
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing / DI CARLO, Stefano; Falasconi, M.;
SANCHEZ SANCHEZ, EDGAR ERNESTO; Scionti, A.; Squillero, Giovanni; Tonda, A.. - STAMPA. - 6024/2010:(2010),
pp. 412-421. (Intervento presentato al  convegno EvoApplicatons 2010: EvoCOMPLEX, EvoGAMES, EvoIASP,
EvoINTELLIGENCE, EvoNUM, and EvoSTOC tenutosi a Istanbul, Turkey, nel April 7-9, 2010) [10.1007/978-3-642-
12239-2_43].

Original

Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing

Publisher:

Published
DOI:10.1007/978-3-642-12239-2_43

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2363833 since: 2016-09-16T18:16:20Z

Springer



Exploit ing Evolution for an Adap-
tive Drift-Robust Classif ier in 
Chemical Sensing

Authors: S. Di Carlo, M. Falasconi, E. Sánchez, A. Scionti, G. Squillero, A. Tonda

Author’s version of the manuscript published in the LECTURE NOTES IN COMPUTER SCIENCE, Vol. 
6024/2010 pp. 412-421.

The final publication is available at www.springerlink.com:

URL: http://www.springerlink.com/content/6w13542n12207575/fulltext.pdf

DOI: 10.1007/978-3-642-12239-2_43

!Politecnico di Torino

http://www.springerlink.com/content/6w13542n12207575/fulltext.pdf
http://www.springerlink.com/content/6w13542n12207575/fulltext.pdf
http://dx.doi.org/10.1007/978-3-642-12239-2_43
http://dx.doi.org/10.1007/978-3-642-12239-2_43


 

Exploiting Evolution for an Adaptive Drift-Robust 

Classifier in Chemical Sensing 

S. Di Carlo
*
, M. Falasconi§, E. Sánchez

*
, A. Scionti

*
, G. Squillero

*
, A. Tonda

*
 

 

*
Politecnico di Torino – Torino, Italy 

§ 
Università di Brescia & SENSOR CNR-INFM– Brescia, Italy 

Abstract. Gas chemical sensors are strongly affected by drift, i.e., 

changes in sensors’ response with time, that may turn statistical models 

commonly used for classification completely useless after a period of 

time. This paper presents a new classifier that embeds an adaptive 

stage able to reduce drift effects. The proposed system exploits a state-

of-the-art evolutionary strategy to iteratively tweak the coefficients of a 

linear transformation able to transparently transform raw measures in 

order to mitigate the negative effects of the drift. The system operates 

continuously. The optimal correction strategy is learnt without a-priori 

models or other hypothesis on the behavior of physical-chemical 

sensors. Experimental results demonstrate the efficacy of the approach 

on a real problem. 

Keywords: real-valued function optimization, parameter optimization, 

real-world application, chemical sensors, and artificial olfaction 

1. Introduction 

Chemical sensing is an intrinsically challenging task. Artificial olfaction [1], also 

known as electronic nose, tries to mimic human olfaction by using arrays of gas 

chemical sensors together with pattern recognition (PARC) techniques. The most 

common class of sensors used for chemical sensing is metal oxide semiconductors 

(MOX) [2]. When sensors come in contact with volatile compounds, the adsorption of 

these elements on the sensor’s surface causes a physical change of the sensor itself, 

and hence, a change of its electrical properties. Each sensor is potentially sensitive to 

all volatile molecules in a specific way. The response of the sensor is recorded by its 

electronic interface, and the corresponding electrical signal is then converted into a 

digital value. Recorded data are finally elaborated and classified by PARC algorithms 

(a brief overview of which is presented in Section 2.1) often based on statistical 

models [3]. The power and appropriateness to data of the PARC strategy determine 

the final performance of the electronic nose. Yet, independently on that, chemical 

sensors drift can ultimately invalidate some of the classification models.  

Sensor drift is defined as the temporal shift of sensors’ response under constant 

environmental (physical and chemical) conditions. Sensor drift is one of the most 

serious impairments afflicting all kinds of sensors such as for instance pressure 



 

sensors [4], pH sensors [5], conductivity sensors [6], as well as chemical sensors [7]. 

Sensor drift originates from unknown dynamic processes in the sensor device 

typically related to sensing material modifications. These modifications are usually 

caused by irreversible phenomena such as poisoning or aging. Nowadays, the only 

effective counteraction to prevent negative effects of drift is frequent sensor 

calibration. However, while this approach is rather simple to implement for physical 

sensors where the quantity to be measured is exactly known, chemical sensors pose a 

series of challenging problems. Indeed, in chemical sensing, the choice of the 

calibrant strongly depends on the specific application and, when the sensing device is 

composed of a number of cross-correlated sensors, a univariate signal correction is 

not feasible.  

Long-term drift produces dispersion in the patterns that may change the clusters 

distribution in the data space. As a consequence, learnt classification boundaries may 

turn completely useless after a given period of time. Methods for algorithmically 

correcting, retraining or physically minimizing sensor drift are therefore highly 

requested by any robust chemical sensing system. 

Drift correction algorithms are not new in the field [1] (chapter 13). Notwithstanding 

the first attempts to tackle this problem date back to early 90s, the study of drift is still 

a challenging task for the chemical sensor community (see Section 2.2).  

In this paper we propose a novel architecture for an evolutionary adaptive drift-robust 

classifier (Section 3). A linear transformation is applied to the raw measures read by 

the electronic nose. Such linear transformation is initially described by the identity 

matrix, and slowly evolved to compensate drift effects in the classification process. 

The evolutionary core is continuously active, monitoring the performance of the 

classification and adjusting the matrix coefficients on each new measure. It makes use 

of a covariance matrix adaptation evolution strategy (CMA-ES), perfectly suited for 

solving difficult optimization problems in continuous domain. The output of the 

classifier is used to calculate the fitness function. Compared to existing adaptive 

solutions, the proposed approach is able to transparently adapt to changes in the 

sensors’ responses even when the number of available samples is not high and new 

classes of elements are introduced in the classification process at different time 

frames. To prove this we tested our approach on an experimental data set for 

detection and classification of chemical compounds by a gas sensor array (Section 4). 

2. Background 

2.1         Pattern Classification 

Pattern recognition is a widely addressed topic in the literature [8]. Automatic 

recognition, description, classification, and grouping of patterns are important 

problems in a variety of engineering and scientific disciplines such as biology, 

psychology, medicine, marketing, computer vision, artificial intelligence, remote 

sensing, and artificial olfaction as well [3]. 

The primary goal of pattern recognition is supervised or unsupervised classification. 

In supervised classification the dataset is normally composed of two sub-sets of 



 

 

samples: an initial set called training set made of known samples used to train the 

classifier, and a second group called test set composed of unknown samples to 

classify. 

After the signal pre-processing stage, the first critical step in the classification process 

is feature extraction and/or selection. This phase involves several steps designed to 

organize and reduce the data space dimensionality, and to avoid problems associated 

with high-dimensional sparse datasets (course of dimensionality). During the training 

phase, feature extraction/selection algorithms find the appropriate features to 

represent the input patterns, and the classifier is trained to partition this resulting 

feature space.  

Dimensionality reduction techniques are also employed for data visualization in order 

to have a preliminary insight of the multidimensional pattern distribution. Techniques 

for visualizing and projecting multidimensional data, along with cluster analysis 

methods, are also referred to as exploratory data analysis. The most used exploratory 

analysis method is principal component analysis (PCA). PCA takes linear 

combinations of initial variables to identify the directions of maximum variance of the 

data (called principal components). Typically, only the first two or three components - 

exploring the highest variance - are retained for visualization purposes, but this is 

generally enough to understand how data are clustered, i.e., the position and shape of 

clusters. 

Among the various frameworks in which pattern recognition has been traditionally 

formulated, the statistical approach has been most intensively studied and used in 

practice [9]. Under this framework several classification algorithms have been 

proposed and extensively used for chemical sensing, such as: linear discriminant 

analysis (LDA), k–nearest neighbors (KNN) [10], and more recently support vector 

machines (SVM) [11] and random forests [12]. Neural networks (NNET) [13] and 

methods imported from statistical learning theory also received special attention in 

the field of artificial olfaction [1] (chapter 6). 

2.2 Drift compensation approaches for chemical sensing 

Several methods have been proposed to tackle the problem of drift compensation for 

chemical sensing [1] (chapter 13). Current solutions fall into three categories: (a) use 

of calibrants to return the classifier to its original state; (b) attune the classifier with 

proper feature selection/extraction to reduce drift effects; (c) use of “adaptive” models 

to real-time update the classifier. 

Use of a single calibrant or a set of calibrants to retrain a classifier is perhaps the only 

robust method for determining precise information regarding the degradation of the 

classification model regardless of the degree of sensor drift [14]. It is also the only 

method able to sustain a high degree of classification performance even in presence of 

inconsistent sensor drift over an extremely long period of time. Nevertheless, 

calibration is the most time-intensive method for drift correction since it requires 

system retraining. Hence, it should be used sparingly. Moreover, the calibrant 

selection must be accurately chosen depending on the application. This leads to loss 

of generalization and lack of standardization, which would be highly required by 

industrial systems. 



 

Attempts to attune the classifier to specific features of interest have been used in 

conjunction with both PCA [15] and independent components analysis (ICA) [16] to 

determine which dimensions of the analyte space most highly correlate with the 

differences between the analytes in the set. These presumably represent the 

dimensions that are least noisy and/or are least affected by drift and therefore are the 

only ones retained in constructing the classification model. Attuning methods can 

provide significant improvements in classification over a fixed time period. However, 

adding new analytes to the recognition library represents a major problem since the 

previously rejected dimensions might be necessary to robustly identify these new 

classes. Additionally, these methods contain no provisions for updating the model, 

and thus may ultimately be invalidated by time evolving drift effects. 

Adaptive models try to on-line adjust the classifier by taking into account pattern 

changes due to drift effects. Neural networks, such as self-organizing maps (SOMs) 

[17] or adaptive resonance theory (ART) networks [18], have been frequently used in 

the past. Under such schemes, newly recognized data that match the stored analyte 

fingerprints, i.e., processed measures used as input for the classifier, can be 

continuously used to retrain the classifier. This technique has the advantage of 

simplicity because no recalibration is required. Yet, two main weaknesses can be 

identified. First, a discontinuity in response between two consecutive exposures 

(regardless of the time interval between the exposures) would immediately invalidate 

the classification model and would prevent adaptation. Second, a key to obtain 

reliable results is to set appropriate thresholds for choosing the winning neuron, and 

this typically requires a high number of training samples owing to the complexity of 

the network topology. 

3. Proposed Architecture 

Figure 1 graphically represents the architecture exploited in this paper to implement a 

drift-robust classification system for chemical sensing. The proposed approach 

couples a standard classifier with an adaptive mechanism able to compensate drift 

effects. It is important to highlight that the classifier itself is not modified, and no 

additional training is required.  

The basic idea is to map the vector of raw measures associated to each sample 

analyzed by the electronic nose (Rm) with a new fingerprint used as input for the 

classifier (Fp). Fp is obtained by applying a linear transformation represented by a 

square matrix C to Rm (Fp = C  Rm).  

The classifier receives the produced fingerprints and provides as output a partition of 

the test set in a given number of classes. The performance of the full classification 

system can be measured in terms of the percentage of fingerprints correctly classified.  

The matrix C evolves while the system is operating with the goal of supporting the 

classifier in compensating the drift effects. At the beginning C is initialized to the 

identity matrix, hence, no modification is performed. Whenever a new sample is 

collected and classified, an evolutionary optimizer slightly tweaks the matrix 

coefficients in order to increase the robustness of the classification.  



 

 

The evolutionary scheme is backed up by an adaptation manager in charge of 

deciding whether to activate the evolutionary core that updates the matrix C 

depending on the classification confidence delivered by the classifier for every 

fingerprint. 

The resulting system is potentially able to compensate any possible drift with the 

reasonable assumption that the drift should be a relatively slow phenomenon 

compared to the sampling rate. This allows describing the disturbance as a continuous 

function over a limited number of consecutive measures. Since parameters are 

adapted seamlessly, the system is able to compensate disturbance up to quite relevant 

magnitudes. Considering the drift as a slow phenomenon implies that the initial 

training data can be considered not affected by it. 

 

 
 

Fig.1 - Main architecture of the adaptive drift-resistant classifier 

As evolutionary optimizer we exploit a covariance matrix adaptation evolution 

strategy. Briefly speaking, an evolution strategy (ES) is a stochastic, population-

based, iterative optimization method belonging to the class of evolutionary 

algorithms, devised in the early 60s by Ingo Rechenberg and Hans-Paul Schwefel. An 

ES represents an individual as a vector of real-valued numbers. Mutation is performed 

by adding a normally distributed random value to each vector component. Generating 

the offspring through mutation corresponds to a sampling in the solution space. The 

ES is able to determine the optimal value of some of its parameters. Remarkably, the 

step size, i.e., the standard deviation of the normal distribution used for sampling the 

mutation, is usually self-adapted. The covariance matrix adaptation (CMA) is a 

method to update the covariance matrix of the multivariate normal mutation 

distribution in the ES. New candidate solutions are generated according to the 

mutation distribution. Original ES implementations simulate the evolution at the level 

of species and do not include any recombination operators, although later 

implementations often do.  



 

The covariance matrix describes the pair-wise relationships between the variables in 

the distribution. CMA-ES represents the latest breakthrough in the ES field [19]. 

Results reported in the literature demonstrate that it can easily tackle problems where 

the fitness landscape presents discontinuities, sharp bends or ridges, noise, and local 

optima. 

In the presented approach, each time a fingerprint is classified with a confidence in a 

range delimited by an upper-bound and a lower-bound threshold, the adaptation 

manager enables the CMA-ES. The probability estimates produced by the classifier 

for the predicted class can be exploited as a measure of the confidence of the 

classifier in its prediction. This confidence is the fitness value of an individual for the 

CMA-ES. The two thresholds allow identifying which fingerprints to use to evolve 

the system, i.e., update the linear transformation C, in order to adapt to the drift 

modifications. The lower threshold aims at discarding spurious fingerprints, i.e., 

fingerprints whose classification confidence is too low and therefore do not provide 

reliable information for the given class, making the proposed framework resistant to 

spikes. The upper threshold identifies fingerprints that are already corrected in a 

satisfactory way by the current linear transformation and could not be further 

enhanced in a sensible way. Skipping these samples allows to reduce the computation 

effort by activating the evolution only for samples where the effect of the drift 

becomes more visible. 

In order to maximize the correction ability of the proposed architecture, the linear 

transformation is computed considering the selected fingerprint and a group of K 

previous fingerprints. The current matrix C is applied to the current measure and to 

the K previous raw samples. Thus, the evolution continues until the classification 

confidence for the current fingerprint reaches the upper threshold, and the 

classification confidence of the K previous ones is not decreased more than  percent 

when using the current matrix C. 

The final linear transformation matrix is obtained as a linear combination between the 

current linear transformation matrix and the new one obtained by the application of 

the CMA-ES, as follows:
 

€ 

C
n

= C
n
⋅α +C

n−1 ⋅ (1−α) , where Cn and Cn-1 are 

respectively the new and the current linear transformation matrices, and  is a 

parameter modeling the inertia of the system when moving from the old to the new 

transformation. This limits the possibility of generating linear transformation matrices 

unable to improve the classification process. Both  and   are input parameters of 

the proposed system with values ranging in the interval . 

4. Experimental results and discussion 

The proposed approach has been validated on a real data set collected at SENSOR 

Lab, an Italian research laboratory specialized in the development of chemical sensor 

arrays (more information is available at http://sensor.ing.unibs.it/).  

The data under consideration have been obtained using the EOS835 electronic nose 

composed of 6 chemical MOX sensors (further information on sensors and equipment 

can be found in the review paper [2] and its references). The main goal of the 

performed experiments is to determine the capability of the EOS835 to identify five 



 

 

pure organic vapors, namely: ethanol (1), water (2), acetaldehyde (3), acetone (4), 

ethyl acetate (5). These are common chemical compounds to be detected in real-world 

applicative scenarios such as food industry, industrial processes, and biomedical field. 

Five different measurement sessions were performed during a period of time of about 

one month. The elapsed time, though not very long, is enough to obtain data affected 

by a certain amount of drift. 

Different classes have been introduced during the different measurement sessions, a 

common practice in real world experiments: classes 1 and 2 are measured since the 

beginning, class 3 is first introduced during the second session (one week later), while 

classes 4 and 5 appear only during the third session (ten days after the beginning of 

the experiment). 

The number of samples contained in the data set is high (545 measurements) if 

compared to datasets reported in the literature. It must be noticed that performing 

measurements with arrays of chemical sensors is a time consuming task that limits the 

amount of samples that can be produced. 

There is not a perfect balance among the number of measurements belonging to every 

class, with a clear predominance of classes 1, 2 and 3 over classes 4 and 5. This 

perfectly respects real situations, and additionally increases the difficulty of properly 

compensating the sensor drift. 

PCA plot in figure 2 clearly shows the presence of sensor drift in the considered data 

set, i.e. shift of samples in a direction over the time. Measures of the test set tend to 

drift toward a direction that is perfectly visible on the first two principal components. 

This phenomenon leads to an overlapping of the different classes and, consequently, 

to a loss of classification performance as time goes on.  

 
 

      Fig. 2 - PCA plot for the test set. The effect of the drift is visible as a shift 

of the samples over the time towards the upper-left corner. 
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The classifier used in the experience is a linear discriminant analysis (LDA) 

classification algorithm implemented using the R scripting language [20], while the 

adaptation block is implemented in C and PERL. 

The training set for the classifier is composed of the first 20 measurements of each 

class, while the remaining 445 samples have been used as test set. The considered 

training set is quite small compared to common experimental setups that tend to use 

about one third of the samples to build the prediction model. Nevertheless, this allows 

to work with a reasonable number of test samples that can be used to better test the 

evolutionary approach. In order to better understand the characteristics of the 

considered data model, a preliminary classification of the test set performed with the 

LDA classifier without drift compensation has been performed. The classifier by itself 

performs relatively well, with about 90% of the test set correctly classified. Only 43 

samples are incorrectly classified. Figure 3-A summarizes this result with a confusion 

matrix,  i.e., a matrix that shows how many samples belonging to a class A have been 

correctly assigned to class A or misclassified w.r.t. true labels. The figure highlights 

how critical samples belonging to class 1, due to the drift, tend to overlap with classes 

3 and 4. 

The proposed correction system has been applied considering the following 

parameters, set after 100 experiments aimed at tuning the framework: 

€ 

α = 0.99, 

€ 

ε = 1, 

the lower and upper bounds respectively set to 0.65 and 0.99, and K = 40. Small 

differences in the adopted parameters haven’t led to better performance for the 

proposed system. 

The CMA-ES does not require parameter tuning for its application: finding good 

strategy parameters is considered as part of the algorithm design. In fact, the choice of 

strategy internal parameters is not left to the user, with the exception of the population 

size λ = 100 and the initial standard deviation set to 10-2 because of the order of 

magnitude of the measures in the experiments.  

 

                                

 

 

 

 

 

 

 

 

 

 

 

(A) (B) 

Fig. 3 - (A) Confusion matrix for the not corrected LDA classifier and (B) overall 

results for the robust classifier.  

In order to experimentally validate our approach, 150 repetitions of the classification 

experiments were executed using the previously presented setup (figure 3-B). The 

proposed approach has improved the original performance of the classifier in 90% of 

the runs while none of the executions worsened the initial classification. In 27% of 



 

 

the runs all 445 raw measures belonging to the test set have been correctly classified. 

63% of the runs produced classification results with an average performance of about 

97% approaching the theoretical performance of 100% computed for the LDA 

algorithm performing cross validation on the training set with 20 iterations and 5% of 

samples left out at each iteration. The proposed approach can be used for a real-time 

measurement correction since the time required to obtain a good adjustment (up to 20 

mins) is much smaller compared with drift time scale. Moreover it is comparable with 

the sensors’ recovery time.   

5. Conclusions 

This paper presented an adaptive drift-robust classification system based on an 

evolutionary strategy. To date, this is the first attempt to exploit evolutionary 

algorithms capabilities to approach the drift problem in chemical sensing. 

The obtained results on a real dataset are encouraging. The classification 

performances increase to a level close to the theoretical upper bound for the chosen 

classification algorithm. Yet, while the results are encouraging in terms of 

improvement of the classification rate, the main drawback of the proposed approach 

is that it is not able to produce a clear representation of the drift and actually remove 

it from the row measures. The parameters found by the CMA-ES slightly shift the raw 

measures in a direction usually orthogonal to the drift, obtaining a better separation of 

the different classes that allows the LDA classifier to discriminate more accurately 

among them. This is mainly due to the fact that the evolutionary core of our system 

does not include any model of the drift that could be exploited to drive the evolution 

toward a real elimination of the drift effect on the row measures. We are currently 

working towards the inclusion of several heuristics and considerations on spatial 

measures in the fitness values, to allow the CMA-ES to both increase the 

classification rate and perform drift correction. This includes considering different 

models for the drift effect on chemical sensors.  

Comparison between artificially data sets and real data sets will be used to validate 

our framework. 
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