-
itive samples that were erroneously reported as negative.

• True Positive percentage (%TP) is .
• True Negative percentage (%TN) is .
Indeed, if there are 100 eMule flows and the classifier misses

10 of them, we have ( ). Similarly,
if there are 500 non-eMule flows and the classifier returns all of
them as eMule, we have ( ).

Finally, results are often expressed by means of a confusion
matrix. In the field of artificial intelligence, a confusion matrix is
a visualization tool typically used in supervised learning. Each
column of the matrix represents the instances in a predicted
class, while each row represents the instances in an actual class.
One benefit of a confusion matrix is that it is easy to see if the
system is confusing two classes (i.e., commonly mislabeling one
as another).

III. KISS

A. Feature Extraction

A traditional DPI classifier inspects packet payload looking
for deterministic patterns, such as particular strings that are
compared to those in a signature database. The process of
defining the signatures is a complex task that requires a deep
knowledge of the protocols that need to be identified. As such,
any changes in a protocol can invalidate the signature, which
becomes outdated and must be redefined manually.

The goal of KISS is instead to automatically discover appli-
cation-layer header format, without caring about specific values
of the header fields: We aim at automatically letting the protocol
format emerge. Since UDP is a connectionless protocol, the first
bytes of the payload of each UDP packet typically contain an
application-layer protocol header whose fields can be constant
identifiers, counters, words from a small dictionary (message/
protocol type, flags, etc), or truly random values (coming from
encryption or compression algorithms). These coarse classes
of fields can be easily distinguished through a simple statis-
tical characterization of the values observed in a sequence of
packets. The process of the format extraction is achieved by
using a simple -like test. The test originally estimates the
goodness-of-fit between observed samples of a random variable
and a given theoretical distribution. Assume that the possible
outcomes of an experiment are different values and are
the empirical frequencies of the observed values, out of total
observations ( ). Let be the number of expected
observations of for the theoretical distribution ,
with the probability of value . Given that is large, the dis-
tribution of the random variable

(1)

that represents the distance between the observed empirical and
theoretical distributions, can be approximated by a Chi-Square,

Fig. 1. Scheme of signature extraction process.

or , distribution with degrees of freedom. In the clas-
sical goodness of fit test, the values of are compared with the
typical values of a distributed random variable: The frequent
occurrence of low probability values is interpreted as an indi-
cation of a bad fitting. In KISS, we build a similar experiment
analyzing the content of groups of bits taken from the packet
payload we want to classify.

signatures are built from streams of packets. The first
bytes of each packet payload are divided into groups of con-
secutive bits each; a group can take integer values in .
From packets of the same stream, we collect, for each group ,
the number of observations of each value ; denote
it by . We then define a window of packets, in which we
compute

(2)

and collect them in the vector

(3)

which is the KISS signature. Fig. 1 shows a schematic represen-
tation of the KISS signature extraction.

One possibility to characterize a given protocol is to estimate
the expected distribution for each group so that the set
of signatures are created by describing the expected distribution
of the protocols of interest. During the classification process
then, the observed group distribution must be com-
pared to each of the in the database, for example using
the test to select the most likely distribution. However, this
process ends up in a complex process in which (2) must be com-
puted for each protocol of interest.

In addition to the high complexity, the comparison to refer-
ence distributions fails when the application protocol includes
constant values that are randomly extracted for each flow. For
example, consider a randomly extracted “flow ID” in group .
Consider two flows, one used for training and one for testing,
generated by the same application. Let the training flow packets
take the value 12 in group . Let the test flow packets take in-
stead the value 7 in the same group. Clearly, the comparison of
the two observed distributions does not pass the test, and the
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test flow is not correctly classified as using the same protocol as
the training flow.

For the above motivations, we propose to simply check the
distance between the observed values and a reference distribu-
tion, which we choose as the uniform distribution, i.e.,

. In the previous example, the group randomness of the
two flows has the same values, which identify a “constant”
value, independently of the actual value. In other terms, we use
a -like test to measure the randomness of groups of bits or as
an implicit estimate of the source entropy.

To give the intuition of how (2) evolves versus , consider the
case in which a deterministic group of bits is observed. Since for
a deterministic group only one value is possible, the value of
becomes

(4)

(5)

(6)

Thus, linearly increases with .
In general, for a block in which bits are constant, it can be

shown that

(7)

where is the Chi-square with degrees of freedom. In this
case, .

To provide an example of the evolution of , the left plot
in Fig. 2 reports the value of two 4-bit-long groups belonging
to two streams of two different traffic protocols, namely DNS
and eMule, versus the number of collected packets . The steep
lines corresponding to groups taken from the eMule stream refer
to fields that are almost constants. In this case, the longer the
experiment is (larger ), the larger the distance from the uni-
form distribution is, i.e., the bits are far from being uniformly
distributed. In the same plot, observe the lines referring to DNS
traffic. The lowest one has a very slow increase with , and
its behavior is almost perfectly random, the values of being
compatible with those of a distribution. The bouncing line,
instead, corresponds to the typical behavior of a counter. In fact,
(2) over consecutive bits of a counter cyclically varies from very
low values (when all the values have been seen the same number
of times) to large values. The periodicity of this behavior de-
pends on the group position inside the counter.

While randomness provides a coarse classification over indi-
vidual groups, by jointly considering a set of groups through
the vector , the fingerprint becomes extremely accurate. Ob-
serve the right plot in Fig. 2. Each point in the figure corresponds
to a different stream. A window of packets is used to
derive the signatures using the couple of features as
coordinates. Points obtained from DNS streams are displaced in
the lower left corner of the plot; points from eMule are spread
in the top part of the plot. Notice also that signatures of the
same protocol class are not identical. This is due to both the

Fig. 2. (left) Evolution in time and (right) dispersions in space of � of two
groups of 4 bits extracted from the second byte of UDP payloads.

Fig. 3. Schematic representation of KISS learning steps.

behavior of each application and to different implementations
of the same protocol. For example, some eMule clients can be
downloading, uploading, or waiting, therefore exchanging dif-
ferent types of messages. Similarly, different implementations
of a DNS server can use different random number generators to
extract the query identifier. It is the scope of the decision process
to define the areas where points of the same protocols are ex-
pected. Intuitively, different protocols fall in different areas that
are clearly identified and easily separable: A simple straight hor-
izontal line can effectively separate the two regions considering
this example. However, when several protocols are considered,
more complex surfaces have to be found.

B. Decision Process

KISS is based on supervised machine learning decision
process. During the training phase, we operate as sketched in
Fig. 3. We start by considering some streams that belong to
the set of applications we want to model. Streams are then fed
into a chunker, whose role is to derive the KISS signatures as
in (3). The signature set is randomly sampled by the sampler
so as to select the training set, whose size will be discussed in
Section V-E. The training set is then fed to the learning system,
after which the KISS model is produced. In this paper, we
investigate two different learning systems, the first based on
Euclidean distance and the second based on SVMs.

1) Euclidean Decision Process: A simple Euclidean distance
is used for the decision process. A set of hyper-spheres, one for
each protocol, is identified to define the areas in which samples
of each class are expected to fall. The classification process is
then straightforward: A point that falls inside a sphere is clas-
sified according to the protocol associated to that sphere, while
a point that does not fall into any sphere is assumed to be of an
unknown protocol.

For a given class , the representative hyper-sphere is fully
defined by its center and its radius . is simply



FINAMORE et al.: KISS: STOCHASTIC PACKET INSPECTION CLASSIFIER FOR UDP TRAFFIC 1509

computed, component by component, as the arithmetic mean of
each signature in the training set of class . The identification
of the radius is more complex. Indeed, the hyper-sphere should
be big enough to include all the points of the training, but it has
to be small enough to avoid to include samples of other classes.
Using machine learning terminology, one wants to maximize the
True Positive ratio while minimizing the False Positive ratio.

Formally, the following equation can be used to state the
problem:

(8)

Recall that is computed considering samples of
class , while is computed considering samples of all
other classes of the training set.

2) SVM Decision Process: SVM are a set of supervised
learning methods used for classification and regression. The
key idea of SVM is to displace the training samples (by means
of a transformation from the original N-dimensional space to a
possibly infinite-dimensional space) so that samples belonging
to different classes can be separated by the simplest surface,
i.e., a hyper-plane. SVMs exhibit a number of advantages.

• They are robust to the training set size and composition.
• Their computational and memory requirements are very

limited during the classification phase, even if the training
phase can be computationally expensive.

• They exhibit a very high discriminating power, so that they
typically achieve very high classification accuracy.

• There is a large number of efficient algorithms and imple-
mentations already available. In particular, in this paper we
adopted the LIBSVM [10] implementation.

Finally, notice that the output of the SVM training phase is a
definition of a number of regions equal to the number of classes
defined during the training phase, e.g., one for each protocol that
is offered during the training phase. This implies that a sample
will then always be classified as belonging to one of the known
classes. Considering traffic classification, an additional region
is needed to classify all samples that do not belong to any of
the given protocols, i.e., to represent unknown protocols. Thus,
the training set must contain two types of signatures: 1) the
ones referring to traffic generated by the applications to clas-
sify; 2) the ones representing all the remaining traffic. We refer
to this second class as background since it represents the set
of applications that we cannot classify or are not interested in
classifying.

IV. TESTING DATA SET

We aim at assessing KISS performance in the most difficult
scenario, whenever possible. For most of the results we show,
we consider real traffic traces, collected from an operative, to-
tally uncontrolled network. In addition, to evaluate the perfor-
mance of KISS when dealing with new protocols, we also se-
lected, as a case study, P2P-TV applications. Indeed, P2P-TV
systems have been recently introduced, and they are starting to
became popular. These applications rely on proprietary design
and protocols, they preferentially use UDP as transport protocol,
and they are expected to offer a large amount of traffic to the

network; thus, their classification is going to be more and more
important.

A. Classification Objects

We consider the scenario in which a network provider or ad-
ministrator is interested in knowing the traffic that is going to or
coming from a set of internal hosts. In this context, we define a
classification entity as:

• flow if all packets are coming from the same source IP
address and UDP port and are going to the same destination
IP address and UDP port;

• endpoint if all packets having the same IP destination
(source) address and UDP destination (source) port.

Indeed, depending on the application, one can be interested in
identifying a single flow (as in the case of a VoIP stream) or
in detecting an endpoint and therefore all packets sent/received
from it (as in the case of a P2P application).

B. Testing Data Sets

1) Real Traffic Traces: Real traffic traces (RealTrace) were
collected from the network of FastWeb [12], an ISP provider
that is the main broadband telecommunication company in Italy,
offering converged services, in which data, native VoIP [13],
and IPTV services share a single broadband connection. The
FastWeb network is a very heterogeneous scenario in which
users are free to use the network without any restriction. It there-
fore represents a very challenging scenario for traffic classifica-
tion. A probe node based on high-end PC running Linux has
been installed in a PoP located in Turin, Italy, in which more
than 500 users are connected, using more than 2000 different
IP addresses (e.g., VoIP phones, set-top-boxes, PCs, etc.). All
packets entering/leaving the PoP have been captured. The mea-
surements presented in this paper refer to two datasets that we
call RealTrace-I and RealTrace-II , collected in 2006 and 2007.1

Both traces contain many popular applications generating
UDP traffic, in particular we selected: 1) eMule and Bittorrent;
2) VoIP (over RTP); and 3) DNS protocols. Indeed, these
three protocols account for more than 80% of UDP endpoints,
corresponding to 95% of the flows and to more than 96% of the
total UDP volume. In the remaining traffic, nearly 2% of flows
are related to BitTorrent accounting for less than 1% of bytes.
Skype communications instead present the typical mice/ele-
phant behavior since a negligible number of flows account for
more than 1% of the total volume in both traces. Being dated
back to 2006 and 2007, no P2P-TV traffic is present.

2) P2P-TV Traces: To assess the performance of KISS with
P2P-TV traffic, we selected, among the available P2P-TV ap-
plications, PPLive, Joost, SopCast, and TVants. Since none of
the selected applications was available at the time of real traffic
trace collection, we are forced to rely on testbed P2P-TV traces,
called P2Ptrace, to assess the performance of KISS. This dataset
of traces has been collected in the context of the Napa-Wine
[14] project, in which a large-scale experiment was organized
to observe the performance of the above-mentioned P2P-TV ap-
plications. The resulting dataset consists of packet level traces

1Due to a NDA, we are not allowed to show results referring to more recent
traces. Nonetheless, we can affirm that this trace is representative of typical
KISS performance.
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TABLE II
DESCRIPTION OF THE DATA TRACES

collected from more than 45 PCs running P2P-TV applications
in five different countries at 11 different institutions. The data
set includes traces collected from PCs in campus LANs, cor-
porate networks with restrictive policies, and home ADSL con-
nections, so both nodes with public and private IP addressing are
present. We are therefore confident that the heterogeneity of the
P2Ptrace data set is representative of a wide range of different
scenarios.

3) Skype Traces: In the tests, we also use the public avail-
able data set for the Skype traffic [11]. The data set contains
both Skype traffic identified in [2] and traces collected in a
controlled environment using PCs running different versions of
Skype and different operating systems such as Windows, Linux,
and Pocket-PC.

Table II summarizes the previously described data sets and
reports the total amount of bytes, packets, flows, and endpoints
for each data set and the collection time and duration of each
trace.

We assume packets belonging to the same flow/endpoint are
exposed to the KISS engine, so that after digesting packets,
a classification decision is taken and a new observation window
begins. Therefore, several classification decisions are possibly
taken for a single flow or endpoint. In this paper, we consider
independent classifications, so the same flow/endpoint can be
classified differently at each window. Notice that some recon-
ciliation algorithm can be easily designed to increase the accu-
racy of the classification by considering the set of classifications
involving the same flow or endpoint, e.g., adopting a majority
criterion. We leave this issue to future work.

Notice that: 1) no assumption about observing the first set of
packets is stated; 2) there is no need to observe bidirectional
streams of packets; and 3) not all packets belonging to the same
flow/endpoint must be exposed to the classifier; possible packet
drop, reordering, and sampling can be present.

C. Oracle Definition

To obtain the ground truth from an aggregated trace, i.e., a
traffic trace with a mixture of communications of different pro-
tocols, we developed a DPI classifier that was explicitly de-
signed. It was implemented in Tstat [7], and its performance
was manually fine-tuned and double-checked. In particular, DPI
rules can be summarized as follows.

• DNS: We rely on simple port-based classification and a
manual inspection as to identify only the flows with respect
to DNS RFC1035.

• RTP/RTCP: We rely on the state machine described in [13].
It combines a DPI signature and correlates the value of the
fields in consecutive packets (e.g., to check the validity of
the counters).

TABLE III
EUCLIDEAN AND SVM PERFORMANCE ON REAL TRAFFIC TRACES

• eMule/BitTorrent: We developed a DPI classifier based on
[15] and [16], adapting it to the considered scenario.

• Skype: We rely on the Bayesian framework described in
[2].

All the aggregated traffic that does not match any of the rules
is placed in a subtrace called Background since it represents all
the Unknown protocols.

Since the oracle itself can be unreliable, accurate manual in-
spection and pinpointing of suspect cases are detailed in the per-
formance results.

V. RESULTS

A. Real Traffic Traces

We first report results considering a small subset of the Re-
alTrace-I data set, corresponding to the first 1 h of traffic. The
oracle is used to split the trace into 4 subtraces: Each subtrace
includes only packets classified as belonging to the same pro-
tocol, i.e., RTP, eMule, DNS, and Background traffic only. Each
trace is fed to the KISS classifier so that signatures are evaluated.
Both SVM and Euclidean decision processes are trained using
300 signatures for each class, and the remaining signatures are
used to assess the performance of KISS. Recall that a signature
is generated every samples, so a flow/endpoint can be classi-
fied several times (i.e., every packets).

Table III summarizes the results. Each row corresponds to a
class of traffic according to the oracle. The second column re-
ports the total number of signatures extracted from each sub-
trace, while the remaining columns report the percentages of
True Positives and False Positives for both Euclidean and SVM
decision process.

The SVM results are astonishing: The True Positives are al-
ways higher than 99%, while False Positives are negligible. The
performance of the Euclidean classifier is more variable, e.g., it
performs very well for RTP, but the accuracy decreases when
considering eMule and DNS protocols. This is related to the
adoption of a hyper-sphere as an approximation of the separa-
tion surface between classes. To this extent, Fig. 4 reports (8)
as an example of optimization for RTP, eMule, and DNS. For
RTP, any choice of allows to almost
perfectly identify RTP traffic. On the contrary, eMule class is
not well represented by the hyper-sphere surface, so that any
choice of trades between %TP and %FP. Similar rea-
soning applies for DNS traffic. This shows that a simple de-
cision process based on Euclidean distance is hard to design,
while the adoption of SVM allows to avoid this problem. This
conclusion is supported by other tests we performed, not re-
ported here for the sake of brevity. Therefore, in the following
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Fig. 4. Euclidean decision process: True Positive–False Positive evolution
versus � for RTP, eMule, and DNS classes.

TABLE IV
CONFUSION MATRIX CONSIDERING P2P-TV APPLICATIONS

we will consider only the SVM classifier, and we will investi-
gate how KISS performance is affected by parameters setting
and different scenarios.

B. P2P-TV Traffic Traces

To prove the KISS flexibility, we explore its ability to identify
traffic generated by P2P-TV applications. The design and engi-
neering of a DPI mechanism for proprietary and closed P2P-TV
applications would be daunting and extremely expensive. On the
contrary, training KISS is quite straightforward: Apacket trace
is captured by simply running the target application, and then it
is used to train the SVM. RealTrace-I instead is used as Back-
ground class. In this way, all traces from the P2Ptrace data set
are used to evaluate %TP, while RealTrace-I is instead used to
evaluate the %FP since we assume no P2P-TV traffic could be
present during 2006. The total amount of time required to com-
plete this task is less than 6 h.

Results are summarized in Table IV, which reports percent-
ages computed over more than 1.2 millions tests. Labels on the
rows represents the ground truth. Also in this case, results are
amazing. KISS is able to correctly classify more than 98.1% of
samples as True Positives in the worst case, and only 0.3% of
False Positives are present.

C. Signature Robustness

We are first interested in quantifying KISS robustness with
respect to a training set independent from the test set. We thus
perform an experiment in which the SVM is trained using sam-
ples extracted from the initial part of the RealTrace-I. A 9-h-long
subset of RealTrace-I is considered, but the training set includes
samples extracted from the first 30 min only. As in the experi-
ment in Section V-A, only RTP, eMule, DNS, and Background
are considered in the SVM model. Results are reported in Fig. 5
showing only Background False Positive percentages since the
%TP is always higher than 99%. The plot confirms the intu-
ition that the characterization of the Background traffic may be

Fig. 5. False Positive percentage variation versus time. Background in the
training set.

a problem since there are peaks that clearly show that the SVM
is fooled by the sudden appearance of unknown protocols that
were not included in the training set.

Investigating further, we notice that the high percentage of
Background traffic classified as RTP traffic is due a single end-
point that is receiving traffic with the same “format” of RTP
protocol. However, the DPI-based oracle did not classify this
endpoint as RTP since a mismatch in the RTP header is present:
The RTP version field takes a value of 1 instead of 2. Apart from
this difference, all other fields are in perfect agreement with the
RTP standard as in RFC3550. Moreover, all packets received by
this endpoint have 172 B of UDP payload, which is typical of
VoIP streams using the ITU-T G.711 encoder [13] used in the
FastWeb network. We then claim that this is an actual RTP flow,
but the DPI oracle was fooled by the wrong version value. On
the contrary, KISS correctly classifies this flow as a RTP flow.

Similarly, investigating the samples that are misclassified as
DNS (e.g., from 15:30 to 16:00) we notice that a single endpoint
(listening to UDP port number 9940) is responsible for this be-
havior. We manually inspected this traffic and verified that it
cannot be a DNS endpoint, so the oracle is reliable. Interest-
ingly, no sample of this endpoint is included in the training set
of Background traffic. Since the SVM is always forced to clas-
sify the sample as one of the possible classes, it resolves to clas-
sify it as DNS rather than Background. Considering this end-
point only, Fig. 6 shows the probability that the SVM evaluates
it as a Background or DNS sample versus time. It can be seen
that some uncertainty is present. Repeating the experiment by
including some of these endpoint signatures in the Background
training set, KISS correctly classifies it. This is an example of
“undertraining” of SVM.

Similar conclusions can be drawn investigating the eMule
False Positives. They all correspond to endpoints listening to
UDP port number 3074, possibly related to the Xbox-Live pro-
tocol, which is sometimes confused by the SVM as eMule traffic
since the SVM is “undertrained.” Also in this case, by adding
some samples of these endpoints to the training set, no FP is
detected.

We can conclude that KISS shows excellent performance
since the True Positive percentages are higher than 99% in all
cases. The training of the SVM is robust considering the signa-
ture of known protocols, but it can suffer when the Background
training set is small or does not include all protocols that may
be present in the considered network scenario. This leaves
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Fig. 6. Example of an endpoint that causes False Positives. Different classifi-
cation windows over time.

Fig. 7. False Positive percentage variation versus time. Aggregate in the
training set.

room for improving the performance of KISS by carefully
selecting the training set samples. Notice that the accuracy of
any supervised machine learning decision process is strongly
affected by the coverage and accuracy of the training set.
Intuitively, a limited or outdated training set performs worse
than an updated one. A discussion of the training set size and
its impact on performance is presented in Section V.

D. Training With the Aggregate

A possible weakness of KISS is that the SVM must be trained
with the Background traffic, i.e., with actual traffic extracted
from the network the classifier is used representing the Un-
known protocols. While the adoption of actual traffic does not
pose particular issues, the extraction of “pure” Background is
very questionable. A possible solution to this issue is to use,
during the SVM learning phase, the whole Aggregate of traffic
as Unknown traffic. This poses some problems, since samples
of a given class may be part of the Aggregate traffic as well.

Fig. 7 shows results obtained by running KISS in the scenario
previously described, but using the Aggregate trace to train the
SVM for the Unknown traffic. Also in this case, the True Posi-
tive percentage remains higher than 99% (results are not plotted
for the sake of brevity). Considering FP, apart from the RTP
endpoint that the oracle misclassifies, we observe an increased
percentage of samples being classified as eMule (with an av-
erage ). Nonetheless, results remain very good.

E. Training Set Size

Similarly, it is interesting to observe how performance
changes with training sets of different size. Results are plotted

Fig. 8. Classification accuracy versus training set size.

in Fig. 8, which reports the %TP and %FP for increasing
training set size with confidence intervals evaluated over 10
independent tests and accuracy . The plot shows
that KISS classifies RTP, DNS, and eMule correctly starting
from a training set size of only 25 samples (worst case is

for DNS), but at least 75 samples are needed
to obtain excellent results. Also in this case, the correct clas-
sification of the Background traffic is more problematic since
the False Positive percentage is smaller than 5% only when the
training set comprises at least 200 samples. The intuition behind
this is that the Background traffic is far more heterogeneous
with respect to traffic of a given protocol, and a larger number
of samples are required to accurately describe it.

F. Training With Many Classes

All the results reported so far consider only three or four
protocols. It is interesting to analyze the performance of the
classifier with a larger number of target protocols. Using
RealTrace-II, P2P-TV testbed, and the Skype data sets, we
create a KISS model including nine different classes, plus one
for the Background traffic. Each class has been characterized
with 300 signatures randomly chosen from the initial portion
of each trace. Table V reports the confusion matrix of the
classification result. As before, labels on the rows represents
the ground truth. The first column reports the total number
of signatures, while the other columns show the agreement
between the ground truth and KISS classification. Again, re-
sults are impressive: KISS always achieves more than 99% of
True Positives, with less than 10% of False Positives from the
background class. Further analysis revealed that 7.59% of the
false eMule samples are related to a single endpoint, which gen-
erates lots of short flows directed to a high number of different
destinations. Unfortunately, we were not able to identify which
actual protocol was used. After the adding of some samples of
this endpoint in the background training set, all eMule False
Positives disappeared. For what concerns the 2.67% of samples
identified as RTP, more than the 90% of them is generated
by only two endpoints that use a RTP protocol with a wrong
version number as previously discussed in Section V-C.

G. Parameter Selection and Tuning

The signature creation approach previously presented is
based on a number of parameters whose setting may be critical.
These are the criteria we used to set them.
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TABLE V
CONFUSION MATRIX CONSIDERING P2P-TV, REAL-TRACES, AND SKYPE TRAFFIC

Fig. 9. Classification accuracy versus signature packet window � .

1) Bits Per Group, : The choice of should trade off
two opposite needs. On the one hand, we would like to be
the closest as possible to typical length of protocol fields; since
protocol dialogs are usually based on words whose lengths are
multiples of the byte or, sometimes, half a byte, should be
4 or 8 or a multiple of 8. On the other hand, should be small
enough to allow that the packet window over which the test
is statistically significant is not too large. Besides, in this case,
streams can be classified even if they are not too long; they are
classified in short time, and live classification is possible. Thus,
we chose .

2) Number of Bytes Per Packet, : In general, classi-
fication accuracy increases with the number of considered bytes
per packet. However, complexity of the classification tool in-
creases also with , in terms of both memory and computa-
tional complexity. As a convenient tradeoff, we choose .
Given , this values corresponds to groups. An-
other reason to choose bytes is that, this way, we collect
20 bytes of the IP packet payload (12 bytes + 8 bytes of the UDP
header) that is the minimum size of the TCP header and the typ-
ical value used by measurement tools. Notice that the optimal
value of depends on the targeted applications. For example,
DNS and eMule can be clearly identified by only considering

as earlier showed in Fig. 2. However, when consid-
ering different protocols, possibly more and different groups
must be considered. The selection of which is the best set of
groups to include in the signature is then a complex task that
is left out as future work.

3) Packet Window, : While we would like to keep
the packet window as small as possible, the estimation of the
observed distribution is considered to be statistically significant
if the number of samples for each value is at least 5. Having

chosen , in order to have equal to 5, we
need to be equal to about 80. However, since in KISS we
are not performing a real test, we are interested in the im-
pact of smaller values of , which would allow an earlier clas-
sification. Fig. 9 reports the True Positive percentages of well-
known protocols and the False Positive percentages, without
distinguishing among protocols. Confidence intervals with an
accuracy are evaluated over 250 different subtraces
from RealTrace-I, each comprising more than 100 samples. The
figure clearly shows that the %TP is almost not affected by the
number of samples that are considered to evaluate the observed
frequencies in (1). Indeed, the format of the considered proto-
cols is very different, and the SVM has little problem in distin-
guishing them even if is small. However, the %FP is much
more sensitive to , and only for it goes below 5%.

H. Coverage

The packet window size plays an important role in KISS
design, and it may affect the applicability of KISS. Indeed, given
the connectionless characteristic of UDP, one expects that UDP
flows and endpoints last for few packets. Fig. 10 confirms this
intuition reporting the cumulative distribution function (CDF)
of flow length for both flow/endpoint packets and bytes. All in-
coming UDP traffic in RealTrace-I is considered to derive the
CDF. The left plot clearly shows that 40% of flows and end-
points has only 1 packet, while only 0.2% of flows and 5% of
endpoints have at least 80 packets. However, these flows/end-
points respectively account for more than 93.8% and 98.6% of
the bytes carried by UDP, as reported in the right plot. This
clearly shows that while KISS is not suitable for the classifi-
cation of short-lived UDP flows/endpoints, it can however suc-
cessfully target the small fraction of them that generates the ma-
jority of the traffic, i.e., long-lived flows.

I. Complexity

KISS has limited computational complexity. In terms of
memory, counters are needed per group, giving a total of

counters for each tracked stream. Considering byte-wise
counters, and , 384 B are required for each flow,
i.e., a gigabyte of memory allows to track more than 2.7 M of
streams.

The computation complexity of updating a signature in-
volves increments for each packet. Once every
packets, the signature is computed. The cost of this computa-
tion is multiplications; see (2). The computational
complexity of the SVM decision corresponds to some products
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Fig. 10. CDF of the flow/endpoints length in (left) packets and (right) bytes.
The vertical line is in correspondence of 80 packets.

between vectors, i.e., it has a complexity of multi-
plications, being the number of classes. Using the LIBSVM
library, it takes around 100 s to classify a signature from em-
pirical measurements on a Linux system with an Intel Core2
T8300 @ 2.40 GHz. Considering a single UDP flow, KISS can
roughly classify packets/s; thus, online classification is
possible for a 256-Mb/s stream of minimum-size UDP packets,
even with no code optimization or parallelization.

VI. RELATED WORK

Since Port-based classification [1] has become unreliable, a
number of different solutions and methodologies have been pro-
posed to classify Internet traffic [4], [5], [9], [17]–[25]. Classi-
fication engines can be coarsely divided into three categories,
each of them exploiting different ideas. For a good survey, see
[8], while [26] is a complementary work for the survey.

Payload-based techniques [9], [18]–[20] inspect the content
of packets looking for distinctive signatures that allow to recog-
nize a given application. All DPI techniques fall in this class.

Machine-learning-based classification [5], [21]–[23], [27],
[28] relies on the rationale that since the nature of the services
is extremely diverse (e.g., Web versus VoIP), the corresponding
generated traffic is very diverse as well (e.g., short-lived bursts
of big packets versus long-lived, constant bitrate flows of small
packets). This class of work stems from the characterization and
modeling research field, which started from pioneering work
[29]. Initial work in this area focused on the offline traffic clas-
sification, exploring which flow properties and which classifi-
cation technique was best suited to discriminate traffic flows ac-
cording to the different classes of applications [5], [21]–[23].
More recently, [27] and [28] addressed the problem of “early”
classification of individual applications, basing solely on infor-
mation such as the size and direction (and interpacket gap in the
case of [28]) of the very first packets of each flow: The initial
handshake phase of different applications is distinctive and can
be used as protocol fingerprint (e.g., SMTP handshake is dif-
ferent from HTTP one).

Finally, behavioral-based classification [4], [24], [25] targets
the classification of Internet hosts on the sole basis of the trans-
port-layer traffic patterns they generate (e.g., P2P hosts contact
many different hosts typically using a single port, whereas a
Web server is contacted by different clients with multiple par-
allel connections).

Our work aims at fine-grained classification of Internet traffic.
As such, we consider work targeted to host identification [4],
[24], [25] or coarse-grained identification [5], [21], [22] to not
be suited as a comparison for our purpose. Moreover, this work
aims at filling a gap in the current Internet classification spec-
trum, specifically addressing UDP traffic classification. Since
UDP is a connectionless protocol, we argue that an approach
such as [27] or [28] cannot be applied as no handshake can be
reliably identified in this case. Indeed, even the notion of “flow”
is fuzzy considering UDP streams.

Works closest to ours are those that belong to the payload-
based class. However, our work is very different from [9] and
[18] since the definition of application signatures does not rely
on any reverse-engineering of the applications. Instead, our ap-
proach is more similar in spirit to [19] and [20], in which au-
thors automate the extraction of signatures from the application
payload. Both [19] and [20] rely on signatures extracted from
the beginning of each data stream (more specifically, the first
64–256 B). We remove this assumption so that the classification
can start at any point in a flow. This is an important difference
since, for example, it opens the door to adopt packet sampling
to cope with the ever increasing link data rate.

Another significant difference consists in the technique used
to express the payload fingerprint:[19] uses discrete byte en-
coding, whereas the framework of [20] proposes the use of dif-
ferent models of increasing complexity. Another difference con-
sists in the technique explored to perform the classification. In-
deed, in this work we use Support Vector Machines (SVMs)
which, to the best of our knowledge, have not yet been deeply
tested in the context of Internet traffic classification.

VII. CONCLUSION

We presented KISS, a novel classifier explicitly targeting
UDP traffic that couples the stochastic description of appli-
cation protocols with the discrimination power of SVMs.
Signatures are extracted from a traffic stream by the means of

-like test that allows application protocol format to emerge
while ignoring protocol synchronization and semantic rules.
A decision process based on SVM is then used to classify the
extracted signatures, leading to exceptional performance.

Performance of KISS has been tested in different scenarios,
considering both data, VoIP, traditional P2P applications, and
novel P2PTV systems. Results are astonishing. The average
True Positive percentage is 99.6%, and less than 1% of False
Positives are typically detected. Moreover, KISS is very robust
to internal parameter setting, and it is efficient considering both
memory and computational requirements.
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