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Abstract—We present Figaro, a content discovery solution
for mobile ad hoc networks. Our main focus is on urban
environments, featuring high densities of users in relatively
narrow, circumscribed areas where wireless connectivity is pro-
vided by an infrastructure (e.g., bus stops integrating a wireless
access point). Figaro superimposes an overlay network onto the
mobile ad hoc network, exploits the the well-known publish-and-
subscribe paradigm for content discovery and resorts to peer-
to-peer communication for content delivery. In our work, we
study the performance of Figaro and address important issues in
content sharing systems, such as the identification and isolation of
misbehaving nodes and the cooperative caching of rare contents.

I. INTRODUCTION
It is foreseeable that one of the most appealing applications

for mobile ad hoc networks (MANETs), as soon as they reach
the expected maturity and the number of users attains critical
mass, will be those that support content sharing among users.
Much like in today’s wired counterpart, the ubiquity and ease-
of-access of future wireless networks will encourage users to
share the content they own and look for contents that match
their interests. The peer-to-peer model seems well suited to the
MANET environment, where fleeting connectivity and limited
infrastructure support give user interaction preeminence over
server access-based applications. In this context, it is of
paramount importance that the content carried by users is
“discoverable” with ease and that its carriers are reliable when
it comes to providing the content to others.
In this work we present Figaro, a content discovery solu-

tion for mobile environments. Our main focus is on urban
networks, in which high densities of pedestrian and vehicular
users coexist in relatively narrow, circumscribed areas reached
by an infrastructure (e.g., bus stops integrating an access
point). Figaro builds on the well-known publish-and-subscribe
(pub/sub) paradigm and aims at defining a network architec-
ture that provides high performance in terms of reliability,
content availability and robustness to adverse conditions, such
as the presence of misbehaving nodes or particularly rare
contents.
More specifically, Figaro includes (i) mobile user nodes,

named Agents, which may request contents of their interest
and make information and services available to other users,
and (ii) infrastructure nodes, named Brokers, which assist
Agents in the content discovery process. In this scenario, we

first enhance the basic pub/sub scheme by introducing a Proxy
entity that exploits the benefits of a backbone connecting
the Brokers. Secondly, we define a feedback and reputation
mechanism that counteracts free riders, i.e., Agents that do not
provide advertised contents. Finally, we consider that Agents
have caching capabilities and devise a cache management
policy to improve the performance of the content sharing
system in presence of rare information items. We define
a scheme in which (i) Brokers, using their knowledge on
the contents advertised by Agents, ask them to cache rare
information items so as to increase the average hit ratio (global
objective), and (ii) incentives and penalties make Brokers’
requests match the Agents’ goal to maximize their hit ratio
and minimize their load (individual objective).
The remainder of the paper is organized as follows. Previous

work is discussed in Section II. We detail the pub/sub system
and its enhancements in Section III. Section IV introduces
the reference scenario and assumptions used for performance
evaluation, while results derived through ns3 emulations are
presented in Section V. At last, Section VI concludes the paper
and highlights future work.

II. RELATED WORK
There are many works focusing on the use of pub/sub in

mobile networks, but most of them refer to infrastructure-less
scenarios. As an example, [5] presents an algorithm, based
on Voronoi regions, to split the nodes into colonies and elect
Brokers inside them, while [6] describes a pub/sub protocol
which exploits social information to optimize routing. The
presence of an infrastructure and the opportunities it implies
are taken into account (among others) in [1], which deals
with infrastructure-powered bus stops and buses integrating a
(mobile) Broker. With respect to [1], our work includes some
novel protocol entities and addresses additional concerns, such
as security, reputation and caching issues.
Several works deal with the specific problem of reputation

management. For example, [7] presents a way to exploit ad-
hoc networking to reduce the load over a 3G cellular network,
focusing on incentives and penalties for collaborating and
misbehaving users; [8] devises a reputation-based mechanism
to allow a reliable deployment of large-scale ad-hoc networks.
Thanks to the presence of the Broker, our approach is simpler
than the proposed ones, and more suitable for devices with



low computational capabilities (e.g., we do not require, as [9]
does, to locally optimize an objective function). Additionally,
we do not assume, as [10], [8] do, that Agents are associated
to a billing account; indeed, in Figaro incentives and penalties
are circumscribed to Figaro itself.
As far as caching is concerned, most works focus on

decentralized, infrastructure-less scenarios. In particular, [11]
leverages the estimated information density in the network, the
work in [12] follows a data-centric approach to proactive data
dissemination, and [13] exploits the system’s knowledge of
the user’s social behavior. As a result, the presented solutions
tend to be more complex than what is proposed in Figaro.

III. THE FIGARO SYSTEM

Figaro networks are overlay networks that operate accord-
ing to the pub/sub paradigm, featuring two main types of
nodes [1]: Agents and Brokers. Agents produce and consume
the content, while it is the Brokers’ task to let demands and
offers meet. Agents are mobile (possibly hand-held) devices,
while Brokers are middle-end devices, integrated in the in-
frastructure and interconnected via a reliable (typically wired)
backbone.
When they discover a Broker, Agents can register with it

declaring the services or contents (files, items of informa-
tion...) they are willing to share with other Agents. The Broker
maintains a content-based routing table, where it stores the
identifier of the registered Agents, their IP address, as well as
the contents and services that they make available to others.
Once the registration is complete, Agents can ask the Broker
for the services they need. The Broker queries the content-
based routing table to answer such requests.
The set of Agents exchanging services through a Broker

is called colony. In a pure overlay fashion, colonies do not
necessarily correspond to a set of nearby Agents. Rather, a
colony is a logical aggregation of Agents with the purpose of
enhancing the performance of the Figaro system.

Figure 1. UML sequence diagram for the interaction between Agents and
Brokers in the basic version of the publish/subscribe protocol

The diagram in Figure 1 refers to the basic version of
the publish-and-subscribe message exchange that we consider.

Note that, after registering with a Broker, an Agent can issue
content queries to the Broker, which answers them using its
content-based routing table. All the packets sent by the Broker
are digitally signed. This simple security scheme, well suited
for low-power devices, provides integrity and authenticity. If
the requested content is stored by a member of the colony, the
Broker sends back a Reply message including the IP address of
the Agent that can provide the desired information; otherwise
the Reply includes a negative response. Once the requesting
Agent receives the IP address of the possible provider, a peer-
to-peer exchange is established between the two Agents for the
content transfer. Such a peer-to-peer transfer is implemented
through (possibly) a multihop path that can be found and set
up using any of the routing protocols specifically designed for
MANETs.
Starting from this basic scheme, we devise several protocol

and architecture improvements in order to enhance perfor-
mance and reliability, or to exploit additional capabilities of
the involved entities. In particular, we consider that

• a backbone connecting Brokers can be used to find
additional/missing services;

• Agents and Brokers can cooperate to identify and isolate
free riders;

• caching capabilities of the Agents can be exploited to
make the retrieval of rare contents more efficient.

Each of these enhancements is discussed below.

A. Using a Proxy
When Brokers are connected through a backbone, the infor-

mation exchange between Brokers can be effectively exploited
to improve the system performance. To this end, we introduce
a new protocol entity, called Proxy, which is connected to all
Brokers via the backbone. When a Broker receives a request
for a service or content which is unavailable in its colony,
it forwards the request to the Proxy, which in turn asks the
other Brokers. In this way, the request is successful if the
service is found in any of the colonies composing Figaro.
Introducing a Proxy does not impact on the basic behavior
of the colony: queries that can be solved within the colony
to which the requesting user belongs, are handled exactly as
explained before.
Intuitively, we expect that such an enhancement significantly

increases the probability that an Agent finds and retrieves the
desired content (i.e., the hit ratio).

B. Counteracting free riders
With the aim to identify and isolate Agents that do not

actually provide the services they claim to provide, the so-
called free riders, Figaro includes a reputation mechanism:
Agents can report to the Broker the outcome of both successful
and unsuccessful peer-to-peer exchanges with Agents identi-
fied as content carriers. The exchange outcome is notified to
the Broker through a feedback message, which the requesting
Agent sends to the Broker after the peer-to-peer transfer shown
in Figure 1 ends. Based on the received feedbacks, the Broker
can therefore assign a reputation score to each Agent and



take it into account in its routing decisions. Notice that such
reputation score is not advertised – and actually the Agent
itself may not be aware of it.
The Broker computes the reputation score as follows. Let us

denote the set of active Agents (i.e., members of the colony)
at time t by A(t), and its cardinality by A(t) = |A(t)|.
Additionally, FP (i, τ) and FN (i, τ) are counting processes
identifying, respectively, the number of positive and negative
feedbacks assigned to Agent i from time 0 to time τ . The
validity of feedbacks is limited to w seconds, i.e., only
the feedbacks received within the sliding window W (t) =
[max {0, t − w} , t] are used to compute the reputation value
at time t.
Thus, at the generic time instant t, each Agent i has

P (i, t) = FP (i, supW (t)) − FP (i, inf W (t)) positive valid
feedbacks and N(i, t) = FN (i, supW (t))− FN (i, inf W (t))
negative valid feedbacks.
We define a significance threshold, TS(t), as the minimum

number of feedback reports necessary to assign a nonzero
feedback value. The goal of such a threshold is to prevent
an unfortunate combination of events (or an attack) from
banning a “good” Agent. TS(t) is linked to the average number
of feedbacks received by each node during a time window,
according to the following expression:

TS(t) =

A(t)
∑

i=0
[P (i, t) + N(i, t)]

2A(t)
(1)

The rationale behind (1) is that, in order to be significant,
the number of feedbacks received by an Agent should be
comparable to the average number of feedbacks received by
all other Agents in the same colony. Then, the reputation value
of the generic Agent i, at a given time instant t, is given by:

r(i, t) =

{

P (i,t)−N(i,t)
P (i,t)+N(i,t) ifP (i, t) + N(i, t) ≥ TS(t)

0 otherwise
(2)

Nonzero reputation values are assigned only to those Agents
for which sufficient evidence of bad (or good) behavior exists,
i.e. having a number of feedback reports greater than TS ; note
that newly arrived Agents always have a zero reputation value.
The reputation formula itself is relatively simple, however

it has several advantages over equivalent simpler formulations
(such as N(i,t)

P (i,t)+N(i,t) ):
• it is bounded between −1 and 1;
• the limit values 1 and −1 correspond to the limit cases in
which an Agent has only positive (or negative) feedbacks;

• it has 0 as both a default value and a watershed value.
The latter also means that the value assigned to newcomers is
different from the typical values of both “good” and “bad”
known Agents (which is not the case of simpler bad-boy
indices such as N(i,t)

P (i,t)+N(i,t) , which assume newcomers to
be good until evidence to the contrary). Additionally, the
reputation value assigned to newcomers is exactly the border
value between “mostly good” (more positive than negative

feedbacks) and “mostly bad” (more negative than positive
feedbacks) Agents.
A Broker has evidence of an Agent being a free-rider

when r(i, t) falls below a reputation threshold TR. When this
happens, the Agent is banished from the colony: in the routing
table the entries related to that Agent are marked as invalid,
and any traffic it sends to the Broker is ignored. Banned
Agents do not receive any feedback so, due to the sliding
window mechanism and the significance threshold TS(t), their
reputation will return to 0 after (at most) the duration w of the
window, i.e., after a sufficient number of its negative feedbacks
have been forgotten.
Summarizing, the reputation mechanism works as follows.

All Agents start with r(i, 0) = 0; whenever a feedback about
Agent i is received by the Broker:

• the significance threshold TS(t) is updated according to
(1);

• if the number of feedbacks related to Agent i received
in the last w seconds is higher than or equal to TS,
the reputation score r(i, t) is updated according to (2),
otherwise r(i, t) is set to zero;

• the feedback scores of all Agents are updated according
to the new W (t) (possibly allowing banned Agents to be
re-admitted).

Notice that the reputation scores assigned to the same Agent
in different colonies are independent.
At last, it is worth discussing the value of the reputation

threshold TR. This value is application-dependent and should
be chosen according to the following guidelines: (i) since all
Agents start with r(i, 0) = 0, TR must be strictly less than
zero; (ii) too low a TR may prevent the system from detecting
free-rider nodes, i.e. cause false negatives; (iii) too high a
TR may trigger the system into banning good nodes that fail
to provide a service without fault (e.g., due to connectivity
problems), thus causing false positives. However, in Section V
we show that, when the time window duration w is sufficiently
large, any value of TR in the interval [-0.1,-0.9] enables the
Broker to clearly identify good and bad Agents.

C. Exploiting caching capabilities
We further extend Figaro taking into account the case

in which Agents have caching capabilities. In other words,
some of the Agents that obtain a service can decide to
retain it in their cache (which has, of course, a limited size).
Subsequently, those Agents will be able to provide the cached
service to other Agents.
This scheme is especially effective when some of the

existing services are significantly rarer (i.e., provided by a
lower number of Agents) than others. The goal is not only to
increase the availability (i.e., the hit ratio) for rare services, but
also to curb backbone usage – especially if using the backbone
is slow and/or expensive.
We assume that a service j is rare if the number Γ(j) of

Agents providing it is less than the half of the average number
Γ of Agents providing each service. The Broker is in a good
position to identify rare services and, by exploiting the Reply



message, to ask the Agents that are retrieving them to add
these services to their cache. The Agent registers Broker’s
suggestions and decides whether to actually cache the service.
It uses a special field of the feedback packet to inform the
Broker of its caching decision.
We assume the Agents to have a selfish, rational behavior.

Therefore, they will not follow the Broker’s caching sugges-
tions unless they can take some advantage from it. In Figaro,
as a reward for the Agents that follow the Broker’s caching
suggestion, the Broker tries not to select collaborating Agents1
to provide common services. In other words, collaborating
Agents end up providing only rare services. In this way, col-
laborating Agents will experience a lower load: collaborating
thus becomes a rational way to pursue a selfish goal.
The scheme described so far does not provide any warranty

that the Agents pretending to have cached a service (i) actually
have cached it, (ii) actually provide it to other Agents. Some
Agents, unwilling or unable to cache a service, may set
the caching flag in the feedback packets they send with the
purpose of enjoying a lower load.
To cope with this issue, the negative feedbacks related to a

service which should have been cached, i.e., revealing a misbe-
having Agent, result in a particularly severe penalty. Similarly
to III-B, we define as FM (i, τ) the counting process of
misbehaving feedbacks; thus, M(i, t) = FM (i, supW (t)) −
FM (i, inf W (t)) is the number of misbehaving feedbacks
given to Agent i within the time window W (t). Equation (3)
is modified as follows:

r(i, t) =











P (i,t)−N(i,t)−αM(i,t)
P (i,t)+N(i,t)+M(i,t)

ifP (i, t) + N(i, t) + M(i, t) ≥ TS(t)

0 otherwise
(3)

with α > 1 to account for the fact that misbehaving feedbacks
must have more severe consequences than negative feedbacks.
Notice that this modified version of the reputation index can
fall below −1. Anyway, it is still guaranteed to return to 0 in
(at most) a time w.
Summarizing, the following caching policies are foreseen:

(i) Collaborating: Agents store the content in their cache,
and inform the Broker via the feedback packet. Then, they
provide the cached content to other Agents when needed. As
a consequence, the Broker lightens the load on collaborating
Agents, not using them to provide common services. (ii) Non-
collaborating: Agents cannot, or do not want to, cache the
content. They fill in the feedback packet accordingly. No
further action is taken by the Broker (i.e., these Agents will
receive nor benefit neither punishment for their behavior). (iii)
Misbehaving: Agents declare that they will cache a content,
but do not do so. Since this behavior disrupts the balance of
caching content that the Broker is trying to establish, it assigns
misbehaving Agents a very low reputation score, possibly

1More exactly, the Agents that have collaborated within a given time frame.
This prevents Agents from collaborating once and exploiting the reduced load
forever. Additionally, the duration of the time frame can be adjusted to fit the
application needs.

leading to their ban from the colony.

IV. NETWORK SCENARIO AND ASSUMPTIONS

We use ns-3 [2] emulation to study the behavior of the
system in a pedestrian scenario. Four points of interest (POI)
are placed at the edges of a 1000×850 m rectangular area.
In correspondence to each POI there is a (fixed) Broker,
integrating a wireless Access Point (AP). Mobile Agents,
whose number is a variable system parameter, roam between
the POIs, following the random-trip mobility model [3], with
an average pause time of 300 s and an average speed of
1.8 m/s.
Agents are equipped with an IEEE 802.11 interface, and

each of them shares a portion p of the available contents,
each represented by a file of size 1 KB. The total number
of existing contents is M = 100. Additionally, Agents “feel
the need” for a content (randomly chosen among the ones
not being provided) according to a Poisson process with rate
equal to 0.05 requests/s. The needed content is requested from
the Broker for a maximum of 30 s; if no reply ensues (e.g.,
because the Broker is not within radio range), a timeout expires
and the Agent loses interest in the service. Upon receiving a
positive Reply from the Broker, the requesting Agent finds a
route toward the provider Agent by using the AODV protocol.
As far as storage is concerned, Agents are assumed to

memorize contents in two distinct areas:
• a long-term memory, which stores the contents the Agent
uses and publishes (or has a strong interest in sharing).
This area is initialized at the beginning of the simulation
(in real life, this may correspond to initializing it once a
day) and is not altered during the emulation process;

• an optional cache (of finite, limited size), where the
Agent can store information for which it has no use (e.g.,
because the Broker instructed it to do so).

The Agents are able to provide the contents stored in either
area. Notice that, unless otherwise specified, the Agents are
assumed not to have a cache (or, equivalently, to be unwilling
to use it).
When moving from a coverage area to another, Agents

choose (with equal probability) one of the following behaviors:
registering to the local colony (leaving the previous one)
or keeping the former affiliation and using the backbone to
send and receive data. This has manifold implications: on the
one hand, registering to the local colony allows Agents to
leverage the direct connection to the local Broker; on the other,
additional overhead is required to handle the (de-)registration
process, and therefore it might not be advisable for highly-
mobile nodes or in case of small Brokers’ coverage areas.

V. PERFORMANCE EVALUATION
In this section, we provide a thorough evaluation of Figaro’s

basic features, in terms of hit ratio (i.e., the probability that a
content requested while the Agent is in the coverage area of a
Broker is discovered and retrieved before the timeout expires)
and overhead, as well as in terms of its more advance features,
i.e., the reputation and caching mechanisms. Unless otherwise



specified, the results were obtained averaging 10 independent
simulation runs.

A. Basic features
We evaluate the basic features of Figaro by looking at

the hit ratio and at the overhead it generates. Specifically,
we analyze scenarios with different values of p (0.1 or 0.4)
and with/without the presence of a backbone and a Proxy.
Additionally, as a benchmark, we compare Figaro with a sim-
ple content-retrieval mechanism, referred to as “flat flooding”,
which exploits a flat peer-to-peer exchange on ad-hoc node
connectivity and it lets queries propagate according to the
Mitigated Flooding scheme in [4]. Such scheme spatially limits
the propagation range of a query through a Time To Live
(TTL) value; also, it avoids the rebroadcasting of already
solved requests by means of a query lag time2.
The hit ratio is reported in Figure 2 for Figaro and flat

flooding with p = 0.1, and in Figure 3 for Figaro and flat
flooding with p = 0.4. The curve related to the case with
Proxy is the same for both figures (p = 0.1) and is used for
comparison purpose, as will be explained later.
As far as scalability is concerned, the plots show that Figaro

is able to support a quite heavy load – in terms of both Agents
and queries – without performance problems. The physical
layer of the colony (e.g., network congestion, collisions...)
represent the primary cause of performance degradation. Con-
versely, the logical layer (i.e., the overlay network) has a
positive effect over scalability, as it effectively reduces the
overhead.
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Figure 2. Hit ratio comparison between Figaro, flat flooding and Figaro with
Proxy, with low content density (p = 0.1)

By looking at the plots, it can be seen that the hit ratio
in Figaro grows almost exponentially (actually following the
quantitative behavior of the birthday problem), and the speed
at which the saturation zone is reached depends on the number
of services the Agents share. The hit ratio for the flat flooding
scheme grows much more slowly, given the blind, inefficient
content search mechanism. Then, comparing Figaro with and

2Nodes receiving a query message wait for a query lag time: if they observe
responses to the query in the meantime, they refrain from forwarding the query
any further
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Figure 3. Hit ratio comparison between Figaro and flat flooding, both with
medium content density (p = 0.4), and Figaro with Proxy for low content
density (p = 0.1)

without Proxy, it is clear that using a Proxy dramatically
improves the hit ratio, especially when the content density
is low. Intuitively, it is like having an n-times larger colony
(where n is the number of Brokers connected to the same
Proxy). This intuition is confirmed by the matching curves of
Figaro with and without Proxy in Figure 3: in a scenario where
p = 0.1, using a Proxy guarantees the same hit ratio as that
of a scenario without Proxy and with p = 0.4.
Another important parameter to evaluate is the overhead,

i.e., the portion of the total traffic which is not represented
by information content. It includes both the headers of the
lower protocol levels and packets that Agents and Brokers
exchange to manage the colony and find content. Figures
4 and 5 show how the overhead in Figaro depends on the
number of Agents and the presence of a Proxy. In particular,
it is shown to be nearly inversely proportional to the hit
ratio, as a higher hit ratio implies that fewer queries are sent
over the network. In the most favorable cases, the overhead
stabilizes around 30% of the total traffic. Figure 6 and Table I
summarize the components that form this value and that were
used in our emulation. Conversely, in the flat flooding case,
the overhead appears to be lower (but still 50% or more of
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Figure 4. Overhead comparison between Figaro, flat flooding and Figaro
with Proxy, with low content density (p = 0.1)
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Figure 5. Overhead comparison between Figaro and flat flooding, both with
medium content density (p = 0.4), and Figaro with Proxy for low content
density (p = 0.1)

the total traffic) only for “critical numbers” of Agents, i.e.,
between 20 and 80: fewer Agents depress the hit ratio and
thus increase the overhead, while a higher number of Agents
triggers an overwhelming number of replies to a single query.
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Figure 6. Composition of the overhead for a typical transaction (content is
assumed to be 1 KB in size)

B. Agents’ reputation
As far as the reputation mechanism is concerned, we are

interested in evaluating:
• whether the system can effectively tell good and bad
Agents apart;

• the impact of the duration w of the time window;
• the impact of the reputation threshold TR.
Figures 7 and 8 plot the time evolution of the significance

threshold TS(t) and of the reputation score for different values
w of the time window. We selected a case study (p = 0.1 and
140 Agents, of which half are free-riders, never providing the
services they claim to provide) where the small information
density and the high number of free-riders require the system
to be able to tell precisely on which nodes it can rely upon.
By looking at Figure 7, we observe that the length w of

the time window directly affects the value of the significance
threshold TS(t). This is rather intuitive, since a longer time
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Figure 7. Evolution of the significance threshold TS(t) over time, for
different durations w of the time window W (t)
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Figure 8. Evolution of the reputation score over time, for different durations
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window implies that a higher number of feedbacks needs to
be taken into account. Also, TS(t) grows from time 0 to time
w and, after this initial transient, it remains quite stable.
Figure 8 shows how the reputation scores of good Agents

and free-riders evolve over time. Consistently with the defini-
tion in Equation (2), the length of the time window does not
affect the average value of the reputation. However, when w is
too small, the reputation scores tend to have wider oscillations
around their average value. This behavior impacts the choice
of the reputation threshold TR.
As discussed in Section III-B, the threshold TR must be a

negative value, small enough (in absolute value) to ensure that
all (or most of) the free riders’ score is below it, and large
enough to avoid (too many) false positives. Intuitively, with
reference to Figure 8, it should clearly separate the regions
where good and bad scores fall.
As shown in Figure 9, if w is large enough to guarantee that

free riders’ score is constantly very low (e.g., w = 200 s), the
choice of any threshold value between −0.1 and −0.9 allows
the mechanism to work very efficiently: good and bad Agents
are quickly and effectively told apart and they are provided
with very different qualities of service. Notice that the hit ratio
for good Agents in the case TR = −0.1 is slightly lower, due
to the contribution of false positives.



Table I
OVERHEAD FOR A TYPICAL FIGARO TRANSACTION

Type Content Appl. overhead Signature L4 headers L3 headers L2 headers Total
SReq 26 8 20 22 76
SRep 45 64 8 20 22 159
Req 16 8 20 22 66
Data 8 20 22 50

351
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Figure 9. Hit ratio for good and bad Agents, for TR = −0.1 and TR = −0.9
(w = 200 s)

Furthermore, we highlight that if the duration w had been
smaller, TR = −0.9 would not have been a good choice:
indeed, as shown in Figure 8, the reputation score for free
riders occasionally exceeds such threshold and it generates, as
it were, false negatives.
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Figure 10. Hit ratio for rare and common contents, with c = 0% and
c = 50%

C. Rare content

We study the way Figaro handles rare content in an emula-
tion scenario in which one out of 10 contents is ten times rarer
than any other. In particular, we focus on the case p = 0.4 for
popular content and p = 0.04 for rare content; indeed, using
smaller values of p could force rare content into oblivion from
the outset. The size of Agents’ cache is assumed to be 3 KB
– i.e., each Agent can cache up to 3 services.

We call c the percentage of nodes which choose to collab-
orate with the Broker, i.e., which use their cache according to
the Broker’s instructions. Comparing the cases c = 0% and
c = 50% in Figure 10, it is clear that our scheme performs
in a very efficient way, allowing rare content to achieve the
same hit ratio of popular content, even in a plausible case in
which one out of two Agents does not collaborate.
In the following, we investigate the impact of the collabo-

ration level (i.e., the percentage of collaborating Agents) on
the hit ratio for rare content. In other words, we answer the
following question: how many Agents should collaborate in
order to eliminate, or to significantly reduce, the hit ratio
difference between popular and rare services?
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Figure 11. Hit ratio for rare and popular content as the percentage of
collaborating Agents varies

Figure 11 provides a qualitative answer for the scenario
being tested: while the hit ratio of popular content is minimally
affected by the percentage of collaborating Agents, as little as
20% collaborating Agents are needed to bring the hit ratio of
rare content within 15% of the hit ration of popular content.
This provides a strong indication that our collaboration scheme
is effective even in those scenarios where a small number of
Agents can (i.e., has cache room) or wants to collaborate.
Further increasing the percentage of collaborating Agents

brings no additional benefit. This mirrors the Broker’s behav-
ior, which stops considering as rare some content when more
than half the Agents in its colony provide it. The rationale for
this is that if Brokers fill the Agents’ caches with semi-popular
contents, there would be no room for other rare services.

D. Benefits of collaboration
Here, we show the system performance obtained in presence

of collaborating, non-collaborating and misbehaving Agents.



To derive these results, we set c = 50% and α = 10; however,
other tests with α in [5, 20] provided similar performances3.
As shown in Figure 12, collaborating Agents experience

a much lower load (i.e., they are required to provide a lower
number of services). Therefore, following the Broker’s caching
suggestions is not only a contribution to the global quality of
the service (see Figure 10), but also a rational way to pursue
a selfish objective. Furthermore, as shown in Figure 13, being
honest (either collaborating or not) is the best selfish strategy
for Agents.
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Figure 12. Load upon collaborating and non-collaborating Agents
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Figure 13. Hit ratio for honest and misbehaving Agents

Interestingly, caching also has the positive side effect of
reducing the usage of the backbone. Indeed, caching increases
the availability of a service inside the colony, and consequently
reduces the need to search for it outside (i.e., asking the
Proxy). Figure 14 confirms this statement. This is of particular
importance when the backbone is not wired but implemented
with cellular technologies such as UMTS. In those cases,
reducing its usage results in significant monetary savings.

VI. CONCLUSIONS AND FUTURE WORK

We have presented Figaro, a content discovery solution for
wireless mobile environments, based on the publish/subscribe
3Note that with low values of α, there is the risk to water down the penalty

for cheating Agents. Conversely, higher values may result in the banishment
of Agents which, due to connectivity failures, did not provide a single cached
service.
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Figure 14. Backbone usage for c = 0 and c = 50%

(pub/sub) protocol. Figaro includes several entities, namely
Agents, Brokers and Proxies, that cooperate to the task of mak-
ing content easily discoverable and retrievable. Contributing
to the effectiveness of Figaro are its feedback and reputation
mechanisms as well as a Broker-driven caching scheme in
which the Broker suggests to the Agents what content to cache
in order to maximize the hit ratio (global and Agent’s) and
to minimize the Agent’s load. We have evaluated the system
performance in terms of both hit ratio and overhead, and
benchmarked it with a flat peer-to-peer solution based on the
mitigated flooding of queries.
Future work will focus on improving the mechanisms of

reputation and caching. At a higher level, we will take into
account some additional scenarios, including vehicular Agents,
mobile Brokers (e.g., integrated in buses) or infrastructure-
less interactions (e.g., in zones outside the Brokers’ radio
coverage).
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