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This paper considers the thermal stress problem of thick and thin multilayered cylindrical
and spherical shells including carbon fiber reinforced layers and/or a central soft core. The
following two cases are considered: - the temperature distribution in thickness direction
is assumed linear; - the temperature distribution in thickness direction is calculated via
Fourier’s heat conduction equation. Carrera’s Unified Formulation and the Principle of
Virtual Displacements are used to obtain the governing equations in the case of shells
with constant radii of curvature subjected to established temperature conditions on their
upper and lower surfaces. Both Equivalent Single Layer and Layer Wise models with an
order of expansion in the thickness direction from linear to fourth order are considered.
The importance of refined models for a correct evaluation of displacement and stress fields
in multilayered shells can be noted. Furthermore, it has been shown that results obtained
assuming a linear temperature profile in the thickness direction can be meaningless.

Keywords: Composite shells; Fourier’s heat conduction equation; refined two-dimensional
models; Carrera’s Unified Formulation.

1. Introduction

An increasing number of modern aerospace vehicles are made up of composite struc-
tures such as multilayered carbon-fiber reinforced and/or sandwich plates and shells.
Many of these structures are simultaneously loaded by high thermal and mechanical
loads. Typical examples are wings for the next generation of commercial airliners
which are exposed to high sun irradiation, large orbital structures under thermal
cycling, and the load carrying structure of future reusable launchers. In each of
the above mentioned cases, the stress analysis should be preceded by an accu-
rate thermal analysis, which provides the temperature input data required for the
stress analysis [Rolfes et al., 1999]. A simplified thermal analysis can be made for
thin-walled homogeneous isotropic structures, but it is inappropriate in the case of
laminated composite structures.

∗Aeronautics and Space Engineering Department, Politecnico di Torino, corso Duca degli Abruzzi
24, 10129, Torino, Italy. e.mail: salvatore.brischetto@polito.it

1



October 9, 2009 12:42 WSPC/INSTRUCTION FILE ws-ijam

2 Salvatore Brischetto

An accurate description of local stress fields in the layers becomes mandatory
to prevent thermally loaded structure failure mechanisms [Librescu and Marzocca,
2003a], [Librescu and Marzocca, 2003b]. A satisfactory thermal stress analysis is
only possible if: - advanced and refined computational models are developed [Noor
and Burton, 1992], [Brischetto and Carrera, 2009]; - correct thermal loads are rec-
ognized. For the latter issue, an appropriate temperature profile must be defined
(for example by solving Fourier’s heat conduction equation) [Carrera, 2002b]: an
assumed linear temperature profile is advisable only for thin and homogeneous
structures.

Several higher-order two-dimensional models have recently been developed for
such problems, which consider only an assumed temperature profile through the
thickness. Among these, the higher-order model by Zhen and Wanji [2008], which
describes the displacements and stresses in laminated structures in thermal bending,
assuming a linear profile of temperature through the thickness z, is of particular
interest. The same temperature profile has been used by Khare et al. [2003] to
obtain a closed-form solution for the thermomechanical analysis of laminated and
sandwich shells. Khdeir [1996] and Khdeir et al. [1992] have assumed a linear or
constant temperature profile through the thickness; the thermoelastic governing
equations for laminated shells are exactly solved in the former while a Higher Shear
Deformation Theory is given in the latter. An interesting method to analyze the
thermal stresses in shells is the use of Cosserat surfaces, as done by Birsan [2009] for
two given temperature fields and Iesan [1985] for an assumed polynomial temper-
ature variation in the axial coordinate. Barut et al. [2000] analyzed the non-linear
thermoelastic behavior of shells by means of the Finite Element Method, but the
assigned temperature profile was linear. In the framework of the arbitrary distri-
bution of temperature through the thickness, the work by Miller et al. [1981] and
Dumir et al. [2008] is noteworthy; a classical shell theory for composite shells is
given in the former while the importance of the zig-zag form of displacements in
the thermal analysis of composite shells is dealt with in the later. In the case of
shells, further investigations were made by Hsu et al. [1981] for both closed form
and Finite Element methods, and by Ding [2008] for a weak formulation for the
case of state equations, including boundary conditions. The importance of mechan-
ical and thermal anisotropy in such investigations was remarked on by Padovan
[1976]. Some interesting experimental results can be found in Holstein et al. [1998];
Kapuria et al. [1997] have suggested the use of piezoelectric layers to contrast such
thermal deformations. Librescu and Lin [1999] have suggested the use of linear tem-
perature profile to investigate the importance of refined kinematics in the case of
multilayered composite shells, which has also been dealt with in a companion pa-
per by Brischetto and Carrera [2009]. The importance of refined kinematic models
is well-known [Brischetto and Carrera, 2009]. The present paper investigates the
importance of the temperature profile in the thermal stress analysis of compos-
ite shells, as already done by Carrera [2002b] and Carrera [2000] for the case of
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multilayered plates.
In literature, several works underline the importance of a calculated temperature

profile. Some of these are listed in the following. A Finite Element shell has been
developed by Rolfes et al. [1999] to analyze the composite structures simultaneously
loaded by mechanical and thermal loads; the temperature profile is presumed linear
or quadratic in the thickness direction and then introduced into Fourier’s law of heat
conduction. The same procedure for the temperature profile has been repeated by
Rolfes and Rohwer [2000] in the case of 2D finite elements for composite plates and
shells. In order to investigate the effects of interfacial imperfections on laminated
composite shells under thermal loads, Cheng and Batra [2001] have made a com-
parison between a constant through the thickness distribution of temperature and
the temperature field through the thickness obtained by solving the heat conduc-
tion equation. Other important cases in which the calculated temperature profile is
mandatory are the functionally graded material (FGM) structures, and the cases of
coupling between the thermal field and other physical fields, such as the electrical
one. Pellitier and Vel [2006] have given a three-dimensional solution for functionally
graded cylindrical shells subjected to thermal and mechanical loads. A semi-inverse
method for the heat conduction problem was employed to obtain a second-order dif-
ferential equation that is solved assuming a solution in the form of a power series.
Santos et al. [2008] have used a two-dimensional model for the thermoelastic analysis
of cylindrical shells subjected to transient thermal shock loading; the temperature
profile has obtained writing Fourier’s heat conduction equation for the heat trans-
fer in cylindrical coordinates. In the case of postbuckling of FGM cylindrical shells
under mechanical loading in thermal environments, Shen and Noda [2005] have
obtained the temperature along the thickness, solving a steady-state heat transfer
equation. The same equation has been solved by Shen [2005] in order to obtain the
temperature distribution when the shell is subjected to electric loads in thermal en-
vironments. The importance of the thickness ratio has been underlined by Vel and
Pelletier [2007]; for thick structures, there is in fact a substantial difference between
a prescribed temperature load and an applied heat flux, if Fourier’s law of heat
conduction is considered. Wu et al. [2005] have investigated the thermal buckling of
FGM shells subjected to thermal load. Closed form solutions were provided for three
types of thermal load: - uniform temperature rise, when the temperature changes
uniformly through the thickness; - linear temperature change, when the tempera-
ture change is linear through the thickness; - non-linear temperature change, when
the temperature rises differently at the inner and outer surfaces of the shell and
the temperature distribution across the thickness is governed by the steady state
heat conduction equation and boundary conditions. A very interesting application
could be the postbuckling analysis of functionally graded shells with piezoelectric
actuators subjected to hydrostatic pressure combined with electric loads in thermal
environments as shown by Shen and Noda [2007]. The temperature variation only
occurs in the thickness direction and a one dimensional temperature field is assumed
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to be constant in the αβ plane of the shell. In such a case, the temperature distri-
bution along the thickness can be obtained by solving a steady-state heat transfer
equation.

The employed kinematic models are described in Section 2 and details can be
found in the overview of Carrera’s Unified Formulation (CUF) [Carrera, 1995], [Car-
rera, 2002a]. Equivalent Single Layer and Layer Wise models have been obtained
referring to the Principle of Virtual Displacements (PVD). Section 3 discusses the
temperature profile. It can be assumed linear, as already shown in [Brischetto and
Carrera, 2009], or it can be calculated by solving the heat conduction Fourier’s equa-
tion, as already illustrated in [Carrera, 2002b] and [Brischetto et al., 2008]. Section 4
describes how the general governing equations and their closed form can be obtained
(for details reference can be made to Brischetto and Carrera [2009]). The results
and discussion are reported in Section 5. Section 6 gives the main conclusions.

2. Carrera’s Unified Formulation

Carrera’s Unified Formulation (CUF) [Carrera, 1995] permits a large variety of
two-dimensional models to be obtained in the case of bi-dimensional multi-layered
structures such as plates and shells. In this section, CUF is described for shells of
constant thickness h and radii of curvature Rα and Rβ . The geometry and refer-
ence system are shown in Fig. 1. The displacement components uα, uβ and uz are
measured with respect to the α, β and z axes. The latter axis denotes the through-
the-thickness direction. Ω is the shell/plate reference surface. In the case of plates,
the curvilinear coordinates α and β coincide with the Cartesian ones x and y, where
ux, uy and uz are the displacement components.

The obtained hierarchical models differ in the order of used expansion in the
thickness direction and in the manner the variables are modelled (Equivalent Sin-
gle Layer (ESL) or Layer Wise (LW) approach). The salient feature of CUF is the
unified manner in which all the considered variables and fields (displacement and
temperature) can be treated. The considered variables and their variations are split
into a set of thickness functions and the relative terms only depend on in-plane co-
ordinates (α,β). According to this separation, a general variable a and its respective
variation δa can be written as:

a(α, β, z) = Fτ (z) aτ (α, β), δa(α, β, z) = Fs(z) δas(α, β), τ, s = 1, . . . , N , (1)

where N is the order of expansion in the thickness direction.

2.1. Equivalent Single Layer theories

Equivalent Single Layer models are based on the assumption of a global description
of the displacement field along the whole shell thickness; a Taylor expansion is used:

u(α, β, z) = Fτ (z)uτ (α, β) = zrur(α, β) , r = 0, 1, 2, . . . , N , (2)
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a

b

Fig. 1. Geometry and notations for a cylindrical shell.

where the displacement vector is u = (uα, uβ , uz).
The summing convention for the repeated indexes has been adopted. N is the

order of expansion, which is taken as a free parameter. In the numerical investigation
N is considered to be as low as 1 and as high as 4. According to the acronym system
developed within CUF, the related theories are named as ED1-ED4. The letter E
denotes that the kinematic is preserved for the whole layers, as in the ESL approach.
D denotes that only displacement unknowns are used and the last number states
the through-the-thickness expansion order.

Classical models such as the First order Shear Deformation Theory (FSDT)
and the Classical Lamination Theory (CLT) are obtained from ED1 by imposing
a constant through the thickness transverse displacement, and considering an infi-
nite shear factor for the CLT. In case of models with constant or linear transverse
displacement (CLT, FSDT and ED1), the plane-stress conditions are imposed as
illustrated in Carrera and Brischetto [2008a] and Carrera and Brischetto [2008b] to
avoid the Poisson’s locking phenomena.

2.2. Layer Wise theories

Multilayered plates and shells can be analyzed by kinematic assumptions which are
independent in each layer. According to Reddy [2004] these approaches are herein
stated as Layer-Wise (LW) theories.

LW description yields, thus, displacement variables that are independent in each
layer. The Taylor’s thickness expansion, adopted in the previous paragraph for ESL
cases, is not convenient for LW description. Displacements interlaminar continu-
ity can be imposed more conveniently by employing interface values as unknown
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variables. LW description assumes the following form:

uk(α, β, z) = Ft(z) uk
t (α, β) + Fb(z)uk

b (α, β) + Fr(z)uk
r (α, β) ,

r = 2, 3, .., N , k = 1, 2, .., Nl .
(3)

Nl indicates the number of layers. Subscripts t and b denote values related to the
top and the bottom of each layer, respectively. The thickness functions Fτ (ζk) have
been defined by:

Ft = P0+P1
2 , Fb = P0−P1

2 , Fr = Pr − Pr−2 , r = 2, 3, .., N , (4)

in which Pj = Pj(ζk) is the Legendre’s jth-order polynomial defined in the ζk–
domain : -1 ≤ ζk ≤ 1. In numerical investigations the maximum considered order
of expansion is four, related polynomials are:

P0 = 1 , P1 = ζk , P2 =
(3ζ2

k − 1)
2

, P3 =
5ζ3

k − 3ζk

2
, P4 =

35ζ4
k

8
− 15ζ2

k

4
+

3
8

.

The previous functions have the following interesting properties:

ζk =
{

1 : Ft = 1; Fb = 0; Fr = 0
−1 : Ft = 0; Fb = 1; Fr = 0 .

(5)

The top and bottom values have been used as unknown variables. The interlaminar
compatibility of displacement can be therefore easily linked (see Fig. 2):

uk
t = u

(k+1)
b , k = 1, Nl − 1 . (6)

The acronyms for these theories are LD1-LD4, with L that means Layer Wise ap-
proach.

1

2

3

LD1
LD4

ub(1)

ut(3)

ut(1)=ub(2)

ut(2)=ub(3)

Fig. 2. Displacement in Layer Wise form through the thickness of a multilayered shell.
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3. Temperature profile

If the values of the temperature are known at the top and bottom surface of the
plate, the temperature profile through the thickness can be considered in two differ-
ent ways. The first method introduces an assumed profile T (z) that varies linearly
from the top to the bottom; the second one computes T (z) by solving Fourier’s heat
conduction equation. The temperature is assumed bi-sinusoidal in the plane (α, β)
at the top and bottom shell surfaces:

T (α, β, z) = T̂ (z) sin(
mπ

aα
α) sin(

nπ

bβ
β) , (7)

with amplitudes T̂ (+h/2) = Tt = +0.5 and T̂ (−h/2) = Tb = −0.5. aα and bβ are
the shell dimensions. m and n are the waves number. In the case of assumed tem-
perature profile (Ta) a linear through the thickness distribution is considered from
+0.5 to −0.5. Independently by the number of considered layers the linear profile
is always the same as indicated in Fig. 3. The temperature profile is approximated
as displacements in case of the Layer Wise approach:

T k(α, β, z) = Fτ θk
τ with τ = t, b, r and r = 2, . . . , 4 , (8)

t and b indicate the top and bottom of the considered kth layer. The thickness
functions Fτ are a combination of Legendre’s polynomials.

If the temperature is assumed linear through the thickness, the values at the top
and bottom surface, and therefore Ft and Fb, would be sufficient to describe the
assumed profile via CUF.

The calculation procedure for the actual temperature in case of one or more
layers is reported in the following in order to obtain the values of θk

τ for Eq.(8).
If the considered shell is subjected to a bi-sinusoidal thermal load at the top and

the bottom, the thermal boundary conditions are:

T = 0 at α = 0, aα and β = 0, bβ

T = Tb sin
(

mπα

aα

)
sin

(
nπβ

bβ

)
at z = −h

2
with b : bottom

T = Tt sin
(

mπα

aα

)
sin

(
nπβ

bβ

)
at z = +

h

2
with t : top , (9)

where m and n are the waves number along the two in-plane shell directions
(α,β). aα and bβ are the shell dimensions, h is the shell thickness, and Tb and Tt

are the amplitudes of the temperature at the bottom and top, respectively.
In case of multi-layered structures, continuity conditions for the temperature T

and the transverse normal heat flux qz hold in the thickness direction at each kth

layer interface, reading:

T k
t = T k+1

b , qk
z t = qk+1

z b for k = 1, . . . , Nl − 1 , (10)

where Nl is the number of layers in the considered structure.
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Fig. 3. Linear assumed profile of temperature through the thickness of the one-layered, two-
layered and ten-layered cylindrical shell.

The relationship between the transverse heat flux and the temperature is given
as:

qk
z = Kk

3

∂T k

∂z
. (11)

In general for the kth homogeneous orthotropic layer, the differential Fourier’s equa-
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tion of heat conduction reads:
(Kk

1

H2
α

) ∂2T

∂α2
+

(Kk
2

H2
β

) ∂2T

∂β2
+ Kk

3

∂2T

∂z2
= 0 . (12)

Kk
1 , Kk

2 and Kk
3 are the thermal conductivities along the three shell directions

α, β and z, that are constant in each layer. ∂ indicates the partial derivative.
Hα = (1+ zk/Rk

α) and Hβ = (1+ zk/Rk
β) are the metric coefficients (for details see

Section 4.1). In case of plates Eq.(12) can be easily solved because Hα = Hβ = 1
and the coefficients Kk

1 , Kk
2 and Kk

3 are constant for each layer k. In case of shell
we can define three new coefficients K∗k

1 = Kk
1

H2
α
, K∗k

2 = Kk
2

H2
β

and K∗k
3 = Kk

3 , which
in a generic layer k depend on the thickness coordinate of the shell, so:

K∗k
1

∂2T

∂α2
+ K∗k

2

∂2T

∂β2
+ K∗k

3

∂2T

∂z2
= 0 . (13)

Eq.(13) has not constant coefficients in the layer k. It can be solved by introducing
for each layer k a given number of mathematical layers (Nml). Considering with
Nl the number of physical layers, a new index j can be defined which goes from 1
to (Nl × Nml). So the continuity of temperature and transverse heat flux can be
written in each jth mathematical interface:

T j
t = T j+1

b , qj
z t = qj+1

z b for j = 1, . . . , (Nl ×Nml − 1) , (14)

where

qj
z = Kj

3

∂T j

∂z
. (15)

Eq.(13) can be rewritten for each mathematical layer j:

K∗j
1

∂2T

∂α2
+ K∗j

2

∂2T

∂β2
+ K∗j

3

∂2T

∂z2
= 0 . (16)

In these mathematical layers we can suppose K∗j
1 and K∗j

2 constant because in each
mathematical layer we can calculate the values of Hα and Hβ .

For a mathematical layer, both governing equations and boundary conditions
are satisfied by assuming the following temperature field:

T (α, β, z) = f(z) sin
(

mπα

aα

)
sin

(
nπβ

bβ

)
(17)

with

f(z) = T0 exp
(
sj z

)
, (18)

T0 is a constant and sj a parameter. Substituting Eq.(17) in Eq.(16) and solving
for sj :

sj
1,2 = ±

√√√√K∗j
1 (mπ

aα
)2 + K∗j

2 (nπ
bβ

)2

K∗j
3

. (19)
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Therefore:

f(z) = T j
01 exp

(
sj
1 z

)
+T j

02 exp
(
sj
1z

)
or f(z) = Cj

1 cosh
(
sj
1 z

)
+Cj

2 sinh
(
sj
1 z

)
.

(20)
The solution for a mathematical layer j can be written as:

Tc(α, β, z) = T j =
[
Cj

1 cosh
(
sj
1z

)
+ Cj

2 sinh
(
sj
1z

)]
sin

(
mπα

aα

)
sin

(
nπβ

bβ

)
,

(21)
wherein the coefficients Cj

1 and Cj
2 are constant for each mathematical layer j.

In Eq.(20) for each mathematical layer j two unknowns (Cj
1 and Cj

2) remain.
Therefore, if the number of layers is Nl, the number of mathematical layers are
Nl×Nml, the number of unknowns is 2Nl×Nml and we need 2Nl×Nml equations
to determine the unknowns.

As we know the temperature at the top and the bottom surface, we have already
two conditions:

Tbot = C1
1 cosh

(
s1
1 zbot

)
+ C1

2 sinh
(
s1
1 zbot

)
,

Ttop = CNl×Nml
1 cosh

(
sNl×Nml
1 ztop

)
+ CNl×Nml

2 sinh
(
sNl×Nml
1 ztop

)
. (22)

Another (Nl ×Nml − 1) equations can be obtained from the continuity of tem-
perature at each mathematical interface, and finally (Nl×Nml−1) equations result
from the continuity of the heat flux through the interfaces, compare Eq.(14). Thus,
we have:

Cj
1 cosh

(
sj
1 zj

t

)
+ Cj

2 sinh
(
sj
1 zj

t

)
− Cj+1

1 cosh
(
sj+1
1 zj+1

b

)

− Cj+1
2 sinh

(
sj+1
1 zj+1

b

)
= 0 ,

sj
1 Kj

3

[
Cj

1 cosh(sj
1 zj

t ) + Cj
2 sinh(sj

1 zj
t )

]

− sj+1
1 Kj+1

3

[
Cj+1

1 cosh
(
sj+1
1 zj+1

b

)
− Cj+1

2 sinh
(
sj+1
1 zj+1

b

)]
= 0 . (23)

In Eqs.(22) and (23), ztop and zbot indicate the coordinates of top and bottom of
the whole shell. zj

t and zj+1
b represent the top of the jth mathematical layer and

the bottom of the (j + 1)th mathematical layer, respectively.
Solving the system given by Eqs.(22) and (23), we gain the 2Nl×Nml coefficients

Cj
1 and Cj

2 . The actual temperature amplitude in the thickness shell direction is then
given by:

Tc(z) = T j = Cj
1 cosh

(
sj
1 z

)
+Cj

2 sinh
(
sj
1 z

)
with j = 1, . . . , (Nl×Nml) . (24)

We compute the temperature at different values zN of the thickness coordinate. By
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solving the system in Eq.(25), we obtain the N values of θk
τ for the CUF:




Tc(z1)
Tc(z2)

...

Tc(zN )




=




F0(z1) F1(z1) · · · FN (z1)
F0(z2) F1(z2) · · · FN (z2)

...
...

...
...

F0(zN ) F1(zN ) · · · FN (zN )







θk
0

θk
1
...
...

θk
N




. (25)

So, if we consider a generic multilayered shell, the temperature profile is approx-
imated by Eq.(8) and the N values of θk

τ are given by Eq.(25). In Eq.(25) Tc is
calculated by means of the mathematical layers j in certain points that permit the
correspondence with the physical layers k.

4. Governing equations

In order to obtain the governing equations for the thermo-mechanical analysis of
multilayered shells, the Principle of Virtual Displacements is employed. The used
geometrical and constitutive relations are discussed in the following.

4.1. Geometrical relations

Shells and plates are bi-dimensional structures where one dimension, in general the
thickness in z direction, is neglected respect to the others two in the plane. Shells
have curvature along the in-plane directions, in this paper only shells with constant
radii of curvature are considered. The geometry and reference system for shells are
indicated in Fig. 1.

For a shell, the square of an infinitesimal linear segment in the layer, the asso-
ciated infinitesimal area and volume elements are given by:

ds2
k =Hk

α

2
dα2

k + Hk
β

2
dβ2

k + Hk
z

2
dz2

k ,

dΩk =Hk
αHk

β dαk dβk ,

dVk =Hk
α Hk

β Hk
z dαk dβk dzk , (26)

where the metric coefficients are:

Hk
α = Ak(1 + zk/Rk

α), Hk
β = Bk(1 + zk/Rk

β), Hk
z = 1 . (27)

k denotes the kth layer of the multilayered shell; Rk
α and Rk

β are the principal radii
of curvature along the coordinates αk and βk, respectively. Ak and Bk are the
coefficients of the first fundamental form of Ωk (Γk is the Ωk boundary) [Leissa,
1973]. In this paper, the attention has been restricted to shells with constant radii
of curvature, so Ak = Bk = 1.0.
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Given a kth layer, geometrical relations permit to express in-plane εp and out-
of-plane εn strains in terms of displacement u. The following relations hold in the
case of a shell:

εpG = [εαα, εββ , εαβ ]T = (Dp + Ap) u ,

εnG = [εαz, εβz, εzz]T = (Dnp + Dnz −An) u (28)

where u = (uα, uβ , uz). The explicit form of introduced arrays follows:

Dp =




∂α

Hα
0 0

0 ∂β

Hβ
0

∂β

Hβ

∂α

Hα
0


 , Dnp =



0 0 ∂α

Hα

0 0 ∂β

Hβ

0 0 0


 , Dnz =



∂z 0 0
0 ∂z 0
0 0 ∂z


 ,

Ap =



0 0 1

HαRα

0 0 1
HβRβ

0 0 0


 , An =




1
HαRα

0 0
0 1

HβRβ
0

0 0 0


 . (29)

4.2. Constitutive relations

Stresses for thermomechanical problems have two parts, a mechanical part denoted
with the subscript d and a thermal one denoted with the subscript t. In order to
use the Principle of Virtual Displacements (PVD), the stresses are split in in-plane
components σp = (σαα, σββ , σαβ) and in out-of-plane ones σn = (σαz, σβz, σzz).

The constitutive equations are given as:

σk
pC = σk

pd − σk
pt = Ck

pp εk
pG + Ck

pn εk
nG − λk

p T k ,

σk
nC = σk

nd − σk
nt = Ck

np εk
pG + Ck

nn εk
nG − λk

n T k , (30)

where subscript C indicates the constitutive equations and G the geometrical ones.
The coefficients λk

p and λk
n are linked to the coefficients of thermal expansion αk

p

and αk
n by:

λk
p = λk

pp + λk
pn = Ck

pp αk
p + Ck

pn αk
n ,

λk
n = λk

np + λk
nn = Ck

np αk
p + Ck

nn αk
n , (31)

with the elastic coefficients allocated in the following four sub-arrays:

Ck
pp =



Ck

11 Ck
12 Ck

16

Ck
12 Ck

22 Ck
26

Ck
16 Ck

26 Ck
66


 , Ck

pn =



0 0 Ck

13

0 0 Ck
23

0 0 Ck
36


 ,

Ck
np =




0 0 0
0 0 0

Ck
13 Ck

23 Ck
36


 , Ck

nn =



Ck

55 Ck
45 0

Ck
45 Ck

44 0
0 0 Ck

33


 . (32)
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The thermal expansion coefficients and the coefficients of thermo-mechanical cou-
pling are:

αk
p =



αk

11

αk
22

0


 , αk

n =




0
0

αk
33


 , λk

pp =



λk

pp1

λk
pp2

λk
pp3


 , λk

pn =



λk

pn1

λk
pn2

λk
pn3


 ,

λk
np =




0
0

λk
np3


 , λk

nn =




0
0

λk
nn3


 . (33)

4.3. Fundamental nuclei

This section presents the derivation of governing equations based on the Principle
of Virtual Displacements (PVD) in case of a multilayered shell subjected to ther-
mal and/or mechanical loads. A closed form solution will be developed considering
particular materials and boundary conditions. The procedure permits to obtain
the so-called fundamental nuclei which are simple matrices representing the basic
elements from which the stiffness matrices of the whole structure can be computed.

We consider a multi-layered shell with Nl layers. The PVD for the thermo-
mechanical case reads:

Nl∑

k=1

∫

Ωk

∫

Ak

{
δεk

pG

T
σk

pC + δεk
nG

T
σk

nC

}
dΩkdz =

Nl∑

k=1

δLk
e , (34)

where Ωk and Ak are the integration domains in plane (α,β) and z directions,
respectively. k indicates the layer and T the transpose of a vector. δLk

e is the external
work for the kth layer. G means geometrical relations and C constitutive ones. σk

pC

and σk
nC contain the mechanical (d) and thermal (t) contributions, so:

Nl∑

k=1

∫

Ωk

∫

Ak

{
δεk

pG

T
(σk

pd − σk
pt) + δεk

nG

T
(σk

nd − σk
nt)

}
dΩkdz =

Nl∑

k=1

δLk
e . (35)

The steps to obtain the governing equations are:

• substitution of geometrical relations (subscript G),
• substitution of appropriate constitutive equations (subscript C),
• introduction of the CUF (see Section 2).

The complete procedure to obtain the governing equations and the fundamental
nuclei are reported in a previous author’s work [Brischetto and Carrera, 2009].
Here, the governing equations are reported in general form for a multilayered shell
subjected to thermal and mechanical loadings:

δuk
s

T
: Kkτs

uu uk
τ = −Kkτs

uθ θk
τ + P k

uτ (36)
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with related boundary conditions on edge Γk:

Πkτs
d uk

τ − Πkτs
t θk

τ = Πkτs
d ūk

τ − Πkτs
t θ̄k

τ , (37)

where (-Kkτs
uθ θk

τ ) is the thermal load and P k
uτ is the external mechanical one. The

fundamental nuclei Kkτs
uu and Kkτs

uθ have to be assembled by expanding the indices
as described in the following: via τ and s we consider the expansion in z for the
considered variables, and via k the assembling on the number of layers is accom-
plished.

Considering the Eqs.(26), the fundamental nuclei are:

Kkτs
uu =

∫

Ak

[(
−Dk

p + Ak
p

)T (
Ck

pp(D
k
p + Ak

p) + Ck
pn(Dk

np + Dk
nz −Ak

n)
)
+

(
−Dk

np + Dk
nz −Ak

n

)T (
Ck

np(D
k
p + Ak

p)+

Ck
nn(Dk

np + Dk
nz −Ak

n)
)]

FsFτHk
αHk

βdz , (38)

Kkτs
uθ =

∫

Ak

[(
−Dk

p + Ak
p

)T (
− λk

p

)
+

(
−Dk

np + Dk
nz −Ak

n

)T

(
− λk

n

)]
FsFτHk

αHk
βdz , (39)

Πkτs
d =

∫

Ak

[
IkT

p

(
Ck

pp(D
k
p + Ak

p) + Ck
pn(Dk

np + Dk
nz −Ak

n)
)
+

IkT
np

(
Ck

np(D
k
p + Ak

p) + Ck
nn(Dk

np + Dk
nz −Ak

n)
)]

FsFτHk
αHk

βdz , (40)

Πkτs
t =

∫

Ak

[
IkT

p

(
− λk

p

)
+ IkT

np

(
− λk

n

)]
FsFτHk

αHk
βdz , (41)

with

Ik
p =




1
Hk

α
0 0

0 1
Hk

β

0
1

Hk
β

1
Hk

α
0


 , Ik

np =



0 0 1

Hk
α

0 0 1
Hk

β

0 0 0


 . (42)

4.4. Closed form solution

A Navier-type closed form solution is obtained via substitution of harmonic expres-
sions for the displacements and temperature as well as considering materials with
C16 = C26 = C36 = C45 = 0 and λpp3 = λpn3 = 0.

The following harmonic assumptions can be made for the field variables that
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correspond to simply supported boundary conditions:

uk
ατ

=
∑
m,n

(Ûk
ατ

) cos
(

mπαk

aαk

)
sin

(
nπβk

bβk

)
, k = 1, Nl ,

uk
βτ

=
∑
m,n

(Ûk
βτ

) sin
(

mπαk

aαk

)
cos

(
nπβk

bβk

)
, τ = t, b, r ,

uk
zτ

=
∑
m,n

(Ûk
zτ

) sin
(

mπαk

aαk

)
sin

(
nπβk

bβk

)
, r = 2, N ,

θk
τ =

∑
m,n

(θ̂k
τ ) sin

(
mπαk

aαk

)
sin

(
nπβk

bβk

)
, (43)

where Ûk
ατ

, Ûk
βτ

, Ûk
zτ

and θ̂k
τ are the amplitudes, m and n the wave numbers, and

aαk and bβk the shell dimensions.
The closed-form of fundamental nuclei Kkτs

uu (3 × 3) and Kkτs
uθ (3 × 1) are given

in Brischetto and Carrera [2009].

5. Results and discussion

For all the cases proposed in this section, the temperature amplitude imposed on
the top surface is +0.5, and −0.5 on the bottom. In the case of assumed temperature
profile (Ta), it is always considered linear from the top to the bottom as indicated
in Fig. 3. In the case of calculated temperature profile (Tc), it is obtained by solving
Fourier’s heat conduction equation, as described in Section 3. The thus-calculated
temperature profile is always approximated in Layer Wise form, even though the
employed theory for the displacements is in Equivalent Single Layer form. The order
of expansion used to approximate the temperature profile is the same as that of the
displacements. The temperature profile in the plane (α, β) is always considered
bi-sinusoidal with wave numbers m = n = 1.

Preliminary assessment

The employed theories in the proposed tables have already been validated for
the thermo-mechanical analysis of composite shells in the companion paper by
Brischetto and Carrera [2009]. The proposed refined kinematic models obtained by
CUF have been compared to theories proposed by Khare et al. [2003] and Khdeir
[1996] in the case of composite shells with an assumed linear profile of temper-
ature through the thickness. The effectiveness of CUF to treat such problems is
clearly reported in Brischetto and Carrera [2009]. These validated models can be
used with confidence to study the effects of the through-the-thickness temperature
distribution on the response of composite shells.
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Case 1: isotropic one-layered cylindrical shell

The considered shell has dimensions aα = 1 and bβ = π
3 Rβ = 10.47197551. The

radii of curvature in the α and β directions are 1
Rα

= 0 and 1
Rβ

= 0.1, respec-
tively. The considered thicknesses are h = 2.5, 1.0, 0.1, 0.01, which means thickness
ratios Rβ/h = 4, 10, 100, 1000. The considered material is Aluminum Al5086 with
Young’s modulus E = 70.3GPa, Poisson’s ratio ν = 0.33, thermal expansion co-
efficient α = 24 × 10−6K−1 and conductivity coefficient K = 130W/mK. The
transverse displacement w̄ and the in-plane stress σαβ are calculated in the middle
of the shell in Table 1. Different thickness ratios Rβ/h are investigated. Only ESL

Table 1. Case 1. Isotropic one-layered shell. Non-dimensional transverse displacement
w̄ = 10uzh

a2
ααT1

and in-plane stress σαβ in z = 0. T1 = 1.0 is the gradient of the linear tem-

perature profile. Assumed linear temperature (Ta) vs calculated temperature profile (Tc) for
different applied theories.

w̄ σαβ

Rβ/h 10 100 1000 10 100 1000
ED4 Ta 0.9468 1.2007 0.1151 0.3209 ∗ 104 0.1916 ∗ 105 0.1822 ∗ 105

Tc 0.9062 1.1987 0.1151 0.2847 ∗ 104 0.1913 ∗ 105 0.1822 ∗ 105

ED3 Ta 0.9602 1.2007 0.1151 0.3270 ∗ 104 0.1916 ∗ 105 0.1822 ∗ 105

Tc 0.9415 1.9999 0.1151 0.1379 ∗ 105 0.1928 ∗ 105 0.1822 ∗ 105

ED2 Ta 0.8398 1.1994 0.1151 0.2976 ∗ 104 0.1914 ∗ 105 0.1822 ∗ 105

Tc 0.8398 1.1994 0.1151 0.2972 ∗ 104 0.1914 ∗ 105 0.1822 ∗ 105

ED1 Ta 1.9784 1.8359 0.2189 0.4977 ∗ 104 0.2244 ∗ 105 0.2642 ∗ 105

Tc 1.9784 1.8359 0.2189 0.4977 ∗ 104 0.2244 ∗ 105 0.2642 ∗ 105

FSDT Ta 1.9818 1.7943 0.1715 0.4086 ∗ 104 0.2846 ∗ 105 0.2712 ∗ 105

Tc 1.9818 1.7943 0.1715 0.4086 ∗ 104 0.2846 ∗ 105 0.2712 ∗ 105

CLT Ta 1.9869 1.7985 0.1716 0.4087 ∗ 104 0.2852 ∗ 105 0.2713 ∗ 105

Tc 1.9869 1.7985 0.1716 0.4087 ∗ 104 0.2852 ∗ 105 0.2713 ∗ 105

theories are reported in the table because the shell is one-layered. Ta means a lin-
ear assumed temperature profile in the thickness direction, Tc means a calculated
temperature approximated in the thickness direction with the same order as the
employed kinematic model. In the case of a one-layered shell, when the structure
is very thin, the assumed profile Ta coincides with the calculated Tc one, therefore
a thin shell means a linear temperature profile through the thickness. For thick
shells, the difference between profiles Ta and Tc is much more evident, as illustrated
in Fig. 4 which clearly explains the results of Table 1; there are two sources of error
for the thermo-mechanical analysis of one-layered homogeneous shells: - the em-
ployed kinematic model for the displacement; - the considered temperature profile.
For thick shells, the temperature profile is not linear and it must be calculated by
Fourier’s equation and then approximated with a higher order of expansion (N=4).
The transverse displacement w̄ through the thickness z is reported in Fig. 5 for the
case of a thick and thin shell, respectively. Fig. 5 clearly shows two main aspects
for the thermo-mechanical analysis of shells: - assumed vs calculated temperature
profile; - the importance of a higher-order of expansion for the unknowns.
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Fig. 4. Case 1. Assumed linear temperature (Ta) vs calculated temperature profile (Tc) for one-
layered isotropic cylindrical shell in case of Rβ/h = 4, 10, 100, 1000. N is the order of expansion
employed to approximate the temperature profile.
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Fig. 5. Case 1. Isotropic one-layered cylindrical shell. Non-dimensional transverse displacement
w̄ through z for Rβ/h = 10 and Rβ/h = 1000. Assumed temperature profile (Ta) vs calculated
temperature profile (Tc) for refined models.

Case 2: isotropic two-layered cylindrical shell

The considered shell has the same dimensions and geometrical properties as the
shell indicated in case 1. The considered total thicknesses are h = 2.5, 1.0, 0.1, 0.01
which means thickness ratios Rβ/h = 4, 10, 100, 1000. The bottom layer is in
Al5086 (the same as case 1) while the top layer is in Titanium Ti22 with Young’s
modulus E = 110.GPa, Poisson’s ratio ν = 0.32, thermal expansion coefficient
α = 8.6 × 10−6K−1 and conductivity coefficient K = 21.9W/mK. The two con-
sidered layers have the same thickness h/2. The non-dimensioned quantities in
the tables and figures are dimensioned with the data of aluminum Al5086. Non-
dimensioned transverse displacement w̄ is considered in z = h/4 in Table 2. In this
analysis, both LW and ESL models are considered because the shell is two-layered.
The difference between LW and ESL models, and between the assumed and calcu-
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Table 2. Case 2. Two-layered isotropic shell in alu-
minium and titanium. Non-dimensional transverse dis-
placement w̄ = 10uzh

a2
ααAlT1

in z = h/4. Equivalent Single

Layer vs Layer Wise Theories. T1 = 1.0 is the gradient
of the linear temperature profile. Assumed linear tem-
perature (Ta) vs calculated temperature profile (Tc) for
different applied theories.

Rβ/h 4 10 100 1000

ESL theories

ED4 Ta 0.4068 0.7416 0.7468 0.0325
Tc 0.3075 0.6127 0.7947 −0.0533

ED3 Ta 0.4170 0.7428 0.7470 0.0325
Tc 0.2273 0.5960 0.7941 −0.0535

ED2 Ta -0.3183 0.5089 0.7465 0.0326
Tc -0.2408 0.4300 0.7930 −0.0535

ED1 Ta 1.0680 1.1867 1.1525 0.0956
Tc 1.0504 1.1871 1.3021 0.0254

FSDT Ta 1.2351 1.2694 1.1054 0.0463
Tc 1.2418 1.3566 1.1884 −0.0797

CLT Ta 1.2908 1.2914 1.1096 0.0463
Tc 1.3017 1.3956 1.1966 −0.0797

LW Theories

LD4 Ta 0.4002 0.7472 0.7468 0.0325
Tc 0.3977 0.6385 0.7952 -0.0530

LD3 Ta 0.4242 0.7487 0.7468 0.0325
Tc 0.2982 0.6354 0.7951 -0.0530

LD2 Ta 0.3999 0.7351 0.7467 0.0325
Tc 0.3201 0.5780 0.7938 -0.0530

LD1 Ta 0.3514 0.7319 0.8630 0.0487
Tc 0.3407 0.7053 0.8724 -0.0400

lated temperature profile are clearly shown in Table 2. In this case, even though a
thin shell is considered, there is a difference between the results obtained with Ta

and those obtained with Tc. This fact is clearly explained in Fig. 6: the calculated
temperature profile for thin shells is linear in each layer, but its slope changes be-
cause the layer in Al5086 has a different conductivity coefficient K from the K of
the layer in Ti22. A different K means different slopes because of the continuity
of flux qz in Eq.(11), in this case the two layers have two different values of the
transverse conductivity coefficient K. Eqs.(19) and (23) clearly explain why the
temperature profile is linear for each layer when the shell is thin but with different
slopes. The in-plane stress σαβ , through the thickness z, is reported in Fig. 7 for
both thick and thin shells. Because of what is explained in Fig. 6, the differences
between an assumed and a calculated temperature profile, even though the shell is
thin, are confirmed.
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Fig. 6. Case 2. Assumed linear temperature (Ta) vs calculated temperature profile (Tc) for two-
layered isotropic cylindrical shell in case of Rβ/h = 4, 10, 100, 1000. N is the order of expansion
employed to approximate the temperature profile.
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Fig. 7. Case 2. Isotropic two-layered cylindrical shell. In-plane stress σαβ through z for Rβ/h = 10
and Rβ/h = 100. Assumed temperature profile (Ta) vs calculated temperature profile (Tc) for
refined models.

Case 3: cylindrical shell with two carbon fiber reinforced layers

(0◦/90◦)

The proposed shell has dimensions aα = bβ = 1. The radii of curvature in the α and
β directions are 1

Rα
= 0 and 1

Rβ
= 0.2, 0.1, 0.02. The considered total thicknesses

is h = 0.1. The ratio between Young’s modulus in the longitudinal and transverse
direction is EL/ET = 25.0. The shear modulus ratio is GLT /GTT = 2.5, Poisson’s
ratio is νLT = νTT = 0.25. The ratio between the thermal expansion coefficient in
the transverse and longitudinal direction is αT /αL = 3.0. The conductivity coeffi-
cients are KL = 36.42W/mK in the longitudinal direction and KT = 0.96W/mK in
the transverse direction. The two layers have the same thickness h/2 with sequence
lamination 0◦/90◦. If we consider Fig. 8, it is clearly indicated that the assumed and
calculated temperature profiles are close for a thin shell, but not coincident. The two
layers are made of the same material and when the fiber orientation changes from
0◦ to 90◦, the value of the transverse conductivity coefficient K3 does not change
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Fig. 8. Case 3. Assumed linear temperature (Ta) vs calculated temperature profile (Tc) for two-
layered composite fiber reinforced cylindrical shell in case of Rβ/h = 50, 500. N is the order of
expansion employed to approximate the temperature profile.

and it is the same in the continuity of the transverse heat flux in Eq.(23). Moreover,
if we consider Eq.(19), the coefficient sk

1 does not change because m = n = 1 and
a = b = 1, therefore when the fiber orientation changes from 0◦ to 90◦, the coeffi-
cients K1 and K2 multiply the same quantities. These aspects explain Table 3: the
LD1 and ED1 theories with Ta and Tc give the same results for thin and moderately
thick shells. The slope of the temperature profile does not change in fact from one
layer to another. Due to the two layers, the temperature profile is never linear (even
though the shell is thin) and this means that the same theory gives different results,
depending on the choice of the Ta or Tc profile. The solution added in the Table 3,
called HOST12, is an ESL model with cubic expansion in z direction for the three
displacement components (similar to the ED3 model obtained by CUF). In Khare et
al. [2003] for the HOST12 only an assumed temperature profile has been employed,
and this limitation is clearly outlined in Table 3. The difference for the transverse
displacement w̄ through the thickness z, in the case of a linear temperature profile
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Table 3. Case 3. Two-layered carbon fiber reinforced cylin-
drical shell (0◦/90◦). Non-dimensional transverse displacement
w̄ = uz

b2
β

αLT1
in z = 0. Equivalent Single Layer vs Layer Wise

theories. T1 = 1.0 is the gradient of the linear temperature profile.
Assumed linear temperature (Ta) vs calculated temperature profile
(Tc) for different applied theories.

Rβ/h 50 100 500
ESL theories

HOST12[Khare et al., 2003] Ta 1.1261 1.1434 1.1493
Tc − − −

ED4 Ta 1.1276 1.1434 1.1479
Tc 1.1173 1.1328 1.1371

ED3 Ta 1.1264 1.1422 1.1466
Tc 1.1255 1.1416 1.1463

ED2 Ta 1.1255 1.1411 1.1455
Tc 1.0894 1.1042 1.1083

ED1 Ta 1.1806 1.1959 1.1997
Tc 1.1807 1.1959 1.1997

FSDT Ta 1.1805 1.1959 1.1997
Tc 1.1806 1.1959 1.1997

CLT Ta 1.1834 1.1966 1.1997
Tc 1.1834 1.1966 1.1997

LW theories

LD4 Ta 1.1280 1.1434 1.1477
Tc 1.1179 1.1331 1.1373

LD3 Ta 1.1280 1.1434 1.1477
Tc 1.1271 1.1428 1.1474

LD2 Ta 1.1262 1.1414 1.1457
Tc 1.0911 1.1056 1.1095

LD1 Ta 1.1425 1.1577 1.1620
Tc 1.1425 1.1578 1.1620

and a calculated profile with N = 4 approximation in the thickness direction, is
shown in Fig. 9.

Case 4: cylindrical shell with ten carbon fiber reinforced layers

(0◦/90◦)

The geometry and material properties of this cylindrical shell are the same as case
3. In this case, ten carbon fiber reinforced layers are considered with sequence
lamination 0◦/90◦, the total thickness h is the same as case 3 and each layer has a
thickness h/10. The results of the transverse displacement w̄ are reported in Table 4.
The assumed and calculated temperature profile are never the same because of the
10 layers. The difference between the Ta and Tc profiles is clearly reported in Fig.
10 which clearly explains Table 4: the importance of LW theories, a high order of
expansions and a calculated temperature profile Tc for the analysis of multilayered
composite shells. As for the case 3, the HOST12 model [Khare et al., 2003] has
been added to demonstrate the inadequacy of an assumed temperature profile Ta
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Fig. 9. Case 3. Two-layered carbon fiber reinforced cylindrical shell. Non-dimensional transverse
displacement w̄ through z for Rβ/h = 50 and Rβ/h = 500. Assumed temperature profile (Ta) vs
calculated temperature profile (Tc) for refined models.

for such problems. The in-plane stress σαβ through z is given in Fig. 11 for thin and
very thin shells. The same conclusions obtained for displacements are confirmed for
case of stresses.

6. Conclusions

The effects of a through-the-thickness temperature in multilayered shells have been
analyzed in this paper. Having imposed the values of temperature at the top and
bottom surfaces of the shell, two different profiles have been compared: - an assumed
linear profile from the top to the bottom that does not depend on the number of
layers; - a layer-wise profile, with orders of expansion from linear to fourth, which ap-
proximate the temperature profile in the thickness direction calculated by Fourier’s
heat conduction equation. The importance of refined models for the thermal bend-
ing of multilayered shells has been confirmed. The importance of calculating the
actual temperature profile to obtain a correct thermal loading has been shown by
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Table 4. Case 4. Ten-layered carbon fiber reinforced cylindrical shell
(lamination sequence: 0◦/90◦). Non-dimensional transverse displace-
ment w̄ = uz

b2
β

αLT1
in z = 0. Equivalent Single Layer vs Layer Wise

theories. T1 = 1.0 is the gradient of the linear temperature profile. As-
sumed linear temperature (Ta) vs calculated temperature profile (Tc)
for different applied theories.

Rβ/h 50 100 500
ESL theories

HOST12[Khare et al., 2003] Ta 1.0224 1.0299 1.0325
Tc − − −

ED4 Ta 1.0208 1.0279 1.0301
Tc 0.9642 0.9709 0.9730

ED3 Ta 1.0208 1.0279 1.0301
Tc 0.9640 0.9707 0.9728

ED2 Ta 1.0184 1.0251 1.0271
Tc 0.9572 0.9634 0.9654

ED1 Ta 1.0468 1.0533 1.0551
Tc 0.9872 0.9933 0.9951

FSDT Ta 1.0468 1.0533 1.0551
Tc 0.9872 0.9933 0.9951

CLT Ta 1.0496 1.0540 1.0552
Tc 0.9898 0.9940 0.9951

LW theories

LD4 Ta 1.0207 1.0283 1.0306
Tc 0.9643 0.9715 0.9737

LD3 Ta 1.0207 1.0283 1.0306
Tc 0.9643 0.9715 0.9737

LD2 Ta 1.0207 1.0283 1.0306
Tc 0.9613 0.9684 0.9706

LD1 Ta 1.0207 1.0283 1.0306
Tc 0.9644 0.9715 0.9737

comparing various shell configurations.
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