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A cDNA Microarray Gene Expression Data
Classifier for Clinical Diagnostics based on

Graph Theory
Alfredo Benso, IEEE Senior Member, Stefano Di Carlo, IEEE Member and Gianfranco Politano

Abstract—Despite great advances in discovering cancer molecular profiles, the proper application of microarray technology to routine
clinical diagnostics is still a challenge. Current practices in the classification of microarrays’ data show two main limitations: the reliability
of the training data sets used to build the classifiers, and the classifiers’ performances, especially when the sample to be classified does
not belong to any of the available classes. In this case, state-of-the-art algorithms usually produce a high rate of false positives that, in
real diagnostic applications, are unacceptable. To address this problem, this paper presents a new cDNA microarray data classification
algorithm based on graph theory and able to overcome most of the limitations of known classification methodologies. The classifier
works by analyzing gene expression data organized in an innovative data structure based on graphs, where vertices correspond to
genes and edges to gene expression relationships. To demonstrate the novelty of the proposed approach, the authors present an
experimental performance comparison between the proposed classifier and several state-of-the-art classification algorithms.

Index Terms—microarray, gene expression, classification, clinical diagnostics, graph theory
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1 INTRODUCTION

DNA microarrays are one of the fastest-growing tech-
nologies for genetic research. They are small solid sup-
ports, e.g., membranes or glass slides, on which se-
quences of DNA are fixed in an orderly arrangement.
Tens of thousands of DNA probes can be attached to a
single slide and used to analyze and measure the activity
of genes. Scientists are using DNA microarrays to inves-
tigate several phenomena (e.g., cancer, pest control, etc.)
by measuring changes in gene expression and thereby
learning how cells respond to a disease or to a partic-
ular treatment [1], [2]. Even if microarrays represent a
powerful source of biological information, using gene
expression data to classify diseases on a molecular level
for clinical diagnostic remains a challenging research
problem. It involves assessing gene expression levels
from different experiments, determining genes whose
expression is relevant (feature extraction) and then apply-
ing accurate and readily interpretable classification rules
providing biological insight of the target phenomenon
(classification) [3].

Classifying microarray data poses several challenges
to typical machine learning methods. In particular, mi-
croarray classification faces the “small N, large P” prob-
lem of statistical learning, where the number P of vari-
ables (gene expressions) is typically much larger than the
number N of available samples. This disparity impacts
the major aspects of the classifier design: the classifica-
tion rule, the error estimation and the feature selection.
Moreover, when considering clinical diagnostic, one of
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the main problems of traditional machine-learning tech-
niques concerns the ability of properly detecting false
positives, i.e., samples erroneously assigned to a class
even if they do not belong to the class library used to
train the classifier. This misbehavior is clearly unaccept-
able since it would very likely lead to a misdiagnosis.

This paper tries to leverage these problems by pre-
senting a new classification algorithm based on a graph-
based data structure, called Gene Expression Graph (GEG),
used to represent gene expression data. GEGs clearly
express relationships among expressed and silenced
genes in different conditions (e.g., healthy vs. diseased).
They are therefore specifically suited for the analysis of
complementary DNA (cDNA) microarrays that provide
on a single support information for both healthy and
diseased specimens. The concept of using a graph-based
data structure to represent gene expression data, first
published by the authors in [4] and in [5], allows to
build a classifier based on a topological comparison
between graphs representing known classes, and graphs
representing samples to analyze.

One of the main contributions of the classifier stems
in the ability of combining in a single algorithm high
accuracy in the classification process together with the
ability of detecting samples not belonging to any of
the trained classes, thus drastically reducing the number
of false positive classification outcomes. To validate the
efficiency of the proposed approach, the paper presents
an experimental comparison between the GEG-based
classifier and several generic state-of-the-art multi-class
and one-class classification methods on a set of cDNA
microarray experiments for fifteen well known and doc-
umented diseases. Experimental results show that the
GEG-based classifier is able to reach the same perfor-
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mances reached by multi-class classifiers when dealing
with samples belonging to the considered class library,
while it outperforms one-class classifiers in the ability
of detecting samples not belonging to any of the trained
classes.

The paper is organized as follows: section 2 describes
the proposed classification approach, and section 3 pro-
poses an overview of existing classification methods in
order to highlight the main differences with the pro-
posed approach. Section 4 presents the experimental
results, and section 5 concludes the paper suggesting
future developments of this work.

2 METHODOLOGY
Classifying diseases based on DNA Microarray gene
expression information usually requires:

1) signal pre-processing of raw microarray scans,
2) data modeling,
3) prediction (e.g., classification), and
4) validation.

The signal pre-processing stage elaborates the raw image
obtained from the scanning process of a microarray (sam-
ple) in order to calculate the expression level of each DNA
probe. It compensates for any kind of acquisition errors,
hardware damages (scratches, dust, etc.) and procedural
issues (stains, drops, spots out of focus, etc). While this
step is out of the scope of this paper, the next subsec-
tions will focus on the problem of efficiently modelling
microarray data, and on the definition of an efficient
prediction algorithm for classification of diseases.

2.1 Data modelling
The result of the scanning process and signal processing
of a microarray containing probes (spots) for P different
genes is a gene expression profile:

~s = (expr1, expr2, . . . , expr

P

) (1)

with expr

j

representing the gene expression level of the
j

th gene (g
j

) of the sample (j 2 [1, P ] ⇢ N).
Depending on the microarray technology expr

j

may
identify an absolute expression level or a set of ex-
pression levels measured in different conditions. cDNA
microarrays, the main target of this paper, provide for
each spot two expression levels using two fluorescence
intensities: the first labeled Cy5 producing a red flu-
orescence associated with a diseased condition, and
the second labeled Cy3 producing a green fluorescence
associated with a healthy condition. We can therefore
formally define expr

j

as an index function:

expr

j

: {Cy5, Cy3}! R (2)

and denote with ~s [j] [Cy5] and ~s [j] [Cy3] the two expres-
sion levels of gene g

j

in sample ~s.
Gene expression profiles obtained from N samples

are usually organized in the form of a matrix called

Gene Expression Matrix (GEM) [6] where the i

th row
(i 2 [1, N ] ⇢ N) represents the gene expression profile of
the i

th sample of the considered set. The GEM obtained
from the scanning process of a set of microarrays is a raw
data-set containing noise, missing values and system-
atic variations arising from the experimental procedure.
Techniques such as the one proposed in [7] are widely
applied to mitigate the effect of these problems and
to improve the overall data quality. GEMs are a data
model widely used to build classification and prediction
algorithms. In this paper we consider a multi-class classi-
fication problem. A classifier or predictor C for K classes,
each one representing a disease, is a map from the space
S of all possible gene expression profiles into a set Y of
K classes:

C : S ! Y = {y1, y2, . . . , yK

} (3)

built over a training set

Tr = {t1 = (~s1, C (~s1)) , . . . , t

T

= ( ~s

T

, C ( ~s

T

))} (4)

of T previously labeled samples. Since classification
methods rely on gene expression profiles to perform pre-
dictions, several pre-processing steps such as between-
microarray normalization are usually applied to make
quantitative comparison of two or more microarrays
possible [8], [9]. Each of these steps may strongly impact
the efficiency and accuracy of the classifier. Moreover,
they require rebuilding the overall data model every
time new samples have to be analyzed, or added to
the training set to enhance the learning capability of the
classifier. This operation is computationally expensive,
and might be not affordable if performance is one of the
target requirements.

To cope with these problems we propose a new graph
based data model for groups of gene expression profiles,
built on raw gene expression measures. The model is
constructed in order to allow efficient classification and
to avoid the influence of pre-processing steps on the
prediction process.

To better explain the proposed approach, let us split
the training set Tr into K sub-sets:

Tr = {Tr1, T r2, . . . , T r

K

} (5)

where each sub-set Tr

i

=
{( ~s

x

, C ( ~s

x

)) 2 Tr | C ( ~s

x

) = y

i

} characterizes a separate
class y

i

and therefore groups samples of individuals
affected by the same disease.

Each sub-set Tr

i

can be modeled by a non-oriented
weighted graph (Gene Expression Graph) GEG

i

=
(V

i

, E

i

) where:
• each vertex v

x

2 V

i

, with x 2 [1, P ] ⇢ N represents
gene g

x

of samples belonging to Tr

i

, labeled using
its UnigeneID [10]. Only vertexes representing rele-
vant genes are included in the graph (the concept of
gene relevance will be discussed in section 2.1.1);
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• each edge (u, v) 2 E

i

✓ V

i

⇥ V

i

connects pairs
of vertexes representing genes that are co-relevant,
i.e., concurrently relevant, within a single sample
~s

x

| ( ~s

x

, C ( ~s

x

)) 2 Tr

i

. It therefore models re-
lationships among relevant genes of a sample. If
n genes are co-relevant in the same sample, each
corresponding vertex will be connected with an
edge to the remaining n � 1 ones, thus creating a
clique. This structural property is very important
to identify features connected to each training sub-
set Tr

i

and thus to construct an efficient classifier.
This consideration is based on the hypothesis that,
when considering a statistically significant number
of experiments, genes that are co-relevant within the
same sample are likely to have a biological meaning
in characterizing the target disease (e.g., [11]);

• the weight w

u,v

of each edge (u, v) 2 E

i

corresponds
to the number of times genes u and v are co-relevant
in the same sample over the set of samples compos-
ing Tr

i

. In a graph built over a single experiment,
each edge will be weighted as 1. Adding additional
microarrays will modify the graph by introducing
additional edges and/or by modifying the weight
of existing ones.

2.1.1 Relevant genes selection

The identification of relevant genes is a key factor to
build gene expression graphs. Depending on the experi-
mental setup and on the specific microarray technology,
different strategies can be exploited. In [4] we adopted
the absolute gene expression level of diseased tissues.
This approach presents two drawbacks: (i) it requires the
identification of a threshold representing a Boolean cut-
off between relevant and not relevant genes and (ii) it
does not allow to model both expressed and silenced
genes.

Several studies on cDNA microarrays have shown
that it is possible to identify relevant genes for a target
disease by searching for spots that are differentially-
expressed between healthy and diseased conditions [12].
The predominance of the Cy3 or Cy5 component of
a spot indicates the abundance of the corresponding
DNA sequence, allowing us to introduce the concept
of over-expressed or silenced genes. On the other hand,
equal intensities indicate no peculiar information for the
corresponding gene. Based on this concept it is possible
to define different metrics to evaluate differential ex-
pressions and to identify relevant genes for constructing
GEGs.

In [5] we considered the use of a linear difference
between diseased and healthy gene expressions. De-
spite greatly improving the data model quality w.r.t. [4]
and allowing a significant noise reduction, this process
suffered again from the need of defining a differential
expression threshold to distinguish between relevant and
non relevant genes. Being linear differences of gene
expressions of a single sample not heavy-tailed dis-
tributed, it was impossible to define the threshold based

on a strong mathematical model. Moreover, considering
genes with equal differential-expression, it was impossi-
ble to discriminate between genes with high Cy5 and
Cy3 components from genes with low Cy5 and Cy3
components. Loosing this information may reduce the
efficiency of the classification process.

Several publications on microarray data suggest to use
the (binary) logarithm of the ratio Cy5/Cy3 (log-ratio) to
measure differential-expression of genes. The use of the
log-ratio seems to be a better solution to identify rele-
vant genes for GEGs. It takes into account the absolute
intensity of the two channels thus overcoming one of the
problems of the linear difference. Moreover, log-ratios of
a microarray tend to be Normally distributed [13], thus
allowing to build a more rigorous mathematical model to
better identify relevant genes. Relevant and non-relevant
genes of a sample can be therefore selected considering
whether the corresponding log-ratio is null (non-relevant
gene) or not (relevant gene). This simple rule can be
further refined by considering the sign of the log-ratio.
Genes that exhibit a positive log-ratio are up-regulated
in the diseased condition (Cy5 component) compared to
the healthy one (Cy3) identifying over-expressed relevant
genes. On the other hand, genes with a negative log-ratio
are down-regulated in the diseased condition w.r.t. the
healthy one, identifying silenced relevant genes.

When applying this rule, one has to consider that
experimental conditions may introduce systematic biases
on the experimental data able to shift or scale expres-
sion levels of a sample. To compensate these problems
and to allow comparison of different samples, within-
microarray normalization should be applied. Among the
different methods proposed in literature, we applied
here the standard score (z score) normalization [14]. The
standard score transformation expresses log-ratios for
individual genes of a sample as a unit of the standard
deviation from the normalized mean of zero:

z(Cy5, Cy3, µ,�) =
log2

Cy5
Cy3 � µ

�

(6)

where µ and � denote the mean and the standard
deviation of log-ratios of all genes within the consid-
ered sample. Correction is done before sample-to-sample
comparison and is therefore comparison-independent.

Finally, considering a sharp cut-off between over-
expressed and silenced genes limits the ability of iden-
tifying non-relevant genes. In fact, the amount of genes
that will exhibit a perfectly null standard score will be
usually really small. A threshold " could be therefore
introduced to enlarge the non-relevance area. Different
approaches can be considered to define this threshold. It
can be connected to the intrinsic error introduced when
measuring expression levels of genes, or it can be defined
based on well established methods to identify differen-
tially expressed genes such as fold-change, or t-test [15].
Even if this approach still requires the introduction of a
threshold, we will show that its influence on the accuracy
of the proposed classifier is negligible (see section 4).
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In a formal way, by indicating with ER ⇢ R (Ex-
pression Range) the full scale range of Cy3 and Cy5 for
the target technology, the relevance can be defined as
a function that maps these two components into one
of three possible values indicating: (1) over-expressed
relevant genes, (-1) silenced relevant genes and (0) non-
relevant genes:

Rel

",µ,�

: ER⇥ ER ! {0, 1,�1} (7)

Rel

",µ,�

(Cy5, Cy3) !

8
><

>:

1 z(Cy5, Cy3, µ,�) > "

0 �"  z(Cy5, Cy3, µ,�)  "

�1 z(Cy5, Cy3, µ,�) < "

(8)
Based on this definition, each node v

x

2 V

i

of GEG

i

associated with gene g

x

can be additionally labeled with
a so called Cumulative Relevance Count:

CRC

x

=
X

8j|(~s
j

,C(~s
j

))2Tr

i

Rel

",µ,�

(~s
j

[x] [Cy5] ,~s
j

[x] [Cy3])

(9)
A node with positive CRC identifies a gene over-

expressed in the majority of the samples, while a node
with negative CRC identifies a gene silenced in the
majority of the samples.

In a similar way, the weight w

u,v

of each edge (u, v) 2
E

i

of GEG

i

can be formally expressed as:

w

u,v

=
X

8j|(~s
j

,C(~s
j

))2Tr

i

(|Rel

",µ,�

(~s
j

[u] [Cy5] ,~s
j

[u] [Cy3])|^

|Rel

",µ,�

(~s
j

[v] [Cy5] ,~s
j

[v] [Cy3])|)
(10)

where ^ denotes the logical and operator returning
1 if both its operands are equal to 1, while |·| denotes
the absolute value of the related relevance value. Each
sample will therefore provide a unitary contribution to
w

u,v

if both g

u

and g

v

will exhibit a relevance (in absolute
value) equal to 1.

Fig. 1 shows an example of GEG construction from a
set Tr of six samples (Fig. 1-a). Each sample includes 4
genes and, for each gene, the Cy5 and Cy3 components
are provided. Fig. 1-b shows the log-ratio calculated
for each gene in each sample and the indication of
over-expressed relevant genes, silenced relevant genes
and non-relevant genes. Relevant genes are identified
according to eq. 8 with a threshold " = 1 (two-fold
[15]). Starting from these values, Fig. 1-c shows the
corresponding GEG where each vertex corresponds to a
gene that is relevant in at least one experiment. To give
an example of how to compute the CRC for each vertex,
and the weight of each arc, let us look in more details
at vertexes C and D. Looking at the log-ratio table, one
can see that gene C is over-expressed in 2 experiments
(Exp. 1, and 5), silenced in two experiments (Exp. 3,
and 4), and non-relevant in two experiments (Exp. 2,

and 6). The CRC of node C in the GEG is therefore
CRC

C

= 2 � 2 = 0. Gene D, instead, is silenced in 3
experiments, and over-expressed in 2 experiments: its
CRC is therefore -1. To compute the weight of the edge
(C, D) it is enough to count the number of experiments
in which both genes are relevant (this time without
taking into account the sign). They are experiments 1,
4, and 5; the weight w

C,D

is therefore 3.

GEM =

Exp/Gene

Exp.1
Exp.2
Exp.3
Exp.4
Exp.5
Exp.6

�

���������

A(Cy5, Cy3) B(Cy5, Cy3) C(Cy5, Cy3) D(Cy5, Cy3)
5000, 10 20, 11100 15000, 80 90, 13000
8000, 20 20, 12000 1000, 1050 100, 12000

10000, 10099 30, 30000 11000, 30 40, 1900
1200, 20 15, 10 10, 100 8000, 50
5000, 100 20, 4500 10500, 30 12500, 70
7000, 15 70, 5500 10100, 10050 40, 12500

�

���������

Exp/Gene

Exp.1
Exp.2
Exp.3
Exp.4
Exp.5
Exp.6

�

���������

A B C D

8.97 �9.12 7.55 �7.17
8.64 �9.23 �0.07 �6.91
�0.02 �9.97 8.52 �5.57
5.90 0.58 �3.32 7.32
5.64 �7.82 8.45 7.48
8.87 �6.30 0.01 �8.29

�

���������

(b) Log-ratios matrix and relevance with ε=1. 

(a) Initial training set expression levels represented as a gene expression matrix

A
CRC:

5

B
CRC:

-5

C
CRC:

0

D
CRC:

-1

4

3

4

3

3

4

(c) Gene expression graphs.Silenced nodes indicate nodes with negative CRC, i.e., nodes silenced in 
the majority of the samples, while over expressed node represent nodes with positive CRC, i.e., 
nodes over-expressed in the majority of the samples.

over-expressed
silenced

over-expressed

silenced

μ=0.05 σ=9.52
μ=-1.89 σ=8.02
μ=-6.02 σ=4.39
μ=2.62 σ=4.90
μ=3.43 σ=7.59
μ=-1.42 σ=7.72

Figure 1. GEG construction example starting from the initial set of
gene expression profiles, to the final graph construction

If new samples become available from new experi-
ments referring to the same pathology, the related infor-
mation can be easily added to the corresponding GEG
without any additional memory requirement. GEGs’
memory occupation is in fact determined by the number
of considered genes, only, and is independent of the
number of experiments in the data-set.

2.2 Classification

Gene Expression Graphs represent an excellent data
structure for building efficient classifiers. The classifier
presented in this paper works by structurally compar-
ing pairs of GEGs: one representing a given pathology
(GEG

pat

), built from a corresponding training set Tr

pat

(eq. 4), and one representing the sample ~s to classify
(GEG

s

). This comparison measures how much GEG

s

is similar (or can be overlapped) to GEG

pat

in terms
of over-expressed/silenced genes (CRC of vertexes) and
relationships among gene expressions (weight of edges).
The result of this operation is a proximity score (Ps 2
[�1, 1] ⇢ R), computed according to eq. 11, measuring
the similarity between the two graphs.
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Ps(GEG

pat

, GEG

s

) =
SMS(GEG

pat

, GEG

s

)
MMS(GEG

pat

)
(11)

SMS (sample matching score) analyzes the similarity
of GEG

pat

and GEG

s

considering those vertexes (genes)
appearing in both graphs, only. SMS is computed as:

SMS(GEG

pat

, GEG

s

) =
X

8(i,j)2E

s

\E

pat

(12)

✓
Z

i

· w
i,j

· |Z
i

|
|Z

i

| + |Z
j

|

◆
+
✓

Z

j

· w
i,j

· |Z
j

|
|Z

i

| + |Z
j

|

◆

where (i, j) are edges appearing in both GEG

s

and
GEG

pat

, while the term Z

x

(Z-term) for vertex v

x

is
computed as:

Z

x

= CRC

x

pat

· CRC

x

s

(13)

By construction, each vertex v

x

of a GEG has CRC

x

<

0 if g

x

is silenced in the majority of the samples of its
training set, CRC

x

= 0 if g

x

is actually not relevant in
its training set, or CRC

x

> 0 if g

x

is over-expressed in
the majority of the samples of its training set. Z

x

may
therefore assume the following values:

• Z

x

> 0: if g

x

is silenced/over-expressed in both
GEG

s

and GEG

pat

;
• Z

x

< 0: if g

x

is silenced in GEG

s

and over-expressed
in GEG

pat

, or viceversa;
• Z

x

= 0: if g

x

is not relevant either in GEG

s

, or in
GEG

pat

.
The purpose of this term is to quantify to what extent the
expression of g

x

in ~s is "similar" to the expression of the
same gene in Tr

pat

. The more genes have a positive Z-
term, the higher will be the similarity and therefore the
SMS of the sample w.r.t. the considered GEG

pat

. The two
terms of eq. 12 are the Z-term of the two genes connected
by the considered edge ((i, j)), each one multiplied by
a portion of the weight of the edge. This portion is
computed as the percentage of the Z-term of the gene
over the total Z-term of the pair.

MMS (maximum matching score) is the maximum
SMS that would be obtained with all genes in GEG

s

perfectly matching all genes in GEG

pat

, with Z-term of
each gene always positive. It can be therefore computed
as:

MMS(GEG

pat

) =
X

8(i,j)2E

pat

 
w

i,j

·
CRC

2
i

+ CRC

2
j

|CRC

i

| + |CRC

j

|

!

(14)
The proximity score is used as a measure of ~s to belong

to the class (disease) characterized by GEG

pat

. Posi-
tive values indicate the existence of similarities between
the two graphs, with higher scores indicating higher
similarity between the sample and the class. Negative
values indicate opposite structural information between

the two graphs, thus identifying high dissimilarity be-
tween the sample and the class. Considering the multi-
class classification problem of eq. 3 and given a set of
K graphs, GEG1, GEG2, . . . , GEG

K

, with GEG

i

built
using the sub-set Tr

i

⇢ Tr (eq. 5) and characterizing a
given disease, we can compute a proximity vector for a
sample ~s as:

~

PV

s

= (Ps(GEG1, GEG

s

), . . . , Ps(GEG

K

, GEG

s

))
(15)

where ~

PV

s

[i], with i 2 [1, K] represents the proximity
score of sample ~s with class y

i

, i.e., the measure of the
affinity of ~s with the class y

i

.
It is important to highlight that the computation of

each proximity score composing ~

PV

s

is independent of
the number of classes considered in the problem, making
it an absolute indicator of the similarity of a sample with
a given class. This is in contrast with several state-of-the-
art classifiers (see section 3) where proximity measures
often depend on the number of classes,and need to
be interpreted in relation with the measure of all the
considered classes. This forces to completely rebuild the
prediction model every time new classes are included in
the classification process.

2.2.1 Classifier’s decision rule

Given the proximity vector of a sample ~s, the definition
of the classifier C (eq. 3) passes through the definition of a
decision rule able to predict the correct class. In statistical
classification a decision rule uses information from a
sample to decide between two or more hypotheses.
State-of-the-art classifiers (see section 3) usually apply
the maximum proximity rule to identify the predicted
class. In our case this would mean choosing, as best
prediction for a sample ~s, the class with the highest Ps:

C(~s) = y

argmax

i

( ~

PV

s

[i]|8i2[1,K]) (16)

This rule is really effective when working on samples
that are known to belong to the available class library.
Nevertheless, when performing predictions for clinical
diagnostic, two situations should be considered: (i) the
sample actually belongs to one of the classes the classifier
has been trained for (classifiable sample), or (ii) the
sample does not belong to any class (out-of-class sample)
because it is either a healthy sample or a sample showing
a disease not considered when the classifier was trained.
The classification problem should be therefore extended
by introducing an out-of-class (y

ooc

) condition as:

C : S ! (Y = {y1, y2, . . . , yK

})[(y
ooc

= (y1 ^ y2 ^ . . . ^ y

K

))
(17)

where the notation y

i

stands for “not in class y

i

” and
^ denotes the logical and.

Given this new classification problem, samples can be
grouped based on the result of the classification into four
groups:
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• True Positives: classifiable samples classified in one of
the available classes y

i

2 Y . This includes samples of
class y

i

2 Y classified in the correct class (matches),
and samples of class y

i

2 Y classified in the wrong
class y

j

2 Y , with y

j

6= y

i

(mismatches).
• True Negatives: out-of-class samples correctly classi-

fied as y

ooc

,
• False Positives: out-of-class samples erroneously clas-

sified as y

i

2 Y , and
• False Negatives: samples of class y

i

2 Y erroneously
classified y

ooc

.
These definitions will be used in the remaining of the pa-
per to analyze the capability of the classifier to both iden-
tify the correct class for classifiable samples (matches
vs. mismatches), and distinguish between classifiable
and out-of-class samples. In particular, failing to identify
out-of-class samples creates a very high rate of false
positives, dramatically reducing the applicability of the
classifier to a real diagnostic scenario where both false
positives and false negatives has to be lowered as much
as possible, if not completely removed.

The maximum probability rule proposed in eq. 16
fails when trying to identify out-of-class samples. To
overcome this problem we propose an improved deci-
sion rule based on the analisys of how proximity scores
distribute between classifiable and out-of class samples.
Let us consider the training set Tr used to train the clas-
sifier. A set of cross-validation experiments to analyze
how proximity scores distribute between classifiable and
out-of-class samples can be setup as follows. K subsets
of experiments are generated by removing one of the
available classes y

i

(i 2 [1, K]) from the training library
and using the corresponding samples Tr

i

as out-of-class
samples to classify. For each subset, several folds can
be generated by removing k samples from the training
sets of each class of the considered library and k samples
from the out-of-class set. Each fold will therefore contain
a test-set of k · (K � 1) classifiable samples, and k out-
of-class samples. The probability density function of the
proximity scores for the given classification problem can
be finally estimated by performing a kernel density esti-
mation on the obtained results [16]. Fig. 2 shows the ker-
nel density estimate of the proximity scores probability
density function for the dataset introduced in section 4.1
to validate our method, using a gaussian kernel. MAX
shows the distribution of the highest proximity score of
each sample for all classifiable samples (true positives -
solid line), and all out-of-class samples (false positives
- dotted line), while DIFF shows the difference between
the values of the two highest Ps for each sample, again
for both classifiable and out-of-class samples.

Looking at Fig. 2, we propose to identify three distinct
areas: (i) the maximum proximity area, (ii) the decision
area, and (iii) the out-of-class area, delimited by two
thresholds Ps

max

and Ps

ooc

(Ps

max

> Ps

ooc

). Based
on this partitioning the following decision rules (Fig. 3)
can be exploited to solve the classification problem of eq.
17:

Psooc=0.3 Psdiff=0.15Psmax=0.7

Figure 2. Kernel density estimate of proximity scores probability
density function for the GEG-based classifier. Estimation is performed
using a Gaussian kernel.

R1: IF ( 66 9i 2 [1, K] | ~

PV

s

[i] > Ps

ooc

) THEN C (~s) = y

ooc

R2: IF
“
9i 2 [1, K] | ~

PV

s

[i] > Ps

max

”
THEN

C (~s) = y

argmax

i

( ~

PV

s

[i]|8i2[1,K])

R3: IF
“
R1 ^R2 ^C

”
THEN C (̃s) = yi

C =

„
9i, j | i = argmax

x

“
~

PV

s

[x] | 8x 2 [1, K]
”
^

j = argmax

x

“
~

PV

s

[x] | 8x 2 [1, K] ^ x 6= i

”
^

“
~

PV

s

[i]� ~

PV

s

[j] > Ps

diff

””

R4: IF
“

R1 ^ R2 ^ R3
”

THEN C (~s) = uncertain

Figure 3. Decision rules for a diagnostic classifier

• R1 (maximize true negatives): to be able to pre-
dict a class for a sample ~s at least one class y

i

(i 2 [1, K]) should exhibit a proximity score ~

PV

s

[i]
higher Ps

ooc

. If this condition is not satisfied (out-
of-class area), ~s is classified as y

ooc

;
• R2 (maximize true positives): if at least one class

with proximity scores higher than Ps

max

do exist
(maximum probability area), the class with maxi-
mum proximity score is predicted. This gives max-
imum confidence to predictions with high score;

• R3: in case neither R1 or R2 are satisfied the predic-
tion should be identified among those classes with
Ps 2 [Ps

ooc

, Ps

max

] (decision area). In this case a
prediction is provided if the two top ranked proxim-
ity scores differs at least of a minimum value Ps

diff

allowing to distinguish between the two classes. In
fact this rule applies every time the prediction is not
certain, i.e., low proximity score. It avoids to provide
a result if the distinction between two classes is not
sufficient to take a clear decision;

• R4: whenever the first three rules cannot be applied
the prediction is considered uncertain and the clas-
sifier does not produce any classification result. In
alternative, multiple classification results can be also
provided to alert the user that the confidence in
the prediction is low, or the sample can be simply
treated as out-of-class.

The proposed decision rule tries to imitate a human
cognitive process to perform predictions. It takes into
consideration both the absolute value of the proximity
scores and their relative values. This property is very
useful for clinical diagnostics. In fact, in addition to the
capability of identifying out-of-class samples, it can also
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provide important diagnostic information such as the
identification of genetic similarities with known diseases.
The three thresholds can be defined looking at the dis-
tributions in Fig. 2:

• Ps

max

: if the MAX plot shows a clear separation
between the true and the false positive distributions,
Ps

max

can be placed in such a way to have most
of the true positives immediately detected by rule
R2. Ps

max

defines the maximum probability area.
Looking at Fig. 2, a good choice is Ps

max

t 0.7 . The
more the threshold is placed near 1.0 the less false
negatives will appear, but also the less true positives
will be detected using the maximum probability rule
(R2);

• Ps

ooc

: similarly to Ps

max

, looking at the MAX plot,
Ps

ooc

can be defined in order to correctly identify
false positives using rule R1, i.e., proximity score
lower than the threshold. From Fig. 2 it is clear that
a good choice is Ps

ooc

t 0.3 ;
• Ps

diff

: for all samples that fall in the decision area,
the DIFF graph can be used to define Ps

diff

. A
good heuristic is to consider the point where the
two curves intersect. Fig. 2 shows that in general,
and therefore also in the decision area, the two
top classes show very close Ps for false positives,
only (dotted line). In the case of true positives the
distinction is much higher (between 0.3, and 0.8).
Ps

diff

t 0.15 maximizes, in this case, the number
of true positives.

Whenever new data are fit into the model these parame-
ters can be continuously tuned to improve the classifica-
tion accuracy. The application of this decision rule allows
us to better discriminate correct and uncertain results.

3 STATE-OF-THE-ART
Multi-class classification of gene expression profiles is
a widely addressed topic literature. However, the large
and complex multivariate data-sets generated by mi-
croarray experiments still pose methodological and com-
putational challenges. This section reviews a set of well
established calssification methods applied in several pa-
pers to the classification of gene expression profiles and
in particular cDNA microarray experiments.

Microarray classification can be treated as a regression
problem where the dependent variable is categorical, and
predicted from a linear combination of gene expression
levels. Partial Least Squares (PLS) [17], [18] and Linear
Discriminant Analysis (LDA) [19], [20], [21] are common
regression methods applied to cDNA microarray data
classification.

The k–nearest neighbors rule (KNN) [22] is used to
classify cancers based on gene expression data in several
papers. KNN is an intuitive method that classifies unla-
beled samples based on their similarity with examples
in the training set. It finds the k closest features in
the training set and assigns the sample to the class
that appears most frequently within the k-subset [18],

[23], [24], [25]. The main limitations of KNN are three:
storage requirements, computational cost, and extreme
sensitivity to gene expression data scaling.

Decision trees [26] and Random Forests (RF) [27] are
popular cancer classification approaches [28], [29], [30],
[31]. According to Statnikov et al. [30], the capability of
random forest to generate solutions from the interactivi-
ties of multiple decision trees allows to discard irrelevant
genes from the classification process.

Neural Networks (NNET) are able to learn arbitrarily
complex nonlinear regressions [32]. In particular, mul-
tilayer perceptrons (MLPs) , are one the most popular
types of artificial neural networks that have been applied
to cDNA microarray classification problems [33], [34],
[35], [36].

Support vector machines (SVM) are a popular classifica-
tion algorithm because of their robustness and correct-
ness [37], [38]. Multicategory support vector machines
are one of the most effective classifiers in performing
accurate cancer diagnosis from gene expression data.
SVMs often outperform to a remarkable degree other
popular machine learning algorithms, such as KNN and
NNET [39], [24], [40].

Approaches that combine multiple classifiers (ensem-
ble) have also received much attention in the past decade,
and are now a standard approach to improve classifi-
cation performance in cDNA microarray classification
problems [41], [42], [43], [44], [45], [46], [47], [48].

One of the main drawbacks of the poposed methods
is the need of high dimensionality reduction to avoid
problems associated with high-dimensional sparse data-
sets as the one provided by microarray data. Some
researchers suggested that, in microarrays classification,
the choice of the dimensionality reduction method is
even more important than the classification method
itself [49]. Moreover, the proposed techniques are not
designed to detect out-of-class samples, thus limiting
their applicability in real clinical diagnostic applications.

The ability of detecting out-of-class samples, also re-
ferred to as novelty detection, outlier detection or one-
class classification, is an important aspect for a machine
learning system [50], [51]. Slight modifications in the
data distribution might indicate, for instance, a new class
or a profile modification in a class that has already been
modeled. The term one-class refers to the fact that the
training phase is performed on samples of a single class
that represents the normal profile.

One-class classification has been used in a number
of applications, especially signal processing and image
analysis. Of the various approaches described in litera-
ture [50], Parzen Window, KNN, K-Means and PCA have
been applied with some extent to cDNA microarray data
classification and gene expression analises [52], [53], [54],
[55]. However, combination of multiple classes into a
single one, high dimensionality feature spaces, noisy
features and quite often not enough samples make these
problems hard to solve, thus reducing the efficiency
of available solutions and increasing computatational
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costs. Mitigation techniques include dimensionality re-
duction together with combination of different one-class
classifiers as proposed in [52]. However new dedicated
solutions for the specific application domain still need
to be defined.

4 EXPERIMENTAL RESULTS
This section proposes an experimental validation of the
GEG-based classifier. The validation represents the last
step of the classifier definition process proposed in sec-
tion 2.

4.1 Experimental design
Our experimental design involves a number of classifica-
tion experiments on a large set of microarrays using both
the GEG-based classifier and a collection of state-of-the-
art classification methods. The GEG-based classifier has
been implemented in about 2,500 lines of ANSI C code.
Comparison with state-of-the-art classification methods
has been performed considering two distinct problems:

1) accuracy of classifiers when working with classifi-
able samples, and

2) ability of dealing with out-of-class samples.
Obtained results are compared to better highlight the
benefits provided by the proposed methodology.

A total of 15 pathologies is considered in this study.
Samples have been downloaded from the cDNA Stan-
ford Microarray database [56]. All genes without a valid
UnigeneID have been discarded. Moreover, since old
microarray technologies often used spots duplication,
during the GEG generation we considered as relevant
those genes relevant in at least one of their replica on
the microarray.

Six sets of samples have been downloaded form a
larger set of experiments aiming at performing Lym-
phoma Classification [57], [58], including:

• Diffuse Large B-Cell Lymphoma (DLBCL): a non-
hodgkin lymphoma disease,

• B-Cell Chronic Lymphocytic Leukemia Wait&Watch
(CLLww),

• B-Cell Chronic Lymphocytic Leukemia (CLL),
• Follicular Lymphoma (FL): independent lymphon-

ode samples on LymphoChip microarrays [59],
• Hematopoietic Lymphoma (HL), and
• Normal Lymphoid subset (NL): purified normal

lymphocyte subpopulations under a range of acti-
vation conditions, in normal human lymphonodes.

The remaining pathologies are:
• Acute Lymphoblastic Leukemia (ALL),
• Core Binding Factor Acute Myeloid Leukemia (CBF-

AML): subgroups characterized by shorter overall
survival [60],

• Breast Cancer (BC): samples of predominantly ad-
vanced primary breast tumor,

• Cutaneous B-Cell Lymphomas (CBCL): a phenotype
of B-cell lymphomas of the skin,

• Healthy Blood (HB): blood samples from apparently
healthy human donors . A common reference RNA
(Cy3-labeled) was mixed with the Cy5-labeled ex-
perimental sample before hybridization to provide a
common internal reference standard for comparison
of relative gene expression levels across arrays [61],

• Solid Ovarian tumor (SOT),
• Solid Brain Tumor (SBT),
• Solid Lung Tumor (SLT), and
• Acute Myeloid Leukemia dataset (AML):

peripheral-blood samples or bone marrow samples
of intermediate-risk AML with a normal karyotype.

11 out of 15 phenotypes are strictly related to blood dis-
eases. Samples will therefore include very similar sets of
genes and only a reduced subset of them will be able to
differentiate the phenotypes. Moreover, two phenotypes
(NL, and HB) are related to healthy specimens. These
peculiarities of the data-set increase the complexity of
the classification and therefore make it a very good
candidate to validate the classifier.

Table 1 shows the composition of the data-set. To
test the performance of our model with different cDNA
technologies we considered different types of microarray
chips: 9K (9,216 spots), 18K (18,432 spots), 24K (24,168
spots), 37K (37,632 spots), 45K (43,196 spots).

From the first 9 pathologies we extracted a training-set
of 213 samples and a test-set of 74 classifiable samples,
while the remaining 9 phenotypes have been used to
create a test-set of 59 out-of-class samples. It is worth
mentioning here that the considered training set does not
include any of the samples of the test-sets. According to
[62] this is a given requirement to avoid overoptimistic
results and therefore to honestly evaluate the classifica-
tion performances.

Table 1
Composition of the experimental data-set in terms of number of test

samples (#Test), number of training samples (#Training), type of
microarray (Chip)

Classifiable samples Out-of-class samples
Disease #Test #Train Chip Disease #Test Chip
DLBCL 10 51 9k HL 10 9k
CLLww 10 21 9k NL 9 18k
CLL 9 12 9k SOT 11 24k
ALL 8 19 24k BT 12 24k
CBF-AML 7 14 45k SLT 6 24k
BC 8 21 9k AML 11 45k
CBCL 6 10 45k
FL 6 18 37k
HB 10 47 37k
Total 74 213 59

4.2 Proximity score analysis

The first analysis we performed on the results of the clas-
sification experiments aims at understanding whether
the proximity score introduced in section 2.2 is actually
able to measure the affinity of a sample with his related
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DLBCLCLLww CLL ALL CBF-AML BC CBCL FL HB HL NL SOT BT SLT AML2
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(a) Average proximity score with ε=0 (1-folding)
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(a) Average proximity score with ε=1 (2-folding)

Ps ≥ 0.7 0.5 ≤Ps < 0.7 0.3 ≤Ps < 0.5 Ps < 0.3 

MXIMUM PROXIMITY AREA DECISION AREA OUT OF CLASS AREA

Figure 4. Average proximity score with different gene relevance thresholds for the considered data-set. Columns identify test samples grouped
by diseases, while rows identify the considered classes. Bullets in the intersections of the grid represent the average proximity score of test samples
of a given disease (column) for each of the available classes (rows).

class or not, and to highlight similarities among classes
(diseases).

Fig. 4 graphically shows the average proximity score
for the test samples of each of the 15 considered diseases
(columns) against the 9 considered classes (rows). The
two subfigures report results obtained by using two
thresholds for the identification of relevant genes (eq.
8): " = 0 (1-folding) for Fig. 4-a, and " = 1 (2-folding) for
Fig. 4-b. Mismatchings are included in the average cal-
culation. Different colors and shapes of bullets identify
different ranges of the proximity score strictly related to
the three decision areas used to predict the target class
(see section 2.2).

By first looking at Fig. 4-a, the high score of the
elements on the diagonal, together with the lowest scores
of the other elements on the related columns, perfectly
follow the expected outcome: each disease is correctly
identified with a high proximity score in correspondence
to its related class. In fact, in most of the cases, the
score falls in the maximum proximity area, thus allowing
to have a prediction with maximum confidence. In the
three cases where the maximum proximity rule cannot
be applied (ALL, BC, CBCL) all the other classes have
an average proximity score in the out-of-class area, thus
guaranteeing a difference higher than the chosen Ps

diff

threshold and therefore allowing to take a clear decision.
Table 2 is another view of the same data in which it can
be better appreciated the level of discrimination of the
presented approach and the overall low level of noise
among non-matching sets. The only noticeable noise that
appears is among NL and DLBCL, CLL and CLLww
(Ps ⇡ 0.23), although the result itself is too low and
does not have a sufficient discrimination w.r.t. the other
scores to move the sample in one of the classes. It is also
very interesting to note that the classifier is correctly able
to distinguish all out-of-class samples (HL, NL SOT, BT,
SLT, AML) that have been in general scored very low or
even with negative scores.

In addition to this result, Fig. 4-a also reveals how the

proximity score is able to highlight similarities among
classes. The CLLww and CLL columns show a small
cluster of elements with relatively high proximity scores.
This result can be reasonably interpreted as a sort of
similarity among the pathologies confirmed by the fact
that CLL, CLLww, and DLBCL are actually variations
of a disease of blood B-cells [63]. This information is
very interesting especially because it confirms how the
proximity score can be used as an indicator of biological
similarities of diseases. It also suggests that GEGs are
able, by construction, to give more weight to genes
and gene relationships that unequivocally identify a
particular pathology. Obviously this ability also depends
on the quality of the training set, but this is a common
problem to all supervised classification methods. Besides
this property the classifier is still able to correctly dis-
criminate among these similar classes (see section 4.3).

Looking at Fig. 4-b it is possible to evaluate the effect
of the threshold " used to identify relevant genes on
the overall behavior of the classifier. The figure shows
that the proximity score of the elements on the diagonal
increases, thus increasing the confidence the classifier
has in placing samples in the related classes. Moreover,
the similarity among blood B-Cells is emphasized. Nev-
ertheless, even if not producing classification errors, the
noise on the NL column increases. This suggests that
the used threshold was too high and probably some
genes that were relevant to distinguish between NL and
blood B-Cells diseases have been lost. This does not
represent a major problem. In fact, the first threshold
(" = 0), corresponding to a situation in which genes are
considered not-relevant if they have exactly the same ex-
pression in both the healthy and diseased tissue, already
produced 100% of correct classifications. The threshold
should be therefore considered simply as a fine tuning
of the proposed model.



10

Table 2
Average proximity score computed with " = 0. Columns identify test samples grouped by diseases, while rows identify the considered classes.

DLBCL CLLww CLL ALL CBF-AML BC CBCL FL HB HL NL SOT BT SLT AML

DLBCL 0.776 0.279 0.459 -0.005 0.011 0.003 0.042 0.009 0.036 0.041 0.266 0.001 0.002 0.001 -0.001
CLLww 0.145 0.76 0.447 0.003 0.018 0.001 0.038 0.014 0.05 -0.006 0.159 0.001 0.003 0.001 -0.001

CLL 0.243 0.483 0.771 0.001 0.018 0.001 0.037 0.016 0.051 -0.001 0.262 0.001 0.003 0.001 -0.001
ALL -0.001 0 0 0.656 0.14 -0.004 0.041 0.011 0.039 0.001 0 0.007 0.015 0.027 0.008

CBF-AML 0 0.001 0.001 0.078 0.901 -0.001 0.042 0.08 0.109 -0.001 0 0.012 0.025 0.021 -0.039
BC 0 0.002 0 -0.026 -0.019 0.53 0.046 -0.009 0.004 0.001 0 0.003 -0.005 -0.001 -0.002

CBCL 0.001 0.003 0.002 0.02 0.053 0.002 0.679 0 0.035 0 0.001 0.005 0.007 0.005 -0.003
FL 0.001 -0 0 0.003 0.09 -0.001 -0.008 0.701 0.068 0 0 0.021 0.052 0.031 -0.085
HB 0.004 0.006 0.006 0.057 0.226 0 0.091 0.179 0.842 -0.001 0.003 0.009 0.017 0.011 -0.014

4.3 GEG vs State-of-the-art Classifiers
This section compares the performance of the GEG-
based classifier with a set of state-of-the-art classifica-
tion algorithms and one-class classifiers. In order to
compare classification results all experiments have been
performed using log-ratios (see section 2.1) rather than
raw gene expression measures.

The analysis shows that our model has all the charac-
teristics not only to be considered a new valid microarray
classification tool, but also a very useful support for
medical diagnostics.

4.3.1 Accuracy on classifiable samples

According to section 3, the accuracy of the GEG-based
classifier when dealing with classifiable samples has
been compared with the following state-of-the-art classi-
fication algorithms applied in several papers to the clas-
sification of cDNA microarray information: k–Nearest
Neighbors (KNN), Neural Networks (NNET), Linear
Discriminant Analysis (LDA), Partial Least Square (PLS),
Support Vector Machines (SVM), Random Forests (RF)
and a set of ensemble techniques built using combina-
tions of these approaches. Since we are dealing with
classifiable samples, the keep-the-max rule has been
considered for all classifiers, including the GEG-based
one.

According to the literature proposed in section 3,
ensamble classifiers have been constructed on top of
KNN, NNET and RF (EKNN, ENNET, ERF). For each
type of classifier we constructed as many models as
the number of samples of the training set (213 in our
case) using a leave-one-out (LOO) approach. The result
of the ensemble classification has been then computed
considering two different voting rules: majority voting
(MV) and max average accuracy voting (MAAV). We fi-
nally considered a last ensemble composed of a balanced
combination (ERC) of the three considered classifiers .

All algorithms have been implemented using the Clas-
sification And REgression Training (CARET) package
of R, a free and multiplatform programming language
and software environment widely used for statistical
software development and data analysis [64][65].

The performance of the prediction model of each
classifier has been tuned and optimized by perform-
ing leave-group-out-cross-validation (LGOCV). For each

classifier, 30 folds of the training set have been generated
with 98% of samples used to train the model while the
remaining ones used as test-set. The size of the grid used
to search the tuning parameters space for each classefier
(e.g., k for KNN) has been set to 5. This represents a
good compromise in terms of computational time of the
training phase and optimization results.

Table 3 summarizes the average accuracy estimated
from the cross-validation experiments for each consid-
ered classifier, together with the specific parameters
applied to reach this results. For each estimated accuracy
the corresponding confidence interval (CI) computed
with 95% level of confidence (LOC) is also provided.

The accuracy obtained on the considered test-set is
reported in Table 4 for all considered classifiers. Ac-
cording to Fig. 5, that shows in a single diagram both
the estimated accuracy with related CI and the test-set
results, the GEG-based classifier performs as the best
state-of-the-art algorithms.

Table 4
Classification results for classifiable samples using the keep-the-max

rule for all classifiers.

Classifier Matches Mismatches

GEG 73/74 (98.65%) 1/74 (1.35%)
RF 73/74 (98.65%) 1/74 (1.35%)

KNN 69/74 (93.24%) 5/74 (6.76%)
NNET 70/74 (94.59%) 4/74 (5.41%)
LDA 73/74 (98.65%) 1/74 (1.35%)
PLS 42/74 (56.76%) 32/74 (43.24%)
SVM 73/74 (98.65%) 1/74 (1.35%)

ERF (MV) 73/74 (98.65%) 1/74 (1.35%)
EKNN (MV) 68/74 (91.89%) 6/74 (8.11%)
ENNET (MV) 73/74 (98.65%) 1/74 (1.35%)

ERC (MV) 73/74 (98.65%) 1/74 (1.35%)
ERF (MAAV) 71/74 (95.95%) 3/74 (4.05%)

EKNN (MAAV) 64/74 (86.49%) 10/74 (13.51%)
ENNET (MAAV) 46/74 (62.16%) 28/74 (37.84%)

ERC (MAAV) 53/74 (71.62%) 21/74 (28.38%)

4.3.2 Ability of identifying out of class samples

When considering both classifiable and out-class-
samples, the GEG-based classifer outperforms state-of-
the-art methods for out-of-class samples detection. In
this case the GEG-based classifier applies the decision
rule presented in Fig. 3.
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Table 3
Accuracy estimation of considered classifiers, with related confidence interval (CI) for 95% Level of Confidence (LOC), and specific parameters

applied to obtain this result.

Avg. Acc. CI Specific parameters
GEG 0.964 [ 0.940 , 0.989 ] ✏ = 0
RF 0.966 [ 0.940 , 0.992 ] mtry=20 (Number of variables randomly sampled as candidates at each split)
KNN 0.926 [ 0.896 , 0.956 ] k = 5 (Number of nearest neighbors)
NNET 0.956 [ 0.903 , 1 ] size=7 (Number of units in the hidden layer), decay=0.1 (Parameter for weight decay)
LDA 0.963 [ 0.934 , 0.992 ] no pars
PLS 0.578 [ 0.472 , 0.685 ] ncomp = 5 (Number of components one wishes to fit)
SVM 0.986 [ 0.923 , 1 ] Radial Kernel, C=10 (cost of constraints violation) sigma=0.0214 (Inverse kernel width)
ERF (MV) 0.961 [ 0.938 , 0.984 ] Ensemble of 213 RF classifiers with majority voting decision rule (MV)
EKNN (MV) 0.892 [ 0.861 , 0.923 ] Ensemble of 213 KNN classifiers with majority voting decision rule (MV)
ENNET (MV) 0.964 [ 0.933 , 0.995 ] Ensemble of 213 NNET classifiers with majority voting decision rule (MV)
ERC (MV) 0.946 [ 0.901 , 0.991 ] Ensemble of 213 classifiers: 71 RF, 71 KNN, 71NNET with majority voting decision rule (MV)
ERF (MAAV) 0.949 [ 0.928 , 0.970 ] Ensemble of 213 RF classifiers with Max Average Accuracy Voting (MAAV)
EKNN (MAAV) 0.842 [ 0.808 , 0.876 ] Ensemble of 213 KNN classifiers with Max Average Accuracy Voting (MAAV)
ENNET (MAAV) 0.598 [ 0.547 , 0.649 ] Ensemble of 213 NNET classifiers with Max Average Accuracy Voting (MAAV)
ERC (MAAV) 0.698 [ 0.657 , 0.739 ] Ensemble of 213 classifiers: 71 RF, 71 KNN, 71NNET with Max Average Accuracy Voting (MAAV)

X	
�    accuracy	
�    on	
�    the	
�    test-set

accuracy’s	
�    CI	
�    from	
�    cross-

validation	
�    (95%LOC)

Figure 5. Comparison of accuracy and confidence intervals
(LOC=95%) for the considered classifiers

Results are provided in terms of true positives (TP),
true negatives (TN), false positives (FP), false nega-
tives (FN), sensitivity, specificity, and f-score. Sensitivity,
specificity, and f-score are statistical measures of the
performance of a binary classification test. The sensitivity
measures true positives, i.e., the proportion of classifiable
samples that are correctly identified as such (e.g., the
percentage of sick people who are identified as having a
disease), the specificity measures true negatives, i.e., the
proportion of correctly identified out-of-class samples
(e.g., the percentage of healthy people who are identified
as not having any disease), and the f-score is a measure of
the test’s accuracy that considers both precision (number
of correct results divided by the number of returned
results) and recall (number of correct results divided by
the number of results that should have been returned).

Table 5 proposes a confusion matrix that summarizes

the performance of the GEG-based classifier when deal-
ing with both classifiable and out-of-class samples of
the considered test-set. The most positive result is that
100% of out-of-class samples (TN column) are correctly
identified. This aspect is a critical issue in biological
classification and, in particular, in clinical diagnostics.
U indicates that 5 out of 59 samples have been placed in
this category but the decision rule produced an uncertain
result to warn the user that the confidence in these
predictions is not maximum. The cost of the application
of the decision rule is a very reduced amount of FN. 4
out of 74 samples have been errouneously classified as
out-of-class (with one of these classified as uncertain).
This of course derives from the impossibility of perfectly
separating the different decision areas with the consid-
ered thresholds. Neverthless, results are quite promising,
with the sensitivity equal to 0.95, specificity equal to 1,
and f-score equal to 0.96.

Table 5
Confusion matrix for the GEG-based classifier with the considered

test-set (Ps

ooc

= 0.3, Ps

max

= 0.7, Ps

diff

= 0.15

Classifiable Out-of-class
Classifiable 70/74 with 1M (94.59% TP) 0/59 (0% FP)
Out-of-class 4/74 with 1U (5.41% FN) 59/59 with 5 U (100% TN)

The prediction model of the GEG-based classifier
when working with out-of-class samples has been cross-
validated by performing the same set of experiments
proposed in section 2.2.1 to identify the decision rule
thresholds. Table 6 shows the average sensitivity and
specificity togheter with the related confidence intervals
with LOC=95%. The first row reports the results of
the complete cross-validation experiments. These results
show a good estimate of the sensitivity that confirms
the experimental results on the test-set, while they sig-
nificantly downestimate the sensitivity. The reason of
this bias is in the type of performed cross-validation
experiments. The considered training-set (Table 1) con-
tains two classes corresponding to two variants of the
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same desease (CLL and CLLww). Whenever during the
cross-validation one of these two classes is removed from
the library, detecting its samples as out-of-class becomes
a very hard problem for the classifier, increasing the
number of FP. This is confirmed by the second row of
Table 6. In this case the sensitivity and specificity are
estimated without considering CLL and CLLww as out-
of-class samples. This downestimation of the specificity
of the classifier when performing corss-validation may
also bias the selection of the thresholds proposed in
section 2.2.1. Different cross-validation approaches are
under-investigation to overcome these problems.

Table 6
Estimation of sensitivity and specificity of the GEG-based classifier by

performing cross-validation experiments. Confidence intervals are
provided with LOC=95%

Cross. Val. Sens. Sens. CI Spec. Spec. CI
Complete 0.945 [ 0.931 , 0.960 ] 0.718 [ 0.547 , 0.867 ]

No Cll, Cllww 0.947 [ 0.932 , 0.961 ] 0.906 [ 0.824 , 0.989 ]

The performance of the GEG-based classifier in detect-
ing out-of-class samples has been compared with a set
of four state-of-the-art one-class classification methods,
namely, Parzen, KNN, KMeans, and PCA (see section
3), all implemented using Matlab’s DD_tools [66]. The
target class has been constructed using the 9 classes of
classifiable samples with 5% rejection rate. According
to [52] we also considered two ensembles of one-class
classifiers: the first one E1 composed of Parzen, KNN,
and KMeans, while the second E2 composed of KNN,
KMeans and PCA. Two different voitng rules have been
applied for the ensembles: majority voting (MV), and
max score voting (MSV). Table 7 proposes the result of
the same type of cross-validation experiments applied
to the GEG-based classifier (No Cll, Cllw), while Table
8 summarizes the obtained classification results on the
test-set for all classifiers including the GEG-based one.

Table 7
Estimation of sensitivity and specificity of one-class classifiers by
performing cross-validation experiments. Confidence intervals are

provided with LOC=95%

Cross. Val. Sens. Sens. CI Spec. Spec. CI
Parzen* 0.254 [ 0.230 , 0.280 ] 0.744 [ 0.640, 0.848 ]

KNN 0.938 [ 0.920 , 0.956 ] 0.03 [ 0 , 0.066 ]
KMeans 0.829 [ 0.80 , 0.86 ] 0.155 [ 0.084 , 0.227 ]

PCA 0.254 [ 0.23 , 0.28 ] 0.744 [ 0.638 , 0.850 ]
E1 (MV) 0.826 [ 0.796 , 0.856 ] 0.159 [ 0.087 , 0.231 ]
E2 (MV) 0.826 [ 0.796 , 0.856 ] 0.159 [ 0.087 , 0.231 ]

E1 (MSV) 0.254 [ 0.227 , 0.281 ] 0.744 [ 0.638 , 0.850 ]
E2 (MSV) 0.306 [ 0.28 , 0.34 ] 0.0692 [ 0 , 0.180 ]

Fig. 6 graphically compares in a set of Receiver Operat-
ing Characteristic (ROC) curves the results for all consid-
ered classifiers. The ROC curve for the GEG-based clas-
sifier has been computed by varing the three tresholds
applied in the proposed decision rules, while the one for
the one-class classifier is computed by changing the con-

Table 8
One-class classification results

Classifier TP TN FN FP Sens Spec F-score

GEG 70 59 4 0 0.95 1 0.96
Parzen 44 39 30 20 0.59 0.66 0.64
KNN 74 0 0 59 1 0 0.71

KMeans 72 0 2 59 0.97 0 0.70
PCA 44 30 30 29 0.59 0.51 0.60

E1 (MV) 72 0 2 59 0.97 0 0.70
E2 (MV) 72 0 2 59 0.97 0 0.70

E1 (MSV) 44 39 30 20 0.59 0.66 0.64
E2 (MSV) 57 7 17 52 0.77 0.11 0.62

sidered rejection boundary. The black dots represent the
performance of the classifier in terms of true positive rate
(i.e., sensitivity) and false positive rate (i.e., 1-specificity)
on the considered test-set, while the squares represent
the confidence intervals of the true/false positive rates
obtained from the cross-validation.

It is evident how the proposed approach is the one
that better allows to drastically reduce the number of FP
and FN conditions that would make a diagnostic tool
unusable in real medical setups. Moreover it provides
results on the test-set that are more coherent with the one
obtained by cross-validating the model. This is an impor-
tant characteristic to early estimate the performance of a
given classifier based on the available training data.

Among the different one-class classifiers, Parzen
seems to provide the best compromise in terms of sen-
sitivity, specificity, f-score, and computational complex-
ity. Therefore, to deal with both classifiable and out-
of-class samples, we combined this one-class classifier
with the state-of-the-art multi-class classification meth-
ods proposed in Table 4. The one-class classifier is used
to filter out-of-class samples, while classifiable samples
are then submitted to the considered classifiers. Table 9
reports how the number (and percentage) of mismatches
changes when samples are first filtered by the one-class
classifier. The reduction of the number of mismatches
should not be considered here as an improvement of the
classifiers’ accuracy. In fact, it is correlated to the fact that
the one-class classifier erroneously rejectes some of those
classifiable sample that would generate mismatchings.

4.3.3 Computational Time

One important aspect to take into account when compar-
ing the performance of different classifiers is the overall
computation time. Several steps are required to complete
the classification of a test-set: data pre-processing (e.g.,
Near ZeroVariance (NZV) used to identify and eliminate
near zero-variance genes in the data-set and PCA used
for dimensionality reduction), training, and classifica-
tion. Table 10 summarizes the execution time required
by each step for the GEG-based classifier, and for the
combination of state-of-the-art classifiers with the Parzen
one-class classifier.

Table 10 illustrates the only real criticality of the
proposed approach. In fact, while the training phase for
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Figure 6. GEG-based classifier vs one-class classifier. Black dots represent performances on the considered test-set.

Table 9
Classification results after filtering out-of-class samples with the Parzen one-class classifier

RF KNN NNET LDA PLS SVM E_KNN E_NNET E_RF E_KNN E_NNET E_RF E_RC E_RC
MV MV MV MAAV MAAV MAAV MV MAAV

Mismatches 1 5 2 1 19 1 5 1 1 8 21 3 1 15
2.27% 11.36% 4.55% 2.27% 43.18% 2.27% 11.36% 2.27% 2.27% 18.18% 47.73% 6.82% 2.27% 34.09%

the GEG-based classifier is negligeble, thus allowing an
easy update of the classification model, the classification
time is an order of magnitude higher than the one of the
other classifiers. Two are the main motivations for this
difference. First, the GEG-based classifier works without
performing any dimensionality reduction (see section
4.3.4); while this has positive effects on the classification
performances, it strongly increases the computational
costs. Second, the available implementation is a pre-
liminary prototype and several optimizations can be
introduced in the code to reduce the computation time
and increase its efficiency.

Table 10
Comparison of execution time for the different classifiers

GEG PLS + Others + Ensemble +
One-Class One-Class One-Class

pre-processing - 36’19” ~38’09” 38’09”
Training 00’04” 05’33” ~03’04” 312’40”
Classification 103’00” 05’19” ~02’28” 5’36
TOTAL 103’04” 48’11” 43’41” 356’25’

4.3.4 Data Reduction

In microarray analysis, genes are the information. Di-
mensionality reduction is usually applied for making the
problem treatable by the available computational setup,
but there is no guarantee that the discarded data may
not become useful or interesting. The GEG approach
does not need heavy dimensionality reduction. This

allows to keep most of the information in the GEGs,
making it easier to reuse the same data model for further
analysis of the gene expression data. An example of
this is the development of clustering and feature extrac-
tion algorithms, able to extract from the GEG structure
the pathological genetic markers, again by analyzing
the topological structure and the weights of the GEGs.
Clearly, limiting the dimensionality reduction impacts on
the execution time, but never to a point to make the
algorithm unusable (even without any dimensionality
reduction as can be seen in section 4.3.3).

The number of variables, either log-ratios of gene ex-
pression levels or principal components (PC), considered
by each tested classifier are summarized in Table 11. It
clearly appears how the number of variables mantained
in the GEG after the training is far higher than in all
other methods.

Table 11
Comparison of data dimensionality reduction between the GEG-based

and the state-of-the-art classifiers

GEG PLS Others One-Class
Start Genes 62,300* 62,300* 62,300* 62,300*
After reduction 59,878 genes 5PC 77 PC 232 PC

* Because of the gene overlapping among microchips

5 CONCLUSIONS & FUTURE WORKS
In this paper we have presented a new classification
algorithm designed to be used in real clinical diagnostic
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applications. The classifier is based on a new graph-
based data model used to organize large amounts of
gene expression data coming from microarray experi-
ments. This new data model is very flexible and it makes
the implementation of classification, clustering, and fea-
ture extraction algorithms easier and less “abstracted”
from the biological problem. The classifier is not only
able to correctly classify samples in the corresponding
classes, but it is also able to correctly detect out-of-class
samples, thus drastically reducing the false positive rate.
Experiments on a set of cDNA microarrays provided
very good results. In order to reduce the computational
time, one of the main limitations of the proposed tool,
and to make it freely available to other researchers
for additional testing and valdiation, we are currently
working on implementing the proposed classification
into the CARET package of R .
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