
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Software-Based Self-Test of Set-Associative Cache Memories / DI CARLO, Stefano; Prinetto, Paolo Ernesto; Savino,
Alessandro. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. - STAMPA. - 60:7(2011), pp. 1030-
1044. [10.1109/TC.2010.166]

Original

Software-Based Self-Test of Set-Associative Cache Memories

Publisher:

Published
DOI:10.1109/TC.2010.166

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2352719 since:

IEEE Computer Society



Software-Based Self-Test of Set-
Associative Cache Memories
Authors: Di Carlo S., Prinetto P., Savino A.

Published in the IEEE Transactions on Computers Vol. 60 ,No. 7, 2001, pp. 1030-1044.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final 
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5499464

DOI: 10.1109/TC.2010.166

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for resale 

or redistribution to servers or lists, or reuse of any copyrighted component of this work in 

other works.

!Politecnico di Torino



1

Software-Based Self-Test of Set-Associative
Cache Memories

Stefano Di Carlo, IEEE Member , Paolo Prinetto, IEEE Member, Alessandro Savino

Abstract—Embedded microprocessor cache memories suffer from limited observability and controllability creating problems during
in-system tests. This paper presents a procedure to transform traditional march tests into software based self test programs for set-
associative cache memories with LRU replacement. Among all the different cache blocks in a microprocessor, testing instruction caches
represents a major challenge due to limitations in two areas: (i) test patterns which must be composed of valid instruction opcodes;
and (ii) test result observability: the results can only be observed through of the results of executed instructions. For these reasons the
proposed methodology will concentrate on the implementation of test programs for instruction caches. The main contribution of this
work lies in the possibility of applying state-of-the-art memory test algorithms to embedded cache memories without introducing any
hardware or performance overheads and guaranteeing the detection of typical faults arising in nanometer CMOS technologies.

Index Terms—Memory testing, microprocessor testing, cache memories, Software Based Self Test.

F

1 INTRODUCTION

THE industry trends for improving microprocessor
performances impose the adoption of large hierar-

chical memory subsystems including up to four levels
of cache memories [1], [2]. Cache memories are high-
speed buffers used to temporarily hold information that
is likely to be used during the execution of programs.
As a result, larger and larger portions of the die areas of
microprocessors are nowadays devoted to cache mem-
ory blocks, e.g., multiple levels of instruction and data
caches, translation look-aside buffers, and prediction ta-
bles. For instance, 30% of the Alpha 21264 chip area, 50%
of the Pentium 4 chip area, and 60% of the StrongARM
chip area are allocated to cache structures [3], [4].

Cache memories are in large part based on Static
Random Access Memory (SRAM) arrays. At feature
sizes below 65nm, SRAM cells are strongly impacted by
local variability and random defects [5]. Cache memories
will therefore be affected by both typical SRAM fault
mechanisms and control logic specific faults. Testing is
thus essential to guarantee the quality of next generation
computers [6]. However, compared to SR AM testing,
cache memories provide limited controllability and ob-
servability of internal memory arrays.

Even though Built-In-Self-Test (BIST) proved to be
very useful to test memories, the area overhead for
relatively small blocks such as caches of embedded
processors is not negligible [7]. Software Based Self Test

S. Di Carlo, P. Prinetto, and A. Savino are with the Department of Con-
trol and Computer Engineering, Politecnico di Torino, Corso Duca degli
Abruzzi 24, Torino, Italy. E-mails: {stefano.dicarlo, paolo.prinetto, alessan-
dro.savino}@polito.it.
Manuscript received x xxx. xxxx; revised xx xxx. xxxx; accepted xx xxx.
xxxx; published online xx xxxx xxxx.
Recommended for acceptance by xxxx.
For information on obtaining reprints of this article, please send e-mail
to: tc@computer.org, and reference IEEECS Log Number TC-2009-06-0250.
Digital Object Identifier no. xxx

(SBST) represents a very attractive test alternative for
microprocessor testing [8], [9]. SBST does not aim at
replacing traditional BIST approaches, but at increasing
and supplementing them to reach higher test quality.
During SBST the processor executes self-test programs
from the on-chip cache or from the system’s memory.
The primary advantage of SBST is its non-intrusive na-
ture and its capability of using processor resources and
Instruction Set Architecture (ISA) to test the processor
itself. It minimizes the need for high-cost functional
testers, enables at-speed testing, and can be re-used
for periodic on-line testing [10]. Moreover, testing is
performed in the processor’s normal operation mode
without extra power consumption or area overheads.

SBST approaches have been proposed by many re-
search and development groups [11], [12], [13]. Nev-
ertheless, in most of them, cache memory testing is
only vaguely mentioned. SBST of cache memories re-
quires several interaction between the processor and the
main memory where the test program is stored. While
this does not represent a problem for microprocessors
embedded into a complex system-on-chip (SoC) where
the main memory is usually available at test time, it
may introduce strong limitations for testing stand-alone
processors where the main memory should be available
on the test board, or at least properly emulated by the
test equipment.

This paper proposes a methodology to exploit the
ISA of a processor to translate generic march tests [14]
into SBST programs for set-associative cache memories.
Besides concentrating on the definition of a general test
program, the paper focuses on defining guidelines to
produce test programs customized for specific micro-
processors, and for specific classes of faults. Among all
the different cache blocks in a microprocessor, testing
instruction caches represents a major challenge due to
limitations in two areas: (i) test patterns which must



2

be composed of valid instruction opcodes; and (ii) test
result observability: the results can only be observed
through of the results of executed instructions. The pro-
posed methodology will therefore concentrate on testing
this type of memories. The main contribution of this
work lies in the possibility of applying state-of-the-art
memory test algorithms to embedded cache memories
without introducing any hardware or performance over-
heads. While this work focuses on testing the cache
memory arrays, we will also show how the generated
test programs guarantee a reasonable fault coverage on
the control logic. The results of this research have been
used to implement a test program for the instruction
cache of the LEON3 microprocessor [15].

The paper is organized as follows: Section 2 presents
related works in the field of cache memory testing,
while Section 3 introduces basic concepts about cache
memories. Section 4 shows how to build a march test for
a set-associative cache memory, while Section 5 shows
how to translate this type of march test into a SBST
program. Section 6 applies the proposed test strategy
to the LEON3 microprocessor, and finally Section 7
summarizes the main contributions of the paper and
outlines future works.

2 RELATED WORKS
Previous solutions for in-system testing of cache memo-
ries fall into two main categories: hardware-based solu-
tions, and software-based techniques.

2.1 Hardware-based solutions
Hardware-based solutions mainly rely on SRAM self-
testing techniques.

Pei et al. [16] propose an exhaustive study of new
functional fault models for drowsy SRAM cache memo-
ries and a new march test (March DWOM) designed for
memory BIST implementations.

Bhunia at al. [17] propose the modification of the cache
structure to improve IDDQ (quiescent supply current)
testing sensitivity.

Tan et al. [18] propose a memory BIST device able to
apply an improved March C [14] to L1 and L2 caches.

Agrawal et al. [19] propose a process variations tol-
erant cache architecture to improve yield in nanoscale
technologies that resorts to an internal BIST facility to
identify faulty cache lines.

The main drawback of these solutions is that they
require considerable modifications of the initial cache
design. Moreover, to limit hardware and performance
overheads, they implement simple march tests only, not
considering emerging SRAM fault models [20].

2.2 Software-based solutions
Several solutions for cache testing have been proposed as
part of microprocessor SBST. They consider embedded
cache memories and face the problem of their limited

accessibility. Raina et al. [21] present a random approach
for testing the PowePC microprocessor cache. Verhallen
et al. [22] introduce a systematic approach to on-chip
cache testing as part of the memory subsystem of a
microprocessor, and apply it to the Intel i860. Bhavsar
at al. [23] suggest a solution for SBST of the data cache
of a microprocessor, whereas the instruction cache is
tested by BIST techniques. The main drawbacks of these
solutions are that cache testing is only outlined and only
simple test algorithms (e.g., March B [14]) are proposed.

Sosnowski [24] generalizes the approach proposed in
[22] introducing a march-like test algorithm taking into
account whether the cache is used to store data or
instructions. This solution has the main advantage of
considering both data and instruction caches. Moreover,
it can easily be translated into as SBST program. Its
main drawback is that it proposes a predefined test
algorithm, and its extension to more complex fault
models is not clear. This solution is improved in [25]
exploiting available microprocessor circuitry to increase
test observability (e.g., performance monitors and on-
line error detectors).

Tuna et al. [26] focus on developing a test program
for the data array of an instruction cache, providing an
interesting analysis of the test cost in terms of program
size and test time. Unfortunately, both the directory
array of the cache and the control circuitry are neglected.
Moreover, the implemented test algorithms only target
simple fault models such as stuck-at faults and transition
faults.

An SBST algorithm devoted to test the cache control
circuitry is proposed in [27]. This technique relies on
an accurate timer to validate cache memory operations.
Whenever an accurate timer is not available an alter-
native solution based on the use of an Infrastructure
Intellectual Property core (I-IP) is proposed [28].

Some publications propose the transformation of
march-like test sequences to test cache memories. Al-
Harbi et al. [29] present a methodology to translate
generic march tests into test sequences for the directory
array of cache memories. The procedure allows the same
fault detection of the original test to be preserved but it is
limited to direct mapped caches with write-back policy.
Although the authors mention that this translation can
be extended to set-associative memories, they do not
show how this could be done, and they neglect both
write-through cache memories and the transformation
of translated march tests into SBST programs. In [30]
we introduced a methodology to translate generic march
tests into equivalent versions for testing the memory
arrays of set-associative cache memories with both write-
back and write-through policy. While the paper provides
a theoretical foundation to build efficient test procedures,
the transformation of the obtained test algorithms into an
SBST program for instruction caches is not considered.

To the best of our knowledge, a general methodology
for writing SBST programs for the instruction cache of
a microprocessor, taking into account user defined fault



3

lists, is still missing.

3 CACHE MEMORY OVERVIEW

Cache memories speed up the microprocessor memory
access by storing recently used data [31]. During every
reference to main memory, the cache checks whether it
already stores the requested information (cache hit), or
not (cache miss). In the former case the information is
directly delivered to the processor, while in the latter case
it is pulled up from the underlying memory subsystem.
The cache internal organization comprises two memory
arrays managed by a cache controller circuitry (Fig. 1).
The data array holds the actual cached information, e.g.,
programs’ instructions or data, while the directory array
is a small and fast memory that stores portions of the
address of cached memory locations (tags). To minimize
the number of requests to the memory subsystem the
minimum allocation unit of the data array, called cache
line, holds a set of nW memory words.

Cache ControllerProcessor 
Interface

Memory Subsystem 
Interface

TAG CACHE LINE

....

Directory Array

....

Data Array

Figure 1. General cache architecture

The way a cache stores data depends on its mapping
schema, the most used ones being set-associative, and
direct-mapped. A set-associative cache memory (Fig. 2) is
organized into nS sets, each one containing nL cache
lines also referred to as ways. Each main memory location
is mapped to a set, and can be stored in any of its nL
cache lines. To deal with this schema a N bit memory
address A = [t, ↵, �] is split into three portions:

• the offset (�), represented by the O = log2 (nW ) less
significant bits of A, identifying a specific word of
the cache line,

• the index (↵), represented by the middle I =
log2 (nS) bits of A, identifying the set where the
desired information can be stored, and

• the tag (t), represented by the T = N � I � O
most significant bits of the address, identifying the
content of the directory array used to tag the cached
information.

Data TagsData Tags

nS

=

CPU

Tag(t) Index(α) Offset(β)
Tag Index Offset

nL (2-way)

Set

cache line cache line

N 
nW

LSBMemory Address

T I O 

=

Hit/Miss control logic

Figure 2. 2-way set-associative cache memory

Every time the microprocessor accesses a memory
word with address W = [tw, ↵w, �w], the set ↵w is
searched associatively for tw. If a cache hit occurs, the
desired memory word is identified in the target cache
line through the offset �w. Otherwise, (cache miss) the
cache line containing the desired information is loaded
from the memory subsystem. If a free cache line in the
target set is available it is used to store the desired
information; if not, a cache line is discarded and replaced
by the desired one. Among the different policies used to
identify the cache line to replace in case of cache miss
we consider the LRU (Least Recently Used) replacement
algorithm that discards the least recently used lines, first.

A direct-mapped cache is a special instance of a set-
associative cache with nL = 1. In a direct-mapped cache
each memory address is associated with a single cache
line. This simplifies the cache structure (no need for
associative search into the set) at the cost of reduced
efficiency.

Several read and write policies can be implemented
in a cache memory for both cache hits or misses. When-
ever a cache miss occurs during a read operation, the
following policies can be implemented:

• read-through: while the target cache line is loaded, as
soon as the desired word is available it is directly
transferred from the main memory to the CPU, and

• no-read-through: the target cache line is first loaded
into the cache, and then the required information is
transferred to the CPU.

There are two common policies on write hits:

• write-back: when the system writes to a cached mem-
ory location it only updates the cache content. When
the cache line is replaced by a new one the updated
words are written back into main memory. This type
of cache provides high performances because it
saves on time-consuming write cycles to memory;

• write-through: when the system writes to a cached
memory location it updates both the cache and
the main memory at the same time. This solution
provides worse performances than write-back, but it
is simpler to implement and guarantees consistency
between cache and main memory. It is therefore
particularly suited for multiprocessor architectures.

The write miss has also two common options:

• write-allocate: when the system writes to a non-
cached memory location it loads the block into the
cache and then starts a write-hit action, and

• no-write-allocate: when the system writes to a non-
cached memory location it modifies the block di-
rectly into the main memory without loading the
block into the cache.

All combinations of hit and miss policies are feasible.
Write-back caches usually use write-allocate miss policy
whereas write-through caches often use no-write-allocate
policy.



4

4 APPLYING MARCH TESTS TO CACHE MEM-
ORIES

March tests are probably the most used class of memory
test algorithms [14], [32], [33]. They detect faults by
performing write and read&verify operations on the
target memory.

A march test is a sequence of march elements (ME)
composed of memory operations applied to each cell
of the memory. After all operations of a ME have been
applied to a cell, they are applied to the next one
determined by the considered addressing order (AO) (*
for the ascending AO, + for the descending AO, m for
any AO).

The application of march tests to cache memories is
not trivial due to limited controllability and observability
of the internal arrays. At a low level, the memory arrays
are usually organized into banks of SRAM cores. This
organization influences the way faulty behaviors man-
ifest, and therefore the way test algorithms have to be
applied. To cope with the worst case this paper considers
single bank memory arrays. In this case all cells of the
core may equally participate to different coupling fault
mechanisms.

Let us consider a set-associative cache organized into
nS sets, each containing nL cache lines. To apply a march
test to this memory the correct AO should be generated
to “march” both through the sets of the cache, and,
for each set, through the different cache lines. Given a
generic memory address A = [t, ↵, · ], where the offset �
is not specified since the entire cache line is considered as
a single memory word, the index ↵ allows us to address
the sets of the cache in the desired order.

More complex is addressing cache lines of a single
set since they are directly managed by the cache
replacement algorithm. Considering an empty cache
with LRU replacement strategy (see Section 3) nL
consecutive write operations on the same set using
distinct tags will address nL different cache lines in a
sequence, thus filling the set completely. Once the set is
full the same sequence of tags can be used to produce
several times the same addressing sequence into the
set. This strategy can be used to build a specific cache
addressing order as follows:

Definition 1: A way-in-index addressing order (WIIAO)
is a cache specific addressing mechanism allowing to
address in the desired way the different sets of the cache
and, for each set, the different cache lines. Two WIIAOs
can be defined:

• ascending, denoted as "nS�1
↵=0 "nL�1

i=0

� �
, where ↵ and

i define the address A = [ti 2 T,↵, · ] on which to
apply cache operations, and

• descending, denoted as #0
↵=nS�1#0

i=nL�1

� �
.

In both cases T is an n-tuple of nL distinct tags used to
address the cache lines composing a set:

T = ht0, t1, . . . , tnL�1i |ti 6= tj ,8i, j 2 [0, nL� 1] ^ j 6= i
(1)

The addressing sequence generated by the WIIAO
changes based on the initial state of the cache, and on
the first addressing order used in the test algorithm.
Nevertheless, according to the march test theory [14], the
addressing sequence identified by the ascending WIIAO
is always the opposite of the one generated by the
descending one. Fig. 3 shows an example of sequences
for a cache with two ways (nL = 2) and two sets
(nS = 2). The values the different tags assume depend
on the target memory array, i.e., data array vs. directory
array, and will be detailed in the next subsections.

t0 t1

t0 t1

Way 1

t0 t1

t0 t1

(a) Ascending and descending addressing sequences in 
case of  march test starting with the ascending WIIAO.

t1 t0

t1 t0

t1 t0

t1 t0

Way 2

Set 1

Set 2

Way 1 Way 2

Set 1

Set 2

Set 1

Set 2

Set 1

Set 2

Way 1 Way 2 Way 1 Way 2

ASCENDING WIIAO DESCENDING WIIAO

(a) Ascending and descending addressing sequences in 
case of  march test starting with the descending WIIAO.

ASCENDING WIIAODESCENDING WIIAO

Figure 3. Examples of way-in-index addressing sequences

With the introduction of the WIIAO, the following ba-
sic cache operations can be used to build cache memories
march tests:

• w([t, ↵, (all | any | �)], DB): represents a cache write
operation of DB into the cache line with address
[t, ↵, (all | any | �)]. The offset of the address may
assume three different values:

– all: the full cache line is considered,
– any: any word in the cache line can be used,

and
– �: the word with offset � is considered.

• r([t, ↵, (all | any | �], DB): represents a cache
read&verify operation. The cache line with address
[t, ↵, (all | any | �)] is read and compared with the
expected pattern DB. Again the offset is used to
decide whether the full cache line or a single word
of it should be considered.

• r([t, ↵, (all | any | �])]): represents a simple cache
read operation. It behaves as a read&verify opera-
tion but the result of the read is not verified.

In all the above defined operations DB represents a
data background pattern [34], i.e., a generic sequence
of bits written in the data array of the cache. For each
DB a complemented pattern DB, obtained from DB by
complementing its bits, must also be defined. The size
of DB depends whether the corresponding operation is
working on a complete cache line or on a portion of it.



5

Looking at Fig. 3 it is clear that, even if cache lines
are organized in sets and ways, the WIIAO allows us
to address them linearly, i.e., similarly to the way a
SRAM addresses memory words during the execution of
a march test. By properly implementing the previously
defined cache memory operations it is therefore possible
to produce test sequences addressing the same type of
faults addressed by traditional march tests, i.e., single
cell faults, and coupling faults among cache lines either
located in a single set or in different sets. Moreover,
by translating march tests developed for word-oriented
memories [34], it is possible to detect intra-word faults
in a single cache line.

4.1 Data array
By using the WIIAOs and the cache operations defined
in Section 4 translating a march test into an equivalent
version able to test the data array of a set-associative
cache memory is straightforward. Eq. 2 introduces a set
of rewriting rules providing a one to one correspondence
between the traditional march test notation and the cache
memory notation.

w1 ! w([ti, ↵, all], DB); w0 ! w([ti, ↵, all], DB)
r1 ! r([ti, ↵, all], DB); r0 ! r([ti, ↵, all], DB)

*!"nS�1
↵=0 "nL�1

i=0

� �
; +!#0

↵=nS�1#0
i=nL�1

� �
(2)

The only consideration about this translation concerns
the definition of the set T of tags to use in the WIIAO (eq.
1). Eq. 3 shows an example of tags for a cache with four
ways. The value of each tag is not relevant. In this test
tags represent an indirect addressing mechanism allow-
ing to address cache lines of a set. The actual addressing
is managed by the replacement algorithm (LRU in our
case) that allocates cache lines based on the diversity of
tags and not on their absolute value. Obviously, faults
can influence this mechanism but, since tags are stored
in the directory array, they will be considered separately
in Section 4.2. The value of each tag can thus be freely
chosen to fit the size of the main memory on the target
system.

T = ht0 = ”0 . . . 00”, t1 = ”0 . . . 01”,

t2 = ”0 . . . 10”, t3 = ”0 . . . 11”i
(3)

This translation schema allows the application of any
type of march test to the data array of a set-associative
cache memory with LRU replacement.

Fig. 4-b shows the translation of the SOA March C- -
[35] of Fig. 4-a.

4.2 Directory array
The first important thing to highlight when testing the
directory array of a cache is that both write and read
operations can be only performed in an indirect way
working on the data array. Tags represent the actual

(a) SOA March C - -

* (w1)
M0

;* (r1, w0, w1)
M1

;* (r1, w0)
M2

;* (r0, w1, w0)
M3

;* (r0)
M4

(b) Data Array Cache SOA March C - -

M0 : "nS�1
↵=0 "nL�1

i=0 (w([t
i

, ↵, all] , DB))

M1 : "nS�1
↵=0 "nL�1

i=0
`
r([t

i

, ↵, all] , DB), w([t
i

, ↵, all] , DB)

w([t
i

, ↵, all] , DB)
´

M2 : "nS�1
↵=0 "nL�1

i=0
`
r([t

i

, ↵, all] , DB), w([t
i

, ↵, all] , DB)
´

M3 : "nS�1
↵=0 "nL�1

i=0
`
r([t

i

, ↵, all] , DB), w([t
i

, ↵, all] , DB),

w([t
i

, ↵, all] , DB)
´

M4 : "nS�1
↵=0 "nL�1

i=0
`
r([t

i

, ↵, all] , DB)
´

Figure 4. Translation of SOA March C - - for the data array

test patterns. They need to change properly in order to
produce the desired marching sequence. Eq. 4 introduces
a preliminary set of rewriting rules to translate march
tests for the directory array (the symbol ’�’ denotes that
the value written in the cache line is not relevant).

w1 ! w([ti, ↵, all],�); w0 ! w([ti, ↵, all],�)
r1 ! r([ti, ↵, all],�); r0 ! r([ti, ↵, all],�)
*!"nS�1

↵=0 "nL�1
i=0

� �
; +!#0

↵=nS�1#0
i=nL�1

� �
(4)

Again, the definition of the set T of tags to use in the
WIIAO is the key element of this translation. Since tags
are used as test patterns, according to the march test
theory, both a pattern (tag ti 2 T ), and a complemented
pattern (tag ti) have to be defined. Eq. 5 shows an
example of tags for a cache with four ways.

T = ht0 = ”0 . . . 00”, t1 = ”0 . . . 01”,

t2 = ”0 . . . 10”, t3 = ”0 . . . 11”i
T =

⌦
t0 = ”1 . . . 11”, t1 = ”1 . . . 10”,

t2 = ”1 . . . 01”, t3 = ”1 . . . 00”
↵

(5)

Unfortunately, the translation proposed in eq. 4 is
somehow limited by the cache replacement mechanism.
Two are the main limitations:

1) It is not possible to perform two write operations,
or a read followed by a write operation, with
different tags on the same cache line. In fact, the
first access to the line (either read or write) marks
it as the most recently used (MRU) in the set. Based
on the LRU policy any tentative of writing a new
tag not already contained in the set will cause the
LRU line to be replaced (i.e., written). This line will
be for sure different from the one marked as MRU;

2) It is not possible to write cache lines belonging to
a set in reverse addressing order. Cache lines of a
set are written according to the LRU replacement
process. Let us consider a cache with two ways. Ac-
cording to Def. 1, two consecutive write operations
on the same set, performed with distinct tags, will
address two different cache lines. At the end of the
sequence the first addressed line will be the LRU



6

one. Any attempt of writing a new tag will address
this line, thus reproducing the same sequence and
making impossible to reverse the addressing order.

A simple solution to tackle with these problems is to
introduce a set of additional read operations to arti-
ficially modify the access time of the cache lines of
a set, thus obtaining the desired addressing sequence.
For this purpose, we introduce an additional march test
operation called reordering (RO) defined as:

RO(↵Pt) = {r([tk, ↵, any] ,�),8tk 2 Pt} (6)

where Pt is the set of tags stored in the set ↵ associated to
cache lines with access time older than the one associated
to t. This operation is implemented as a sequence of
read operations on those cache lines with access time
older than the one containing the tag t. At the end
of the sequence the line containing t will be therefore
the LRU one assuring the possibility of performing a
write operation on it. Reordering operations should be
included before each write operation of the march test
with the following two exceptions:

• if the first march element starts with a write oper-
ation and has an ascending addressing order, the
write operation does not require the reordering;

• if the march element begins with a write operation
and its addressing order is equal to the addressing
order of the previous march element, the first write
operation does not require the reordering.

The reordering obviously increases the march test com-
plexity. Nevertheless, the number of additional read
operations is proportional to the number nL of cache
lines per set that is usually lower then the number of
sets of the cache. A possible way to keep this overhead
as low as possible is to use Single Order Addressing
(SOA) march tests [35] to save the re-ordering sequence
at the beginning of march elements starting with write
operations.

In addition to the addressing problem, read&verify
operations represent another critical element of the pro-
posed translation schema. In fact, the value of a tag is
not directly readable. However, faults into the directory
array lead to a set of stored tags different from the
expected one. Any attempt of reading the content of lines
associated to a missing tag will generate an unexpected
cache miss that can be used as a fault detection condi-
tion. The problem is therefore shifted to the identification
of unexpected cache misses.

In general a read operation can detect a cache miss
if there exists a difference between the content of the
target cache line and the content of the corresponding
main memory locations. In this situation, in case of miss,
the value read from the main memory is different from
the one expected from the cache and the miss can be
easily identified. Depending on the write policy of the
cache this condition can be implemented in two different
ways.

In a cache with write-through policy, the cache content
is always consistent with the memory content. This
is the worst situation. The only way to introduce a
difference between the cache and the main memory is
to temporarily disable the cache, and to directly write
the desired value in main memory. Most of the modern
microprocessors (e.g., Pentium, PowerPC, Sparc) allow
this operation using particular instructions. This, in turn,
requires to modify the translation rules proposed in eq. 4
according to eq. 7, where the notation [·]M identifies an
operation performed directly in main memory without
using the cache. In this new translation schema data
background patterns (DB) are used to identify a cache
miss.

w1 !w([ti, ↵, all], DB)
w0 !w([ti, ↵, all], DB)
r1 !

⇥
w([ti, ↵, all], DB)

⇤
M

r([ti, ↵, all], DB)
r0 !

⇥
w([ti, ↵, all], DB)

⇤
M

r([ti, ↵, all], DB)

(7)

In the case of write-back the policy already comprises
the possibility of having the cache and the main mem-
ory in an inconsistent state. In this type of caches the
memory is written back only in case of replacement.
Let us consider the following operation w([ti, ↵, all], DB)
that writes DB and ti in a cache line of the set ↵.
Whenever this cache line is replaced by a new one
owing a different tag tj the main memory at address
[ti, ↵, all] is updated with DB. If now a new operation
w([ti, ↵, all], DB) on the same line but with different
pattern DB is performed, the cache is updated while
the main memory at address [ti, ↵, all] remains equal to
DB thus creating the required difference.

This situation can be generated by the following mod-
ifications to the translation rules proposed in eq. 4:

• each write operation must use a data background
pattern complemented with respect to the one
used by the previous write of the same type, e.g.,
a march test containing the following operations
* w0 . . . w0 . . . will be translated into "nS�1

↵=0 "nL�1
i=0�

w(
⇥
ti, ↵, all

⇤
, DB) . . . w(

⇥
ti, ↵, all

⇤
, DB)

�
, and

• all main memory locations involved in the test
should be initialized with a data background pattern
complemented with respect to the one used by the
first write operation of the march test. This can
be performed by introducing a set of initialization
march elements.

Given this constraints, the read&verify can be imple-
mented by reading the cache line and checking that
the obtained value is the one expected in the cache
and not the one contained in the main memory. Some
microprocessors also provide hardware features to count
the number of cache misses both in the data and in the
instruction cache, thus providing an efficient solution to
reduce the test complexity. For example, the Intel Pen-
tium family provides a set of performance monitoring
facilities (RDMSR instruction) that include the possibility



7

of counting the number of cache misses during the
execution of a sequence of instructions [3]. Obviously
this solution is applicable both to write-back and write-
through caches.

Fig. 5 shows the translation of the SOA March C- -
for testing the directory array of both write-through (a)
and write-back (b) cache memories. Fig. 6 shows the
application of the first portion of the translated march
test to a write-back cache memory with nS = 1 , and
nL = 2 where a faulty entry in the directory array
transforms the tag t0 into a different tag t⇤0 during a write
operation. Elements in bold identify addressed cells.
Steps 1 to 4 execute the initialization march elements
M�2 and M�1. They initialize the memory with a pattern
DB complemented w.r.t. the one used in M0. Steps 5 and
6 execute M0. The fault is sensitized in step 5. Finally
Step 7 detects the fault since the read operation returns
C instead of the expected value DB. C represents here a
value used to initialize the main memory when the test
starts.

5 FROM MARCH TEST TO SBST
The march test translation methodology proposed in Sec-
tion 4 provides a theoretical framework to build march
tests ready to be used on a generic cache memory. Nev-
ertheless, additional effort is required to translate them
into SBST programs. While the translation for a data
cache by mapping each cache read/write operation into
a sequence of load/store instructions with opportune
addresses and data patterns is straightforward, building
a test program for an instruction cache is a challenging
problem. The proposed approach exploits the Instruction
Set Architecture (ISA) of the microprocessor to build ba-
sic read and write operations. For the sake of generality
we will consider a generic ISA containing instructions
commonly available on most of the modern micropro-
cessor families. A specific and detailed implementation
for a target case study will be provided in Section 6.

From the test program point of view the instruction
cache is a read-only memory: instructions are fetched
from the memory subsystem into the cache during the
program execution and never written-back into memory.
Each cache line (CL) is therefore composed of a sequence
of valid instructions and can be represented as a n-tuple:

CL =< i1, i2, . . . , iz >, ii 2 ISA (8)

Depending on the microprocessor architecture, the
number z of instructions that fit a cache line can be fixed
(RISC microprocessors) or variable (CISC microproces-
sors). This strongly affects the way backgrounds patterns
(Sections 4.1 and 4.2) used to build march tests can
be defined, and therefore the achievable test coverage.
Moreover, read and write operations have a completely
different meaning w.r.t. the one they have in a data cache.

A cache line is written whenever the microprocessor
executes an instruction stored in a non-cached memory
location (cache miss). This event forces the cache to

load the full line (see Section 3). A write operation can
be therefore implemented by forcing the test program
to enter a non-cached memory area. A read operation
occurs when cached instructions are actually executed.
To verify the result of a read operation (read&verify),
instructions should be defined in such a way to pro-
duce unambiguous final results that, compared with the
expected ones, allow to perform the verification. The
implementation of the read&verify operation represents
one of the main issues for the translation of a cache
march test into a SBST program.

Additional issues are posed by the correct implemen-
tation of the addressing mechanism. During the execu-
tion of the test program, when the last instruction of a
cache line is completed, the program moves to the next
one. This involves accessing a new cache line whose
address may violate the desired marching sequence. It
is therefore mandatory to structure the test program
in such a way to precisely respect the structure of the
original march test. A very efficient solution to this
problem consists in splitting the test program into two
sections, as reported in Fig. 7:

1) a control program implementing the addressing se-
quence and the read verifications. It must be stored
in a not-cacheable memory area to avoid corruption
of test patterns applied to the cache, and

2) a test patterns section storing the actual patterns,
i.e., sequences of instructions to be loaded in cache
representing the actual test operations. This code
must be stored in a cacheable portion of the main
memory.

Being able to control the cacheability of different mem-
ory areas is a key requirement for the implementation
of an efficient SBST program. Modern microprocessors
provide different mechanisms to implement this feature,
thus making this solution widely applicable to several
real cases. The program partitioning proposed in Fig. 7
can be either logical or physical depending on the way
cacheability is controlled on the microprocessor.

Given this structure each march element of a cache
march test can be translated into a control program
composed of two nested loops implementing the WIIAO,
containing, for each memory operation a call to a specific
function:

• write(tag,index,DB): based on the target cache line it
forces the control program to jump to the memory
area (target) containing the appropriate test pattern
(DB). The target is calculated based on both the
tag and the index involved in the operation. The
target cache line should be organized in such a
way to contain instructions able to immediately
return the control to the write function after the
cache line being completely loaded in cache. A cache
line can be therefore split into two portions (eq.9):
(i) a Test Instructions Sequence (TIS) including
instructions required, when executed, to perform
a read operation, and (ii) a Control Instructions



8

(a) Directory array SOA March C - - for write-through cache

M0 : "nS�1
↵=0 "nL�1

i=0
`
w([t

i

, ↵, all] , DB)
´

M1 : "nS�1
↵=0 "nL�1

i=0
`h

w([t
i

, ↵, all] , DB)
i

M

, r([t
i

, ↵, all] , DB), RO(P
t̄

i

), w(
ˆ
t
i

, ↵, all
˜

, DB), RO(P
t

i

), w([t
i

, ↵, all] , DB)
´

M2 : "nS�1
↵=0 "nL�1

i=0
`h

w([t
i

, ↵, all] , DB)
i

M

, r([t
i

, ↵, all] , DB), RO(P
t̄

i

), w(
ˆ
t
i

, ↵, all
˜

, DB)
´

M3 : "nS�1
↵=0 "nL�1

i=0
`ˆ

w(
ˆ
t
i

, ↵, all
˜

, DB)
˜

M

, r([t̄
i

, ↵, all] , DB), RO(P
t

i

), w([t
i

, ↵, all] , DB), RO(P
t̄

i

), w([t̄
i

, ↵, all] , DB)
´

M4 : "nS�1
↵=0 "nL�1

i=0
`ˆ

w(
ˆ
t
i

, ↵, all
˜

, DB)
˜

M

, r(
ˆ
t
i

, ↵, all
˜

, DB)
´

(b) Directory array SOA March C - - for write-back cache. M�1 and M�2 are the initialization march elements required to implement
read&verify operations for write-back caches

M�2 : "nS�1
↵=0 "nL�1

i=0
`
w([t

i

, ↵, all] , DB)
´

M�1 : "nS�1
↵=0 "nL�1

i=0
`
w(

ˆ
t
i

, ↵, all
˜

, DB)
´

M0 : "nS�1
↵=0 "nL�1

i=0
`
w([t

i

, ↵, all] , DB)
´

M1 : "nS�1
↵=0 "nL�1

i=0
`
r([t

i

, ↵, all] , DB), RO(P
t̄

i

), w(
ˆ
t
i

, ↵, all
˜

, DB), RO(P
t

i

), w([t
i

, ↵, all] , DB)
´

M2 : "nS�1
↵=0 "nL�1

i=0
`
r([t

i

, ↵, all] , DB), RO(P
t̄

i

), w(
ˆ
t
i

, ↵, all
˜

, DB)
´

M3 : "nS�1
↵=0 "nL�1

i=0
`
r([t̄

i

, ↵, all] , DB), RO(P
t

i

), w([t
i

, ↵, all] , DB), RO(P
t̄

i

), w(
ˆ
t
i

, ↵, all
˜

, DB)
´

M4 : "nS�1
↵=0 "nL�1

i=0
`
r(

ˆ
t
i

, ↵, all
˜

, DB)
´

Figure 5. Translation of SOA March C - - for the directory array

Step Operation Cache Memory Main Memory

T D T D [t0, ↵, all] [t1, ↵, all]
ˆ
t0, ↵, all

˜ ˆ
t1, ↵, all

˜
[t⇤, ↵, all]

1 M�2 : w([t0, 1, all] , DB) t⇤
0 DB ? ? C C C C C

2 M�2 : w([t1, 1, all] , DB) t⇤0 DB t1 DB C C C C C

3 M�1 : w(
ˆ
t0, 1, all

˜
, DB) t0 DB t1 DB C C C C DB

4 M�1 : w(
ˆ
t1, 1, all

˜
, DB) t0 DB t1 DB C DB C C DB

5 M0 : w([t0, 1, all] , DB) t⇤
0 DB t1 DB C DB DB C DB

6 M0 : w([t1, 1, all] , DB) t⇤0 DB t1 DB C DB DB DB DB

7 M1 : r([t0, 1, all] , DB) t⇤
0 C t1 DB C DB DB DB DB

8 M1 : r([t0, 1, all] , DB) t⇤0 C t1 DB C DB DB DB DB

Figure 6. Example of test application for a write-back cache with nS = 1 , nL = 2

Sequence (CIS) able to jump back to the control
program. CIS represents the actual target address
of the jump firing the write operation. The way TIS
and CIS are implemented and organized in a cache
line depends on the target memory array and will
be detailed in the next subsections.

CL = h
TISz }| {

< i1, . . . , ij >,

CISz }| {
< ij+1, . . . , iz >i (9)

• read(tag,index,DB): similarly to the write operation
the control program resorts to a jump instruction to
force the execution of a certain memory area. Since
read instructions operate on cache lines previously
initialized by a write operation, and therefore al-
ready loaded in cache, the execution of the cache
line induces a read operation. The same CIS intro-
duced in the write operation allows returning to the
control program and starting the verification of the
execution results.

• reordering(tag,index): this function implements the
reordering operation RO defined in eq. 6. Since it
simply requires to access a set of cache lines in order
to update their access time, it can be implemented
by a sequence of jumps to the CIS of each cache line

of Ptag (see eq. 6). Since all the considered lines will
already be stored in cache, this operation will just
modify their access time leaving the cache content
untouched.

Both the directory array and the data array test pro-
grams require full access to the complete addressing
space of the microprocessor in order to generate the
required set of tags, regardless the real main mem-
ory size. Modern microprocessors implement memory
management facilities (such as Memory Management
Units) that can be exploited to overcome this limitation
by introducing a virtual memory addressing space. Full
access to a wide main memory space can be therefore
provided even if a small amount of physical memory is
available.

Before detailing the test implementation for the two
directory arrays, it is worth mentioning that, during the
execution of the test, faults into the cache may lead
to program’s exceptions (e.g., illegal instruction, access
violation, etc.). Software exceptions should be therefore
considered as the evidence of a fault, and proper excep-
tion handling routines should be configured to deal with
these conditions.



9

Instruction Cache

Main Memory

CONTROL PROGAM (not cacheable)

// March element
for α ← 0 .. nS - 1 do
   for i ← 0 .. nL - 1 do
     ...
     write (ti,α,DB);
     ...
     ret=read (ti,α,DB);
     if (ret ≠ OK) then test fail
     ...
   done
done

function write (tag, index, DB)
   target ← [tag,index,cisoffset];
   retadd ← retwrite;
   jump target;
   retwrite:
end

function read (tag, index, DB)
   target ← [tag,index,0];
   retadd ← retread;
   jump target;
   retread: verify_read();
end

function reordering (tag, index)
   for each t in T do
     if (t<>tag) target ←[t,index,cisoffset]
     retadd ← retread;
     jump target;
 retread: done
end

TEST PATTERNS (cacheable)

/* TIS */
...
/* CIS */
cisoffset: jump retadd

/* TIS*/
...
/* CIS */
cisoffset:jump retadd

TAG

Test Pattern loaded in cache

/* TIS*/
...
/* CIS */
cisoffset:jump retadd

TAG

/* TIS */
...
/* CIS */
cisoffset: jump retadd

/* TIS*/
...
/* CIS */
cisoffset:jump retadd

TAG

Figure 7. Test program structure

5.1 Data Array Test Patterns

Testing the data array of the instruction cache implies the
definition of background patterns composed of micro-
processor instruction opcodes and operands. According
to the march test theory for each background pattern DB
a complemented pattern DB should be defined, as well.
This, in turn, requires the identification of two TISs (eq.
9) having two properties: (i) the two sequences should be
coded by two complemented patterns of bit (TIS, TIS)
and (ii) the execution of each sequence must provide a
distinct result.

Fig. 8 graphically shows the structure of two generic
sequences of instructions respecting the above men-
tioned properties: the two sequences of bits are com-
plemented and their execution provides distinct results
observable through registers r0 and r3.

The better way to define these sequences is to resort
to instructions with immediate operands that provide
the maximum freedom in manipulating the instruction
code. When choosing the instructions composing the
test patterns the internal memory architecture should be
also considered. In particular bit swizzling techniques

00000001 11111100

add r0, r0, 1 => 00000001 load r3, 0xD  => 11111100

load r3, 0xE => 11111110 add r0, r0, 3  => 00000011

11111110 00000011

TIS

TIS

Figure 8. TIS example for the data array

may lead to physical organization of the memory bit
different from the logical ones. Test patterns should
be constructed respecting march test properties at the
physical level.

Whenever the ISA of the microprocessor does not
allow the definition of two complemented TIS the test
should be executed several times using different patterns
to reach the maximum fault coverage, thus increasing
the overall test complexity. Nevertheless, modern micro-
processors (see Section 6), offering very extensive ISAs,
usually provide test designers with enough alternatives
for constructing the desired TIS.

Even if an efficient TIS can be defined the CIS
reduces the coverage of the march test since it does not
respect the properties required to behave as a march
test pattern. Both single cell faults and coupling faults
affecting the portion of the cache line containing CIS
may escape. To cover the full cache line and therefore
to maintain the original march test coverage, the test
should be executed more than once, properly changing
the position of CIS into the cache line. Fig. 9 shows three
different configurations able to cover coupling faults
between cells belonging to two cache lines, and single
cell faults (in this case only two out of three configura-
tions are required). Dashed arrows represent couplings
between portions of the lines that cannot be covered by
the configuration, while solid arrows represent couplings
that can be covered by the configuration. Applying
all these configurations together with the WIIAO, both
single cell faults and coupling faults among cache lines,
either belonging to the same set or to different sets, can
be detected.

CIS TIS

CIS TIS

CISTIS

CISTIS

CISTIS
1

TIS
2

CISTIS
1

TIS
2

Figure 9. Cache line organization

In order to show how the different configurations
influence the execution of the test, Fig. 10 shows the
execution of a march test designed to cover a specific



10

type of idempotent coupling fault expressed by the fault
primitive < 0a0v, wa

1/1v/� >, a < v. The first execution
places CIS at the beginning of the cache line. In this
configuration when, during a read operation, TIS is
executed, CIS of the next cache line is used to return
to the control program. This introduces a partial read of
the next cache line that does not reduce the efficiency
of the test. In this case, in the memory initialization
step, all locations not touched by the test but adjacent
to a TIS have to be filled with CIS. In the second
execution CIS is placed at the end of the cache line. This
is the simplest situation, since the test execution exactly
follows the march test flow without introducing extra
read operations. The third execution represents the most
complex situation. CIS is placed between two TISs.
This modifies the execution of the read operation that
starts executing TIS1, jumps back to the control program
through CIS, and then jumps again to the test to execute
TIS2. After executing TIS2 a partial read operation of
the following cache line is introduced to reach the next
CIS and to return to the control program.

The proposed implementation still presents a major
problem: how performing two consecutive write opera-
tions on the same cache line? Since the instruction cache
is a read-only memory the only solution to overcome the
problem is to force the cache to replace the desired line
by a new content. Two solutions are possible:

1) the control program modifies the content of the
main memory to reflect the new DB, if required,
and the target cache line is invalidated to force the
replacement of its content by the new one. This is
a very efficient solution. However, it requires the
possibility of invalidating single lines of the cache
and disabling the data cache to access the main
memory from the control program. In alternative,
prefetch instructions may be used. The main prob-
lem here is that some of these functionalities might
not be available in all microprocessors;

2) different copies of test patterns can be stored in dif-
ferent portions of the main memory. This solution
does not require specific cache control instructions,

3) and the invalidation is not required since the pat-
tern is written using a different address. The cache
replacement algorithm directly influences the oper-
ations. The reordering operation (Section 4) is used
to actually invalidate a cache line by changing the
access time of the remaining ones.

Both solutions are possible, depending on the micro-
processor’s ISA. In the former case, once the control
program replaces the code and invalidates the cache line,
a write operation loads the new pattern in cache. In
the latter solution each pattern is stored in a different
memory area, thus defining a set of “equivalent cache
patterns” to be used in consecutive write instructions.
Two addresses Ai ([ti, ↵i, �]), and Aj ([tj , ↵j , �]) can be
used to store equivalent cache patterns iff ↵i = ↵j , and
ti 6= tj .

5.2 Directory Array
The implementation of an SBST program for the direc-
tory array does not face the same problems of the data
array since, in this case, instructions do not represent test
patterns. The code loaded in cache should only be able
to produce the desired sequence of tags and to detect
faulty conditions. Being the instruction cache a read only
memory, similarly to a write-through cache, its content is
always consistent with the content of the main memory.
According to Section 4.2 faults can be therefore detected
by artificially creating a difference between the cache
and the main memory content. The general structure of
read and write instructions previously presented in this
section is therefore still valid:

• write: the control program uses a jump instruction
to force the cache to load a memory location chosen
according to its address. The target location should
simply contain an instruction able to immediately
jump back to the control program;

• read: the control program jumps to a cache line
previously loaded into the cache and executes its
content. The cache line should contain a set of
instructions producing an unambiguous result fol-
lowed by a CIS to return to the control program.
Before performing the read operation, according to
Section 4.2, the content of the main memory should
be modified writing a set of instructions producing
a result different w.r.t. the one produced by the
instructions loaded in cache. By checking the result
of the computation the control program can verify
if the correct tag was loaded (i.e., the instructions
in cache have been executed), or not (i.e., a cache
miss replaced the cache content with the one stored
in memory). To distinguish among different tags
the instructions executed during the read operation
must produce different results for each defined tag.

6 TESTING THE LEON INSTRUCTION CACHE
To prove the concepts introduced in this paper, we
applied the proposed test methodology to the LEON3
microprocessor designed by Gaisler Research [15]. It
implements a SPARC V8 compliant architecture that can
be customized by enabling/disabling hardware mod-
ules. Our implementation includes a full integer unit
required to compute test addresses, no data-cache, basic
cacheability features managed by the AMBA controller,
and a 2-way set-associative instruction cache with 32 sets
and 8 words per cache line. The cache implements a
no-read-through miss policy, i.e., data loaded from the
main memory are first cached and then provided to the
processor (see Section 3). Each word is composed of 32
bits for a total of 2 KB of data array. This small cache
allowed us to reduce the test simulation time even if the
proposed implementation is independent on the actual
size of the cache. The data cache has been disabled to
avoid data latency when the control program requires
to update the program’s code. This solution simplifies



11

write Operation

read& verify operation

read operation

< 0a0v, wa
1/1v/� >, a < v

M1 :"1
↵=0"0

i=0

�
w([ti, ↵, all] , DB)

�
;

M2 :"1
↵=0"0

i=0

�
r([ti, ↵, all] , DB), w([ti, ↵, all] , DB)

�
;

Execution 1 Execution 2 Execution 3

Operation Set Tag Data Tag Data Tag Data
M1 : w

�
[t0, 0, all] , DB

�
0 t0 CIS TIS t0 TIS CIS t0 TIS1 CIS TIS2

1 - - - - - - - - - -
M1 : w

�
[t0, 1, all] , DB

�
0 t0 CIS TIS t0 TIS CIS t0 TIS1 CIS TIS2

1 t0 CIS TIS t0 TIS CIS t0 TIS1 CIS TIS2

M2 : r
�
[t0, 0, all] , DB

�
0 t0 CIS TIS t0 TIS CIS t0 TIS1 CIS TIS2

1 t0 CIS TIS t0 TIS CIS t0 TIS1 CIS TIS2

M2 : w ([t⇤0, 0, all] , DB) 0 t⇤0 CIS TIS t⇤0 TIS CIS t⇤0 TIS1 CIS TIS2

1 t0 CIS TIS t0 TIS CIS t0 TIS1 CIS TIS2

M2 : r
�
[t0, 1, all] , DB

�
0 t⇤0 CIS TIS t⇤0 TIS CIS t⇤0 TIS1 CIS TIS2

1 t0 CIS TIS t0 TIS CIS t0 TIS1 CIS TIS2

M2 : w ([t⇤0, 1, all] , DB) 0 t⇤0 CIS TIS t⇤0 TIS CIS t⇤0 TIS1 CIS TIS2

1 t⇤0 CIS TIS t⇤0 TIS CIS t⇤0 TIS1 CIS TIS2

Figure 10. March test execution example on a cache memory with nS = 2, nL = 1

the code without introducing strong assumptions since
cache disabling is commonly implemented in modern
microprocessors. Internally the memory is organized
with a memory bank for each way. The directory array
includes a tag portion and a set of 8 validity bits, one
for each word of the cache line. No parity bits have
been included since they are only available in the fault
tolerance version of the LEON3 processor. The data array
is organized as a single word array where 8 consecutive
words identify a cache line.

The LEON3 microprocessor has some differences with
respect to the SPARC V8 specifications that affect the
way the test is implemented. It is impossible to invali-
date single cache lines. Any time the flush instruction
is executed both the data and the instruction cache are
fully invalidated. For this reason multiple write oper-
ations must be implemented by means of equivalent
test patterns as proposed in Section 5.1. This actually
proves the benefit of having a test methodology not
strongly based on specific microprocessor facilities. The
cache line replacement is also affected by a side effect on
cache lines containing branch instructions. Cache lines
load and instructions execution is a concurrent process:
as soon as an instruction is available in cache it is
executed, while the loading process continues. If the
instruction is a branch jumping out of the cache line, its
execution immediately stops the loading process, leaving
the line content in a not-valid state. The write test pattern
proposed in Section 5.1 should therefore be modified to
always execute all instructions. This actually turns it into
the equivalent of a read operation without verifying the
results.

6.1 Test implementation

The most critical part of the data array test implemen-
tation is the definition of the instructions implementing
TIS and TIS. This in turn requires a careful analysis
of the microprocessor’s ISA . Those instructions whose

correct execution can be unequivocally verified by look-
ing at the result of the computation should be identified
and characterized based on the used resources. Among
this set two instructions coded with complemented se-
quences of bits and operating on different resources
should be selected, if possible, to correctly distinguish
between the execution of TIS and TIS. This operation
can be performed resorting to an object dumper tool.
The use of different operands can be exploited to make
instructions producing unique results. Fig. 11 shows the
selected patterns for the LEON3 microprocessor:

1) sethi: sets the high-order 22 bits of the register
provided as second operand using the immediate
value given as first operand. The macro %hi ex-
tracts the most significant 22 bits from its 32 bits
argument;

2) ldsha: loads into the third operand register a
signed 32 bits half-word from an Alternate Space
Identifier (ASI) specified by the first two operands
(registers %l5, and %l7). An ASI is a logical mem-
ory partition used in the virtual memory manage-
ment to better control indirect memory addressing.

TIS uses 6 out of 8 instructions available in the cache
line, thus leaving two instructions to implement CIS.
In the LEON3, for optimization purpose, each jump is
always delayed after the execution of the immediately
following instruction. This forces us to implement CIS
with two instructions: the actual jump followed by a nop
(no operation) (see Fig. 11).

Faults in the data array may legally modify opcodes
or operands of instructions contained in the patterns,
or create illegal configurations rising traps (e.g., illegal
instruction, privilege instruction, memory address not
aligned, data store error, etc.). In the first case, since TIS
and TIS operate on different registers, to verify their
execution it is enough to check their target registers w.r.t.
the expected values, e.g., cmp %i4, %l2 for TIS and
cmp %l2,%o0 for TIS, where %i4 and %l2 contain
the expected value of %l2 and %o0, respectively. In the



12

0x252ABEA8
0x272ABEA8
0x292ABEA8
0x2B2ABEA8
0x2D2ABEA8
0x2F2ABEA8

sethi %hi(0xaafaa000), %l2
sethi %hi(0xaafaa000), %l3
sethi %hi(0xaafaa000), %l4
sethi %hi(0xaafaa000), %l5
sethi %hi(0xaafaa000), %l6
sethi %hi(0xaafaa000), %l7

OPCODE INSTRUCTION

0xDAD54157
0xD8D54157
0xD6D54157
0xD4D54157
0xD2D54157
0xD0D54157

ldsha [%l5+%l7] (0xA), %o5
ldsha [%l5+%l7] (0xA), %o4
ldsha [%l5+%l7] (0xA), %o3
ldsha [%l5+%l7] (0xA), %o2
ldsha [%l5+%l7] (0xA), %o1
ldsha [%l5+%l7] (0xA), %o0

OPCODE INSTRUCTION

0x81C42008
0x01000000

jmpl %l0+8, %g0
nop

OPCODE INSTRUCTION

TIS

TIS

CIS

Figure 11. Data Array Patterns

second case, whenever an exception is fired, the program
jumps to a trap handler whose address is defined in the
LEON3 trap table. To detect these situations all handlers
in the trap table should point to an error function able
to either stop the test or record the fault.

To better understand the data array test mechanisms,
Listing 1 provides the implementation of the data array
write function (see Section 5.1). The control program uses
the register %i2 to pass the position of the target CIS to
the function. The prepare_not_TIS sequence (lines 19
to 23) prepares the registers for the correct execution of
TIS if required, while the write_it sequence (lines 25
to 56) executes the correct jump to the main memory.
Each jmpl (jump and link) instruction uses its first
operand as target address, and saves its current address
into the second operand (%l0 in our case). This address
is used by CIS to correctly return to the control program
(see CIS in Fig. 11).

According to Section 5.2, the implementation of the
directory array test program is straightforward. The only
critical point is being able to detect faults by creating
a difference between the content of the cache and the
content of the main memory. This translates here into the
definition of two different sequences of instructions, each
producing a different result, to be stored in cache and in
main memory, respectively. The LEON3 ISA allows the
implementation of this mechanism with a very compact
pattern (DB) that exploits the jmpl instruction (Fig. 12).
A write operation is implemented by jumping to a mem-
ory area containing DB after storing the return address
in %l0. In the correct pattern the jmpl instruction saves
its address in %l7 before actually performing the jump,
while in the incorrect one %g0 forces the instruction to
skip this operation. By checking %l7 the execution of the
proper instruction can be verified.

Listing 2 reports the read&verify function designed
for the directory array test. It first prepares the return
value (register %o0 cleared at line 10) and the verification
register (register %l7 cleared at line 11). Then it jumps
to the target cache line executing its code and verifies

1 ! Func t i on w r i t e _ p a t t e r n :
2 ! i n p u t :
3 ! � 1 s t (% i 0 ) : l i n e a d d r e s s
4 ! � 2nd (% i 1 ) : p a t t e r n s e l e c t i o n
5 ! (0 = TIS , 1 = not TIS )
6 ! � 3 rd (% i 2 ) : CIS p o s i t i o n
7 ! (0 = BEGIN , 1 = MIDDLE
8 ! 2 = TOP)
9 ! � 4 th (% i 3 ) : b u f f e r a d d r e s s

10 ! ou tp ut : no ou tp ut
11
12 w r i t e _ p a t t e r n :
13 save %sp , �0x40 , %sp ! Cont ex t Saving
14
15 cmp %i1 , 0 ! c h e c k %i 1
16 bne w r i t e _ i t ! t o s e l e c t t h e p a t t e r n
17 nop ! t o use
18
19 prepare_not_TIS : ! I n i t i a l i z e t h e
20 s e t 0x000000FF , %l 2 ! b u f f e r p o i n t e d
21 c l r %l 7 ! by %l 5 + %l 7
22 mov %i3 , %l 5 ! used by l d s h a
23 stha %l2 , [% l 5 + %l 7 ] 0xA ! in not_TIS
24
25 w r i t e _ i t : ! s t a r t w r i t e . . .
26 cmp %i2 , 0 ! c h e c k CIS p o s i t i o n
27 be _ j_at_end ! i f 0 CIS a t END o f CL
28 nop

29
30 cmp %i2 , 2 ! i f 2 CIS a t BEGIN o f CL
31 be _ j _ a t _ b e g i n
32 nop

33
34 _ j_at_middle : ! i f 1 CIS a t MIDDLE o f CL :
35 jmpl %i0 , %l 0 ! jump t o TIS1
36 nop

37
38 _ j_at_middle_par t2 : ! c o m p l e t e t h e MIDDLE
39 add %i0 , 20 , %i 0 ! c a s e by jumping
40 jmpl %i0 , %l 0 ! t o TIS2
41 nop

42
43 ba _ e x i t ! r e t u r n t o t h e c o n t r o l
44 nop ! program
45
46 _ j _ a t _ b e g i n : ! CIS a t BEGIN o f CL :
47 add %i0 , 8 , %i 0 ! jump t o TIS p l a c e d
48 jmpl %i0 , %l 0 ! i m m e d i a t e l y a f t e r CIS
49 nop

50
51 ba _ e x i t ! r e t u r n t o c o n t r o l
52 nop ! program
53
54 _ j_at_end : ! CIS a t END o f CL :
55 jmpl %i0 , %l 0 ! jump t o TIS then
56 nop ! r e t u r n t o c o n t r o l program
57
58 _ e x i t : ! r e t u r n t o c o n t r o l program
59 r e t ! and r e s t o r e
60 r e s t o r e ! c o n t e x t

Listing 1. Data Array Write Function

0x81C42008
0x01000000

jmpl %l0+8, %g0
nop

OPCODE INSTRUCTIONincorrect
DB

0xAFC42008
0x01000000

jmpl %l0+8, %l7
nop

OPCODE INSTRUCTION
DB

Figure 12. Directory Array Patterns

the cache line address stored in %l7. In case of error it
jumps to a proper error handling routine (lines 15 to 20).
Lines 22 to 27 implement the case of correct verification
with the function returning to the control program.

According to the translation theory in Section 4.2 the
test of the directory array requires the definition of a



13

1 ! Func t i on r e a d _ a n d _ v e r i f y _ t a g :
2 ! i n p u t :
3 ! � 1 s t (% i 0 ) : t a g a d d r e s s
4 ! ou tp ut :
5 ! � 1 s t (%o0 ) : c o r r e c t n e s s
6
7 read_tag :
8 save %sp , �0x40 , %sp ! Cont ex t Save
9

10 i n i t _ p r o c : ! c l e a r i n g
11 c l r %o0 ! ou tp u t r e g i s t e r (%o0 )
12 c l r %l 7 ! and c h e c k r e g i s t e r (% l 7 )
13
14 jmpl %i0 , %l 0 ! r e a d t h e l i n e by
15 nop ! jumping on i t
16
17 check_return : ! v e r i r y i f %i 0 = %l 7
18 cmp %i0 , %l 7 ! t h e db was used
19
20 bne on_error ! i f i n c o r r e c t go
21 nop ! t o e r r o r (%o0 = 0)
22
23 on_success : ! i f c o r r e c t
24 mov 1 , %o0 !%o0 = 1
25
26 on_error :
27 r e t ! r e t u r n and s a v e
28 r e s t o r e %o0 , %g0 , %o0 ! t h e ou tp u t

Listing 2. Directory Array Read & Verify Function

1 void reorder ing ( unsigned i n t ⇤
i n _ s e t _ t a g _ l i s t , unsigned i n t tag ,
unsigned i n t nL ) {

2 i n t i = 0 ;
3 while ( i < nL ) {
4 i f ( i n _ s e t _ t a g _ l i s t [ i ] != tag )
5 asm ( " jmpl %%l7 , %%l 0 ;\n" " nop ;\n"
6 : " a " ( i n _ s e t _ t a g _ l i s t [ i ] ) ) ;
7 i ++;
8 } }

Listing 3. Reordering function

proper set of tags. Working with a cache with two ways,
two different tags, and their complemented values, have
been defined according to eq. 10.

T = ht0 = ”0 . . . 00”, t1 = ”0 . . . 01”i ;
T =

⌦
t0 = ”1 . . . 11”, t1 = ”1 . . . 10”

↵ (10)

Listing 3 shows how the reordering function has been
implemented for both the data and the directory array.
For each line contained in the target set (line 3), if the
stored tag is not the target one (line 4) the function
jumps to the CIS of the related cache line (line 5) whose
address is loaded in %l7 (line 6). This updates the cache
line’s access time.

6.2 Test Coverage and Test Time evaluation
Using the proposed test patterns we translated six dif-
ferent state-of-the-art march tests both for the data and
the directory array of the LEON3 cache: SOA Mats+ [35],
SOA C - - [35], B [36], U [37], LR [38], and SS [38]. Table
1 reports the test length in terms of CPU cycles and
the test size in terms of number of instructions for each
test program. The number of instructions refers to the
control program since test patterns are treated as data

values written in memory during the initialization steps.
The test time is quite high, especially if compared with
the performance that could be obtained by an embedded
memory BIST. Most of this time overhead is generated
by the interaction between the control program and
the test patterns, and by the fact that the test should
be executed three times changing the position of CIS.
While test patterns have been carefully designed to guar-
antee the desired fault coverage, the control program has
been partially written in ANSI C language and several
optimizations can be introduced to strongly reduce its
execution time. The number of instructions is also mainly
influenced by the optimization flags of the C compiler
and it is not directly related to the original complexity of
the march test. Bigger march tests gain more advantage
from the optimization that reduces the internal loops.

All test programs have been simulated on a VHDL
model of the LEON3 microprocessor using ModelSim
[39]. Fault simulation has been performed using the
RASTA memory fault simulator. RASTA is a fault primi-
tive based memory fault simulator developed at Politec-
nico di Torino, whose main characteristics have been
published in [40]. All signals at the boundary of the
memory arrays have been recorded while performing
the ModelSim simulation of the test program. The same
signals have been used as test patterns in RASTA to fault
simulate the target memory array against the selected
faults. The original march test has been also fault simu-
lated on a memory with the same characteristics of the
target memory array to allow comparison of the fault
coverage. Table 2 shows the test coverage for both the
data and the directory array in terms of covered fault
models (e.g., 1/2 for TF means that 1 out of 2 possible
types of TF are fully covered by the test). The coverage
of the original tests has always been preserved.

Considering the directory array, we additionally fault
simulated the test coverage on the validity bits por-
tion of the array. Table 3 summarizes the final results.
Even if not specifically addressed at design time the
test provides a reasonable coverage on the validity bits.
Faults are partially covered by the test since these bits
are continuously involved in the test operations. Being
the coverage not complete it cannot be provided in
terms of covered fault models. The percentage of Table
3 indicates the amount of fault instances for a given
class that have been correctly detected. The test can be
improved to reach 100% fault coverage on single-cell
faults by modifying the DB used in the directory array
test program (Fig. 12) in order to completely fill the cache
lines of the data array. This assures that all validity bits
assume the values 0 and 1 at least once. This can be easily
implemented by reusing the data array test patterns
proposed in Fig. 11 where TIS and TIS represent the
test pattern to load in cache and the incorrect pattern to
load into main memory, respectively. A wrong validity
bit forces the cache to load the wrong instruction from
the main memory, thus allowing to detect the faulty
condition looking at the result of the execution.



14

Table 1
Test Length and Execution Time

Original Data Array Directory Array
March Complexity #instructions execution test time #instructions execution test time

cycles (at 800Mhz) cycles (at 800Mhz)
SOA Mats+ 5n 3.644 715.983 0,89s 3.360 128.600 0,16s
SOA C - - 10n 3.732 1.030.035 1,28s 3.432 217.572 0,27s

U 13n 3.808 1.232.303 1,54s 3.488 284.323 0,36s
LR 14n 3.824 1.367.770 1,71s 3.492 310.916 0,39s
B 17n 3.856 1.506.249 1,88s 3.532 404.620 0,50s
SS 22n 3.944 1.922.804 2,40s 3.608 413.243 0,52s

Table 2
Test Coverage

March/FFM SOA MATS+ SOA C - - U LR B SS
Data Dir Data Dir Data Dir Data Dir Data Dir Data Dir

SF 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
TF 1/2 1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

WDF 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 2/2 2/2
RDF 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

DRDF 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 2/2 2/2
IRF 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

CFst 4/8 4/8 8/8 8/8 8/8 8/8 8/8 8/8 6/8 6/8 8/8 8/8
CFds

xw

3/8 3/8 8/8 8/8 8/8 8/8 8/8 8/8 7/8 7/8 8/8 8/8
CFds

xwx̄

3/8 3/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8 8/8
CFds

xwx

0/8 0/8 0/8 0/8 0/8 0/8 0/8 0/8 0/8 0/8 8/8 8/8
CFtr 2/8 2/8 8/8 8/8 8/8 8/8 8/8 8/8 4/8 4/8 8/8 8/8

CFwd 0/8 0/8 0/8 0/8 0/8 0/8 0/8 0/8 0/8 0/8 8/8 8/8
CFrd 4/8 4/8 8/8 8/8 8/8 8/8 8/8 8/8 4/8 4/8 8/8 8/8

CFdrd 0/8 0/8 0/8 0/8 0/8 0/8 0/8 0/8 0/8 0/8 8/8 8/8
CFir 4/8 4/8 8/8 8/8 8/8 8/8 8/8 8/8 4/8 4/8 8/8 8/8

Table 3
Validity Bits Test Coverage (%)

March/FFM SOA MATS+ SOA C - - U LR B SS
SF 98 98 98 98 98 98
TF 93 93 93 93 93 93

WDF 87 87 87 87 87 87
RDF 100 100 100 100 100 100

DRDF 100 100 100 100 100 100
IRF 100 100 100 100 100 100

CFst 78 78 78 78 78 78
CFds

xw

56 56 56 56 56 56
CFds

xwx̄

41 41 41 41 41 41
CFds

xwx

45 45 45 45 45 45
CFtr 51 51 51 51 51 51

CFwd 71 71 71 71 71 71
CFrd 78 78 78 78 78 78

CFdrd 53 53 53 53 53 53
CFir 78 78 78 78 78 78

Finally, we fault simulated the cache controller cir-
cuitry during the application of the proposed test pro-
grams. Results provided an average test coverage of 81%
on stuck-at faults. While this result is not enough for
high quality test programs, it represents a starting point
on which custom test programs such as the one proposed
in [27] can be applied to detect those faults that escaped
this phase.

7 CONCLUSIONS

This paper addressed the problem of applying march
test algorithms to SBST of set-associative instruction
cache memories. The main contribution of the presented
work is the possibility of applying state-of-the-art test
algorithms to embedded cache memories without intro-
ducing any hardware or performance overhead. Exper-
imental results obtained by constructing test programs
for the LEON3 microprocessor show that it is possible
to preserve the fault coverage of the original march tests.
Experimental results also consider control blocks of the
cache such as validity bits and control circuits, providing
reasonable coverage also on these blocks. Additional
fields that might be included in a microprocessor cache
(e.g., parity bits or error correction codes) have not been
explicitly considered in this work. Similarly to validity
bits, their coverage should be evaluated considering
the specific implementation of the target cache memory
and, whenever required, the test program should be
improved to cover undetected faults.

REFERENCES

[1] R. Stacpoole and T. Jamil, “Cache memories,” Potentials, IEEE,
vol. 19, no. 2, pp. 24–29, Apr/May 2000.

[2] L. J. Henessy and A. D. Patterson, Computer Architecture, 3rd ed.
Morgan Kaufmann Publishers, 2003.

[3] D. Bhandarkar and J. Ding, “Performance characterization of the
Pentium Pro processor,” in Third International Symposium on High-
Performance Computer Architecture, 1997, 1-5 Feb 1997, pp. 288–297.



15

[4] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: spec-
ulation control for energy reduction,” in Proceedings of the 25th
Annual International Symposium on Computer Architecture, ISCA98,
Jun-1 Jul 1998, pp. 132–141.

[5] S. Mukhopadhyay, H. Mahmoodi-Meimand, and K. Roy, “Mod-
eling and estimation of failure probability due to parameter vari-
ations in nano-scale srams for yield enhancement,” in Symposium
on VLSI Circuits, 2004, June 2004, pp. 64–67.

[6] S. Hamdioui, Z. Al-Ars, A. van de Goor, and M. Rodgers, “Linked
faults in random access memories: concept, fault models, test
algorithms, and industrial results,” IEEE J. Technol. Comput. Aided
Design, vol. 23, no. 5, pp. 737–757, May 2004.

[7] D. Gizopoulos, A. Paschalis, and Y. Zorian, Embedded Processor-
Based Self-Test. Springer press, 2004.

[8] A. Krstic, W.-C. Lai, K.-T. Cheng, L. Chen, and S. Dey, “Embedded
software-based self-test for programmable core-based designs,”
IEEE Design & Test of Computers, vol. 19, no. 4, pp. 18–27, 2002.

[9] J. Sosnowski, “Software based self-testing of microprocessors,”
Journal of System Architecture, vol. 52, pp. 257–271, 2006.

[10] A. Apostolakis, D. Gizopoulos, M. Psarakis, and A. Paschalis,
“Software-based self-testing of symmetric shared-memory mul-
tiprocessors,” IEEE Trans. Comput., vol. 58, no. 12, pp. 1682–1694,
2009.

[11] L. Chen, S. Ravi, A. Raghunathan, and S. Dey, “A scalable
software-based self-test methodology for programmable proces-
sors,” in Design Automation Conference, DAC 2003, June 2003, pp.
548–553.

[12] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis,
“Software-based self-testing of embedded processors,” IEEE
Trans. Comput., vol. 54, no. 4, pp. 461–475, April 2005.

[13] A. Benso, A. Bosio, P. Prinetto, and A. Savino, “An on-line
software-based self-test framework for microprocessor cores,” in
Proc. International Conference on Design and Test of Integrated Systems
in Nanoscale Technology DTIS 2006, 2006, pp. 394–399.

[14] A. J. van de Goor, “Using march tests to test srams,” IEEE Des.
Test. Comput., vol. 10, no. 1, pp. 8–14, Mar. 2004.

[15] A. GAISLER. Leon3 processor. [Online]. Available:
http://www.gaisler.com

[16] W. Pei, W.-B. Jone, and Y. Hu, “Fault modeling and detection
for drowsy sram caches,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 26, no. 6, pp. 1084–1100, 2007.

[17] S. Bhunia, H. Li, and K. Roy, “A high performance iddq testable
cache for scaled cmos technologies,” in Proc. 11th Asian Test
Symposium (ATS ’02), 2002, pp. 157–162.

[18] P. J. Tan, T. Le, K.-H. Ng, P. Mantri, and J. Westfall, “Testing of
ultrasparc t1 microprocessor and its challenges,” in Proc. IEEE
International Test Conference ITC ’06, 2006, pp. 1–10.

[19] A. Agarwal, B. Paul, H. Mahmoodi, A. Datta, and K. Roy,
“A process-tolerant cache architecture for improved yield in
nanoscale technologies,” IEEE Trans. VLSI Syst., vol. 13, no. 1,
pp. 27–38, 2005.

[20] S. Hamdioui, Z. Al-Ars, and A. van de Goor, “Testing static and
dynamic faults in random access memories,” in Proceedings 20th
IEEE VLSI Test Symposium, 2002. (VTS 2002)., 2002.

[21] R. Raina and R. Molyneaux, “Random self-test method appli-
cations on PowerPCTMmicroprocessor cachesTMmicroprocessor
caches,” in 8th Great Lakes Symposium on VLSI., 19-21 Feb 1998,
pp. 222–229.

[22] T. Verhallen and A. van de Goor, “Functional testing of modern
microprocessors,” in [3rd] European Conference on Design Automa-
tion, 1992. Proceedings., 16-19 Mar 1992, pp. 350–354.

[23] D. Bhavsar and J. Edmondson, “Test strategy of the alpha axp
21164 microprocessor.” in IEEE International Test Conference, 1994.

[24] J. Sosnowski, “In-system testing of cache memories,” in Interna-
tional Test Conference, 21-25 Oct 1995, pp. 384–393.

[25] ——, “Improving software based self-testing for cache memories,”
in 2nd International Design and Test Workshop, 2007, Dec. 2007, pp.
49–54.

[26] M. Tuna, O. Garcia, and M. Benabdenbi, “Software-based self-test
strategies for memory caches of risc processor cores,” in IEEE
Latin American Workshop LATW’07, 2007.

[27] W. Perez H, J. Medina, D. Ravotto, E. Sanchez, and M. Re-
orda, “Software-based self-test strategy for data cache memories
embedded in socs,” in Proc. 11th IEEE Workshop on Design and
Diagnostics of Electronic Circuits and Systems DDECS 2008, 2008,
pp. 1–6.

[28] W. Perez, J. Velasco, D. Ravotto, E. Sanchez, and M. Reorda,
“A hybrid approach to the test of cache memory controllers
embedded in socs,” in Proc. 14th IEEE International On-Line Testing
Symposium IOLTS ’08, 2008, pp. 143–148.

[29] S. Al-Harbi and S. Gupta, “A methodology for transforming
memory tests for in-system testing of direct mapped cache tags,”
in 16th IEEE VLSI Test Symposium, 26-30 Apr 1998, pp. 394–400.

[30] S. Alpe, S. Di Carlo, P. Prinetto, and A. Savino, “Applying march
tests to k-way set-associative cache memories,” European Test, 2008
13th, pp. 77–83, May 2008.

[31] B. Jacob, S. W. NG, and D. Wang, Memory Systems: Cache, DREAM,
Disk. Morgan Kaufmann Publishers, 2008.

[32] S. Di Carlo and P. Prinetto, “Models in memory testing,” Models
in Hardware Testing, pp. 157–185, 2010.

[33] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, and P. Prinetto,
“March test generation revealed,” Computers, IEEE Transactions on,
vol. 57, no. 12, pp. 1704 –1713, dec. 2008.

[34] A. van de Goor and I. Tlili, “A systematic method for modifying
march tests for bit-oriented memories into tests for word-oriented
memories,” IEEE Trans. Comput., vol. 52, no. 10, pp. 1320–1331,
2003.

[35] A. van de Goor and Y. Zorian, “Effective march algorithms for
testing single-order addressed memories,” in Design Automation,
1993, with the European Event in ASIC Design. Proceedings. [4th]
European Conference on, 22-25 Feb 1993, pp. 499–505.

[36] A. J. van de Goor, Testing Semiconductor Memories: theory and
practice. John Wiley and Sons, Inc, September 1991.

[37] A. van de Goer and G. Gaydadjiev, “March u: a test for unlinked
memory faults,” Circuits, Devices and Systems, IEE Proceedings -,
vol. 144, no. 3, pp. 155–160, Jun 1997.

[38] S. Hamdioui, A. van de Goor, and M. Rodgers, “March ss: a
test for all static simple ram faults,” in Proc. IEEE International
Workshop on Memory Technology, Design and Testing (MTDT 2002),
2002, pp. 95–100.

[39] M. Graphics. Modelsim - advanced simulation and debugging.
[Online]. Available: http://model.com/

[40] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto, “Specification
and design of a new memory fault simulator,” in Proceedings of
the 11th Asian Test Symposium, 2002. (ATS ’02). IEEE, 2002, pp.
92–97.

Stefano Di Carlo received the MS degree in
computer engineering and the PhD degree in
information technologies from the Politecnico di
Torino, Torino, Italy. Since 2008, he has been an
assistant professor in the Department of Con-
trol and Computer Engineering, Politecnico di
Torino. His research interests include DFT, BIST
and dependability. He is a Golden Core member
of the IEEE Computer Society and a member of
the IEEE.

Paolo Prinetto received the MS degree in
electronic engineering from the Politecnico di
Torino, Torino, Italy. He is a full professor of
computer engineering in the Department of Con-
trol and Computer Engineering, Politecnico di
Torino, and a joint professor at the University of
Illinois, Chicago. His research interests include
testing, test generation, BIST, and dependability.
He is a Golden Core member of the IEEE Com-
puter Society. He is a member of the IEEE and
a member of the IEEE Computer Society.



16

Alessandro Savino received the MS degree
in computer engineering and the PhD degree in
information technologies from the Politecnico di
Torino, Torino, Italy. Since 2009, he has been
a post-doc at the Department of Control and
Computer Engineering, Politecnico di Torino. His
main research topics are microprocessor test,
and software based self test.


