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Abstract—In this paper, we extend the concept of Stochastic
Packet Inspection (SPI) to support TCP traffic classification.
SPI is a method based on the statistical fingerprint of the
application-layer headers: by characterizing the frequencies of
observed symbols, SPI can identify application protocol formats
by automatically recognizing group of bits that take e.g., constant
values, or random values, or are part of a counter. To correctly
characterize symbol frequencies, SPI needs volumes of traffic
to obtain statistically significant signatures. Earlier proposed for
UDP traffic, SPI has to be modified to cope with the connection
oriented service offered by TCP, in which application-layer
headers are only found at the beginning of a TCP connection.

In this paper, we extend SPI to support TCP traffic, and
analyze its performance on real network data. The key idea is
to move the classification target from single flows to endpoints,
which aggregates all traffic sent/received by the same IP address
and TCP port pair. The first few packets of flows sent from (or
destined to) the same endpoint are then aggregated to yield a
single SPI signature. Results show that SPI is able to achieve
remarkably good results, with an average true positive rate of
about 98%.

I. I NTRODUCTION

Despite the effort devoted to the task of Internet traffic
classification yield to significant progress in the field [1]–
[14], the ultimate and definitive solution is still far from being
available. Deep Packet Inspection (DPI) is still regarded as
the state of the art and deployed in practice, despite it is
well known that the proliferation of proprietary and evolving
protocols and the adoption of strong encryption techniquesare
deemed to make DPI ineffective.

Motivated by the expected raise of UDP traffic volume
due the popularity of application such as P2P-VoIP and P2P-
TV, we proposed in [11] a classification framework tailored
to UDP traffic, based on Stochastic Packet Inspection (SPI).
Considering Deep Packet Inspection (DPI), typically precise
keywords are searched to identify a specific protocol. With a
human analogy, one may try to recognize the foreign language
of an overheard conversation by searching for known words
from a small dictionary (e.g., “Thanks” for English language,
“Merci” for French, “Grazie” for Italian and so on).

At opposite, considering SPI paradigm, the packet payload
is statistically analyzed (e.g., by means of entropy measures,
or Chi-Square tests) to automatically build protocol signatures.
The intuition behind SPI is that an application-layer protocol
can be identified by statistically characterizing the values
observed in a stream of packets. Considering the previous
analogy, this time we aim at recognizing the foreign language

by considering only the cacophony of the conversation, e.g.,
observing the frequencies of the occurrence of symbols like
“x”, or “h”, or “i”. In other words, statistical characterization
of application-headers lets the protocol format emerge, while
ignoring the actual semantic.

The SPI approach has proven very effective in the classifi-
cation of UDP traffic (i.e., over 98% true positive classification
in the worst case, with negligible false positive events [11]).
It is therefore interesting to assess whether SPI could alsobe
used to handle TCP traffic classification as well. Extension of
SPI to TCP traffic is indeed not straightforward: SPI typically
needs volumes of traffic (e.g., several tens of packets), being
based on statistical characterization.

Recalling that UDP offers a connectionless service, each
segment has to carry the application-layer header. Moreover,
possible message segmentation has to be handled at applica-
tion layer. As a consequence, applications relying on UDP
have to include headers in each UDP segment, which SPI
techniques can then reliably extract and characterize.

On the contrary, TCP offers a connection oriented service,
according to which the application stream of data may be
segmented into several TCP segments, among which only the
first ones may carry the application-layer header. This contrasts
with the need for volumes of traffic to build statistically
significant SPI signatures.

To extend SPI to TCP traffic, we propose to shift the
classification target from a single flow to an aggregate of flows:
more precisely, we consider TCP endpoint entities, that canbe
uniquely identified by the server IP-address and server TCP-
port pair. In this case, rather than constructing signatures over
several segments of a single TCP flow, we aggregate the first
few segments of several flows originated from (or destined
to) the same server endpoint into a single SPI signature. Our
results show that TCP endpoint aggregation is an effective
approach that yields reliable signatures: SPI classification
achieves remarkable results considering TCP traffic, showing
an average and worst-case true positive rate of 98% and 91%
respectively considering most common applications.

II. RELATED WORK

Since port-based classification has become unreliable, three
coarse classes of approaches have been proposed for Internet
traffic classification [1]–[14]. Our work can be ascribed among
Payload-based techniques, such as DPI [1]–[3], with an
important difference. DPI techniques indeed inspect packet



payload for the presence of known strings. The main idea
of SPI is to give instead a statistical characterization of
the observed values in the payload, automatically identifying
constant, random, or periodic values. SPI is also differentfrom
Statistical-basedclassifications [4]–[8], which are based on
the rationale that, being services extremely diverse (e.g., Web
vs VoIP), so is the corresponding traffic (e.g., short burstsof
large packets vs regular arrivals of short packets). Therefore,
the classification can be based on statistical characterization
of e.g. packet sizes, or inter-packet-gap, while completely
ignoring actual payload values. Finally,Behavioral-based
classification [9], [10], [12] targets a coarse-grained classifica-
tion of Internet hosts on the basis of the transport layer traffic
patterns they generate. For example, a Peer-to-Peer application
generates and receives lot of connections, while an email client
typically contacts only a single server, and a web client never
receives connections.

III. SPI FRAMEWORK

A. SPI Chunks

Statistical fingerprints can exploit a number of different
metrics, such as for instance the Entropy measure, the Pear-
son’s χ2 measure, the Kullback-Leibner divergence, etc. In
the reminder of this paper, we evaluate the performance of
SPI when its signatures are expressed usingχ2 metric defined
by a Pearson Chi-Square test.

The original test estimates the goodness-of-fit between
observed samples of a random variable and a given theo-
retical distribution. Assume that the possible outcomes ofan
experiment areK different values andOk are the empirical
frequencies of the observed values, out ofM total observations
(
∑

Ok = M ). Let Ek be the number of expected observations
of k for the theoretical distribution,Ek = M · pk with pk the
probability of valuek. Given aM large, the random variable
X

X =
K

∑

k=1

(Ok − Ek)
2

Ek

(1)

represents the distance between the observed empirical and
theoretical distributions. The distribution ofX can be ap-
proximated by a Chi-Square, orχ2, distribution withK − 1
degrees of freedom. In the classical goodness of fit test, the
values ofX are compared with the typical values of a Chi-
Square distributed random variable: the frequent occurrence
of low probability values is interpreted as an indication ofa
bad fitting.

In SPI, we build a similar experiment analyzing the values
taken by groups of bits having a fixed offset in the packet
payload, calledchunks. After a given number of packets (each
giving an observation), the empirical distribution is collected
and then compared to theuniform distribution, so to measure
the amount of randomness of a chunk as an estimate of the
source entropy. Notice that, by doing so, SPI is able to cope
also with obfuscated or encrypted chunks [6].

Fig. 1. SPI signatures of TCP traffic:G groups ofb-bits long chunks are
extracted from the firstP packets ofF different flows (withC = F · P )
originated from (or destined) to the same endpoint(IP, p).

For the time being, let us consider a single traffic stream.
More precisely, consider an arbitrary payload chunkx of b
consecutive bits, and observe the values taken by the chunk
over a stream ofC packets: due to the fact that the chunk
is b-bits long, we have thatx can take values in[0, 2b − 1].
Denoting withO

(x)
i

the number of times that chunkx takes a
value i ∈ [0, 2b − 1], we have:

χx =
2b

−1
∑

i=0

(

O
(x)
i

− Ei

)2

Ei

with Ei =
C

2b
(2)

Intuitively, χx achieves low values (≃ 0) whenever the chunk
under observation has a random behavior (e.g., due to obfus-
cation, encryption, compression, etc.). In case of deterministic
behavior (e.g., a constant identifier, address, etc.), we have
thatχDet = (2b −1)C, which is also the maximum value that
χxcan take. For convenience, we renormalize theχx as:

ωx =
χx

(2b − 1)C
(3)

Chunks have thereforeωx ∈ [0, 1].

B. SPI Signatures

SPI signatures are then build by aggregating together the
ω values of several chunks. As outlined in Fig. 1, the first
N bytes of the payload (i.e., the application protocol header)
are divided intoG groups of b consecutive bits each.C
observations of each chunks (i.e.,C packets) are necessary
to form the SPI signature.

In the case of UDP, allC packets identified by the same
tuple (IPsrc, UDPsrc, IPdst, UDPdst) belong to the same
flow. Conversely, in case of TCP, the segmentation introduced
at the transport layer reduces the chances that a TCP segment
carries the application protocol header. However, we can
expect that the very first few segments of each flow carries
information that are specific to each protocol (e.g., as in
behavioral classification approaches [7], [8] that exploitthe
size and arrival time of the first few packets of a flow).

We therefore consider a TCP endpoint, that is uniquely
individuated by the server IP address and TCP port pair



(IP, p). We assume to be at the edge of the network, where all
the endpoint traffic transits, and separately consider the two
traffic directions, i.e., the traffic directed to, and the traffic
originated from the endpoint(IP, p). As outlined in Fig. 1,
signatures are computed by observing theG groups of chunks
over the firstP packets ofF consecutive flows originated from
(or destined to) the same endpoint, whereP and F satisfies
C = P · F :

ω̂ = {ω1, ω2, . . . , ωC} (4)

The rationale behind SPI signaturesω̂ is that they allow to au-
tomatically discover application layer message header format
without needing to care about specific values of the header
fields (e.g., known keywords). Indeed, we expect application
header to contain fields such as constant identifiers, counters,
words from a small dictionary (message type, commands,
flags, etc), or truly random values coming from encryption
or compression algorithms. These coarse classes of fields can
be easily distinguished through the operation in (2). While
randomness test provides only a coarse classification over
individual groups, by jointly considering a set ofG groups
as in (4) the fingerprint becomes extremely accurate. Notice
indeed that theposition and lengthof the different fields within
the application protocol header will likely be different from
protocol to protocol.

C. SPI Parameter Selection

SPI signatures depend on a number of parameters, some
of which are tied to the extension of SPI to TCP endpoint
classification (such asP ,F ), whereas others (such asb, C and
N ) pertain to theω metric. Here we report guidelines on their
selection, and refer the reader to [11], [15] for a more detailed
sensitivity analysis.
Bits per group (b = 4). The choice ofb = 4 trade-offs
opposite needs. On the one hand,b should be as closest as
possible to typical length of protocol fields (e.g.,b should be
4 or 8 or a multiple of 8). On the other hand,b should be small
enough to enable statistically significant test over the smallest
possible windowsC, to allow live classification if possible.
Packet window (C = 80). While we would like to keep the
packet window as small as possible, theχ2 test is considered to
be statistically significant if the number of samples for each
value is at least 5. Having chosenb = 4, in order to have
Ei = C/2b equal to 5, we needC = 80. Sensitivity toC is
evaluated in [11].
Number of bytes per packet (N = 12). In general, clas-
sification accuracy increases with the number of bytes per
packet. However, complexity of the classification increases
also with theN , in terms of both memory and computational
complexity. As a convenient trade-off we chooseN = 12.
Given b = 4, this value corresponds toG = 24 groups for
each signature. Notice that, as can be seen from Fig. 2, a fewer
number of bytes and chunks may be sufficient to successfully
discriminate different protocols.
Number of packets per flow (P = 5). The segmentation
imposed by TCP yields an upper bound onP , the maximum

(a) (b)

Fig. 2. Example of SPI signatures of HTTP (a) and SMTP (b) protocols,
server endpoint is the destination.

number of packets at the beginning of a flow carrying appli-
cation header at the beginning of the payload. As far as the
number of packets per flow is concerned, we employP = 5
which was observed to be a good value in [7], [8]. Sensitivity
analysis toP is provided in [15].
Number of flows per endpoint (F=C/P=16). Constraints
on C and P yield a lower bound onF = 16, the minimum
number of flows to observe before an endpoint classification
decision can be taken. This translates into a constraint on
the classification timeliness, i.e., how fast and frequently
classification can be taken, since the start ofF different flows
have to be observed prior that a classification decision can be
taken. Notice however that, the more active the endpoint, the
quicker the identification (which is beneficial since operators
are interested in classifying volumes of traffic, and shouldpose
no problem in discriminating between active endpoints such
as server vs P2P).

D. Example of SPI signature

An example of SPI signatures for two different protocols,
namely HTTP and SMTP is given in Fig. 2. It is derived con-
sidering segments of client requests directed toward the server
endpoint. Average SPI signatures over 100 different endpoints
are reported. In the example, parameters are set to their default
values as stated above. The classical header representation is
adopted, representing chunks in network order from left to
right, top to bottom. Four bytes are reported on each row
(i.e., 8 chunks) and, for reference, bit offsets are reported
at the top. Each chunk reports theω value, which is also
visually represented with different scale of gray. Lightercolors
correspond to higher values ofω, suggesting deterministic
fields, while darker colors correspond to low values ofω,
hinting to random fields. First of all, comparison of Fig. 2-
(a) and Fig. 2-(b) confirms that, though the randomness test
provides only a coarse classification over individual groups,
and expressive fingerprints can be built by considering the
whole set ofG chunks. This allows to clearly differentiate
between protocols.

To grasp the SPI signatures expressiveness, let us first con-
sider the case of the Web service, implemented over the simple
and stateless HTTP protocol, whose SPI signature is reported
in Fig. 2-(a). In the HTTP case, requests directed toward the
server often begins with “GET /”: the high occurrence of
this 5-characters string translates into the first 10 chunksto
be almost deterministic (highω values). Variability of the first
chunks is due to the fact that server can receive other HTTP



methods thanGET (e.g., POST, HEAD, PUT). Variability of
subsequent chunks is instead tied to the different resources
that can be specified after the method (e.g., URL in case of
GET, parameters in case ofPOST, etc.).

Interestingly, HTTP uses an ASCII alphabet, which trans-
lates also into a reduced set of values chunks can take. Givena
byte, since we useb = 4 bits long chunks, an ASCII encoded
character is splitted into two chunks, corresponding to themost
and least significant part of the byte respectively. The most
significant chunk shows higher determinism (ω≃0.6), while
least significant chunk shows higher randomness (ω ≃0.3).
For example, consider the ASCII uppercase letters{A,. . .,Z}
which take hexadecimal values in{0×41,. . ., 0×54}. The most
significant bits of a character fall into a chunk that takes only
values of 4 and 5. Conversely, least significant bits falls into a
chunk that takes any possible values from 0 to 15. This leads
to differentω values, i.e., a different randomness. In Fig. 2-(a),
the impact of ASCII encoding can be appreciated by observing
the alternation of lighter and darker chunks.

Let us now consider the SMTP protocol signature reported
in Fig. 2-(b). Recall that an SMTP client contacts a server
with the typical sequence of commandsEHLO, MAIL, RCPT,
DATA. Notice that these commands are 4-characters long
(which correspond to 8-chunks) and, with the exception of
the DATA command, are followed by a space character and
some parameters of variable length. Since several commands
are used during the same session, there is a larger number of
observed symbols, which therefore decreaseω of correspond-
ing chunks. Also in the SMTP protocol case, commands are
encoded using ASCII alphabet, causing a higherω value for
most significant chunks than for least significant chunks.1 The
highly probable space character at the 5th byte causes the 9th
and 10th chunks to take deterministic values, as the highω
value observed in such position shows. Chunks corresponding
to characters after the 5th position may contain any symbol
of the ASCII alphabet, (e.g., angle brackets to enclose mail
addresses, etc.) or user data, which then decrease theω values
of corresponding chunks.

E. Decision process

After SPI signature have been computed for some known
TCP protocols, classification implies to label samples accord-
ing to the most similar signature. We resort to a supervised
machine approach, in which the decision algorithm is first
trained using a set of labeled samples, which are characterized
by the ω̂ features as from Eq. (4). After the training phase,
the decision algorithm is then used to classify samples. In
this paper, we rely on state of the art technique known in the
literature as Support Vector Machines (SVM) [16]. SVM has
only recently been applied to the context of Internet traffic
classification [11]–[13], but it is considered among the most
powerful supervised algorithm. Due to lack of space, we refer
the reader to [16] for a good tutorial.

1The higher variability of the first 8 chunks is also due to other possible
commands (e.g.,VRFY), the presence of old clients (e.g.,HELO instead of
EHLO), clients using lower case letters, etc.

Fig. 3. Classification Workflow

TABLE I
AMOUNT OF BYTES, PACKETS, FLOWS, TCP ENDPOINTS AND

SPI SIGNATURES IN THE CONSIDERED DATASET.

Protocol Bytes Packets Flows TCP SPI
[·109] [ ·106] [ ·103] Endpoints Signatures

HTTP 343.67 507.08 6531.19 177 114222
FTP 0.04 0.65 19.39 21 229
IMAP 0.73 1.34 2.49 10 66
POP 3.40 7.74 156.39 25 3551
Skype 1.95 20.38 145.22 322 2752
SMTP 61.00 126.61 4917.20 56 83677
SSH 8.84 19.47 31.64 141 304
Other 453.83 744.53 13400.98 1512 46773
Total 873.46 1427.80 25204.5 2246 251574

IV. CLASSIFICATION RESULTS

A. Workflow

The overall workflow of SPI classification and validation
is depicted in Fig. 3. As usually done in the literature, SPI
performance is validated against the ground truth providedby
an oracle. The oracle is used to split the packet trace file into
different sub-traces, one for each protocol. For each sub-trace,
we then compute the SPI signatures for each TCP endpoint.
A subset of these signatures, uniformly selected at random,is
used to train the SVM. As a result, SVM produces a “model”
that is used during the classification process.

Signatures that have not been used for training purpose
constitute the validation set: the SVM model is applied to
this set, and SVM decisions are then compared against oracle
labels to evaluate the correctness of the classification results.

Notice that the SVM training phasepartitions the signature
space into a number of regions equal to the number of
protocols offered during the training: this implies that a sample
will always be classified as belonging to any of the known
classes. Thus, an additional label is needed for all samplesthat
do not belong to any of the above protocols: in the following,
we refer to these protocol as the “Other” set, comprising the
applications that we cannot classify or are not interested in
classifying.

B. Dataset

Unfortunately, due to privacy issues, the scientific commu-
nity lacks a common reference dataset used to benchmark



the different proposal [1]–[12] although valuable effort in that
direction is going on [13], [14]. For this reason, we evaluate
the SPI performance using a traffic trace collected during may
2008 at the egress router of Politecnico di Torino network.
The traces correspond to a one week long dataset, in which
about 7000 internal hosts exchange data with more than 3
million different hosts in the Internet. Details concerning the
traffic volume, in terms of the number bytes, packets, flows,
endpoints and signatures, are given in Tab. I. The table reports
the total traffic volume, and the breakdown across the most
common application protocols considered in this work, namely
HTTP, FTP, IMAP, POP, Skype, SMTP, SSH, Other.

In this paper we focus only oninternal endpoints,i.e.,
servers whose IP address is internal to our LAN. Recall that
we need to observe several flows involving a single endpoint
to gather a single signature, and thus take a classification
decision. In case of external endpoints, this means that several
of our internal hosts have to contact the same endpoint to
collect enough packets to compute the signature. While this
is not an issue for popular external server and protocols (e.g.,
popular Web sites), however it limits the number of protocols
we could use considering the dataset we use in this paper.

Our dataset includes more than 250000 signatures, that refer
to about 2250 endpoints. As expected, Web service constitutes
the bulk of traffic, while a fairly large amount of incoming
SMTP traffic is present. The protocols we consider account
for about one half of the traffic (in terms of bytes, packets
and flows), yielding to a large fraction of the traffic to be
labeled as “others”, which therefore includes all P2P traffic.

Concerning the number of available signatures, notice that
each internal endpoint has to be contacted byF different hosts
of at leastP packets to compute the signature. The number of
signatures per protocol depends on the arrival pattern as well
as on the flow length as well.

C. DPI Oracle

As already pointed out in [2], the definition of a reliable
DPI oracle is a daunting task, that we have to carry on due to
the lack of a labeled dataset. Except for the Skype protocol,
for which we resort to [6], we devise a two-stages DPI oracle,
defined as follows.

• Port filter : The first phase only involves TCP port num-
ber. We consider only those flows whose TCP destination
port correspond to the corresponding service well-known
port, i.e., 80 for HTTP, 22 for SSH, and so on. By doing
so, we forcibly miss some endpoint. For example, HTTP
servers running on port 8080 or on other non-standard
ports end-up in the “other” protocol sub-trace. However,
this choice yields to a conservative evaluation of the
classification performance results.

• Protocol syntax check: The second phase involves ap-
plication protocol check, that is done using the Wireshark
tool. Wireshark is a well-know sniffer which is able to
parsethe headers of known protocols. In case during the
parsing Wireshark fails to identify the protocol, we move

TABLE II
CLASSIFICATION PERFORMANCE FOR TRAFFIC DIRECTED TO(TOP) OR

ORIGINATED FROM (BOTTOM) THE SERVER-SIDE ENDPOINT.

DST HTTP FTP SMTP IMAP Skype SSH POP Other
HTTP 94.94 0 0.06 2.58 0 0 0 2.39
FTP 0 98.59 0 0 0 0 0.03 0
SMTP 0 0 99.86 0 0 0 0 0
IMAP 0.02 0 0 90.97 0 0 0 0
Skype 0.01 0 0 0 100 0 0 0.05
SSH 0.05 0 0 0 0 100 0 0.03
POP 0.01 1.31 0.02 2.9 0 0 99.94 0
Other 4.97 0.1 0.06 3.55 0 0 0.03 97.53

SRC HTTP FTP SMTP IMAP Skype SSH POP Other
HTTP 91.63 0 0.07 1.54 0 0 0 13.99
FTP 0.35 98.98 0.02 0 0 0 0 1.05
SMTP 0 0.03 99.45 0 0 0 0.03 0.03
IMAP 0 0 0 58.08 0 0 0 0
Skype 0.01 0 0 0 100 0 0 0.03
SSH 0.15 0 0 0 0 100 0 0.05
POP 0 0 0 0 0 0 99.59 0
Other 7.86 0.99 0.46 40.38 0 0 0.38 84.85

the flow to the sub-trace containing all the other protocols
since it is syntactically wrong.

D. Performance evaluation

Evaluation of classification performance is conducted over
the entire dataset, by comparing the SVM labels to the DPI
oracle labels for each signature.

Results reported in this section refer to a test in which
the training set containing 5000 signatures, proportionally
balanced across protocols. Each test is repeated 10 times, by
randomizing the training set at each execution, and validating
the model on the remaining signatures. Average results over
all 10 iterations are reported in the following.

In particular, 1800 training signature are used to describe
the “other” protocol set, since this set comprises possibly
several protocols and its proper description requires thatsuch
protocols are well represented in the training set. A sensitivity
analysis to the training set size is not reported due to lack
of space. Readers are referred to [15], which shows that, even
considering only 35 signatures per each of the known protocols
the classification results are minimally compromised. Thisis
a consequence of the discriminative power of SVM, whose
performance are known to be highly robust even in presence
of few learning samples.

Tab. II summarizes the results. Aconfusion matrixrepre-
sentation is used, in which each column corresponds to a sub-
trace filtered by the DPI oracle, which is fed to a trained SVM,
whose output labels are reported on each row. Thus, diagonal
elements of the confusion matrix account for True Positive
classification (i.e., a protocol labeled asX by DPI is also
labeled asX by SVM). Conversely, cells outside the diagonal
refer to misclassified signatures: a protocol labeled asX by
DPI is labeled asY by SVM; this decision accounts for False
Positive classification ofY and False Negative classification
of X.

Results considering the two different traffic directions are
reported. Top (bottom) portion of the table reports the case



where traffic is destined to (originated from) the internal server
endpoints. Notice that, although classification results are very
good in both cases, best results are obtained when traffic is
destined to the server endpoints. This is visible for HTTP,
IMAP and Other protocols. The intuition behind this is that
the client protocol requests are easier to characterize than the
server replies, which can be more variable. For example, HTTP
requests use limited set of protocol keyword as discussed in
Sec. III-D, while server answers can be much more different.

Focusing on traffic destined to the server, we gather that true
positive rate classification always exceeds 90.97%, with an
average of about 97.62%. Compared to the UDP classification
results presented in [11] which yielded a 98% true positive
rate in the worst case, the classification performance of TCP
traffic decreases. This is somehow expected: in the UDP case,
application protocol headers are present in each segment,
yielding to very reliable SPI signatures; in the TCP case, the
TCP connection oriented service and segmentation algorithms
affect the SPI signatures, that are possibly computed over both
application protocol headers and actual data carried in thefirst
5 TCP flow segments.

V. D ISCUSSION AND CONCLUSIONS

This paper focused on the classification of TCP endpoints
by means of Stochastic Packet Inspection. Even though SPI
achieves remarkably good results, (average and worst case
true positive rate of about 98% and 91% respectively), there
is room for improvement, especially when compared to the
results achieved by SPI for UDP traffic.

Two possible directions could be undertaken to improve SPI
performance. The first implies to find an optimal value forP ,
which clearly depends on the length of the application protocol
keywords. However, it is likely that there is no single valueof
P that is optimal for all protocols, as already observed in [8]. A
second direction could be instead of using SPI signatures based
on the Predictive Entropy: in this case, the SPI signatures
would statistically encode anexpected sequence(rather than
an expected frequence) of chunks, yielding to more robust
signatures.

Finally, we are currently testing the SPI classifier to include
also other classes of traffic, and in particular Peer-to-Peer
traffic. Preliminary results are very promising, and shows that
SPI has excellent performance also for those kind of traffic.
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