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Constrained Dogleg Methods for nonlinear

systems with simple bounds ∗

Stefania Bellavia†, Maria Macconi†, Sandra Pieraccini‡

This is the authors’ post-print version of an article published on Computational

Optimization and Applications, Volume 53, Number 3 (2012), pp. 771-794,

DOI:10.1007/s10589-012-9469-8.§

Abstract

We focus on the numerical solution of medium scale bound-constrained
systems of nonlinear equations. In this context, we consider an affine-
scaling trust region approach that allows a great flexibility in choosing
the scaling matrix used to handle the bounds. The method is based on
a dogleg procedure tailored for constrained problems and so, it is named
Constrained Dogleg method. It generates only strictly feasible iterates.
Global and locally fast convergence is ensured under standard assump-
tions. The method has been implemented in the Matlab solver CoDoSol

that supports several diagonal scalings in both spherical and elliptical
trust region frameworks. We give a brief account of CoDoSol and report
on the computational experience performed on a number of representative
test problems.

Key words: bound-constrained equations, diagonal scalings, trust
region methods, dogleg methods, Newton methods, global convergence

1 Introduction

The problem of interest is to find a vector x ∈ R
n satisfying

F (x) = 0, x ∈ Ω, (1)
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where F : X 7→ R
n is a continuosly differentiable mapping with Jacobian

denoted by F ′, X ⊆ R
n is an open set containing the n-dimensional box

Ω = {x ∈ R
n | l ≤ x ≤ u}. Here, the inequalities are meant component-

wise and the vectors l ∈ (R ∪ −∞)n, u ∈ (R ∪ +∞)n are specified lower and
upper bounds on the variables such that Ω has nonempty interior.

Newton method augmented with affine scaling trust region procedures forms
a class of efficient methods for the solution of this problem. Such methods are
well known to show good local convergence behaviour. Further, they find a
solution of (1) starting from arbitrary initial guesses or fail in one of a small
number of easily detectable ways, i.e. they are globally convergent methods.

Originally proposed in the context of constrained optimization [6], the affine
scaling trust region approach was then developed to form a robust theoretical
and practical framework containing a number of globally convergent methods
for smooth and nonsmooth bound-constrained systems of nonlinear equations
[1, 2, 4, 16, 31]. In particular, the methods given in [1],[2] and [4] are based on
ellipsoidal trust regions defined by the diagonal scaling matrix proposed in [6].
The same scaling is used for the solution of large scale problems [5, 3] as well
as for developing extensions to rectangular nonlinear systems [11, 22, 21].

We remark that the spirit of these methods is to use diagonal scalings to
handle the bounds. At each iteration a quadratic model of the merit function
1
2 ‖F‖2

is minimized within a trust region around the current iterate and suitable
stepsizes rules yield a new feasible trial point. Then, iterates within the feasible
region Ω are generated in such a way that global and locally fast convergence is
ensured.

A crucial point is that the classical dogleg procedure can not be used to ap-
proximately minimize the model within the trust region and handle the bounds
at the same time. In fact, many theoretical properties of the dogleg curve are lost
in the constrained context. More flexibility is needed in the choice of the dogleg
path and suitable modifications of the classical dogleg method are required to
ensure the strict feasibility of the iterates. The rules adopted to generate only
feasible approximations of the solution play an important role in motivating
different affine scaling algorithms for (1). On this subject, we remark that a
sort of double dogleg or the switching to the scaled gradient has been employed
in the previous approaches.

The present paper aims at analyzing an interior point trust region method
for medium scale problems alternative to those adopted in the above works. Our
target is to obtain more efficient algorithms and to allow a great flexibility in
choosing the diagonal scaling matrices used to handle the bounds. Nevertheless,
desirable features are mantained. In particular, all the iterates are required to
be strictly feasible points and global, locally fast convergence must be ensured.

In the technical report [3], the authors introduced an inexact dogleg proce-
dure for solving large scale problems. This procedure extends to constrained
systems the method proposed in [27] for large scale unconstrained systems of
nonlinear equations. In [3] the authors show how the presence of constraints is
reflected in the scheme given in [27] and study global and fast convergence of
an inexact dogleg method tailored for large scale bound constrained problem.
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The obtained procedure employs an Inexact Newton step and it is based on the
minimization of the linear model of F along a path founded on a scaled Cauchy
step and an interior point inexact-Newton step. The convergence analysis of
the method has been carried out without specifying the scaling matrix used to
handle the bounds, allowing a rather general class of diagonal scalings. How-
ever, the choice of an appropriate scaling matrix has not been investigated in
[3] and only preliminary results, using the pioneer Coleman-Li scaling matrix,
on large scale problems have been given.

Here we focus on medium scale problems and adopt a procedure that is a
special case of that given in [3] as the inexact Newton step is replaced by the
exact solution of the Newton equation. In fact, when medium scale bound-
constrained systems has to be solved it is realistic to assume that a direct
method is used to solve the Newton equation. Then, the linear model of F is
minimized along a path founded on a scaled Cauchy step and an interior point
Newton step, i.e. a projection of the Newton step within the feasible region Ω.
Therefore, even in this case the resulting dogleg curve is not the classical dogleg
curve as it is defined in a constrained setting and its basement is a non-exact
(projected) Newton step.

The convergence properties of the method can be stated by making easier the
theoretical results given in [3]. In other words, we can appeal to the convergence
analysis performed in [3] to claim that our method shows global and locally fast
convergence under standard assumptions. We consider several diagonal scaling
matrices proposed by different authors in the numerical optimization literature.
We show that a number of choices satisfy the assumptions for ensuring global
and fast convergence of the procedure and so can be used in our context.

We named the iterative procedure given here Constrained Dogleg (CoDo)
method. We implemented the CoDo method in a Matlab code called CoDoSol

(Constrained Dogleg Solver). This solver is freely accessible through the web
site http://codosol.de.unifi.it and its numerical behaviour is showed here.

Features and capabilities of CoDoSol have been tested by extensive numerical
experiments on a number of representative test problems. First of all, we veri-
fied the basic effectiveness of our proposal. To this end, we used the Coleman
and Li scaling matrix and compared CoDoSol with the affine scaling trust region
approach employed in the code STRSCNE [2] and with the Matlab implemen-
tation of the method IATR given in [4]. Here, we show the resulting numerical
results. Their analysis indicates that CoDoSol turns out to be an efficient tool
to solve medium-scale bound constrained nolinear systems.

Since different matrices may be used in CoDoSol, it is quite important to
state if the behaviour of the proposed solver is relatively insensitive to variations
in the scaling matrix. This question is examined by analyzing the numerical
performances of CoDoSol for a set of suitable scaling matrices. We give the
numerical results obtained and make in significant evidence the results of our
comparison by the well known performance profile approach.

The paper is organized as follows. In Section 2 we present the constrained
dogleg method and describe its convergence properties. In Section 3 we consider
several scaling matrices from the numerical optimization literature and show
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how they match our requirements. In Section 4 we give a brief account of
the Matlab solver CoDoSol and report on our computational experience. Some
conclusions are presented in Section 5.

1.1 Notation

Throughout the paper we use the following notation. For any mapping F :
X → R

n, differentiable at a point x ∈ X ⊂ R
n, the Jacobian matrix of F at x is

denoted by F ′(x) and F (xk) is denoted by Fk. To represent the i-th component
of x the symbol (x)i is used but, when clear from the context, the brackets are
omitted. For any vector y ∈ R

n, the 2-norm is denoted by ‖y‖ and the open ball
with center y and radius ρ is indicated by Bρ(y), i.e. Bρ(y) = {x : ‖x−y‖ < ρ}.

2 Constrained Dogleg methods

In this section we discuss our approach that falls in the well known affine scaling
interior point Newton methods. It is well known that every solution x∗ of the
given problem (1) is also a solution of the box constrained optimization problem:

min
x∈Ω

f(x) (2)

with

f(x) =
1

2
‖F (x)‖2.

Conversely, if x∗ is a minimum of (2) and f(x∗) = 0, then x∗ solves (1).
As shown by Heinkenschloss et al. in [13], the first order optimality condi-

tions for problem (2) may be rewritten as the nonlinear system of equations

D(x∗)∇f(x∗) = 0, (3)

where ∇f(x) = F ′(x)
T
F (x) and D(x) is a proper diagonal scaling matrix of

order n with diagonal elements satisfying

di(x)















= 0 if xi = li and ∇f(x)i > 0,
= 0 if xi = ui and ∇f(x)i < 0,
≥ 0 if xi ∈ {li, ui} and ∇f(x)i = 0,
> 0 otherwise.

(4)

A rather general class of scaling matrices satisfying above requirements is
suitable to define globally convergent affine scaling methods for the solution
of the bound constrained problem (1). In particular, for such matrices, the
direction of the scaled gradient ĝk defined by

ĝk = −Dk∇fk, (5)

can be used to implicitly handle the bounds by means of the diagonal matrix
Dk = D(xk) and to provide global convergence (see [3]). In this context, let λk
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be the stepsize along ĝk to the boundary, i.e.

λk = min
1≤i≤n

Λi where Λi =

{

max
{

li−(xk)i

(ĝk)i

, ui−(xk)i

(ĝk)i

}

if (ĝk)i 6= 0

∞ if (ĝk)i = 0
,

(6)
and let us consider scaling matrices satisfying the following properties:

Assumption A1:

(i) D(x) satisfies (4);

(ii) D(x) is bounded in Ω ∩ Bρ(x) for any x ∈ Ω and ρ > 0;

(iii) there exists a λ̄ > 0 such that the stepsize λk to the boundary from
xk along ĝk given by (6) satisfies λk > λ̄ whenever ‖∇fk‖ is uniformly
bounded above;

(iv) for any x̄ in int(Ω) there exist two positive constants ρ̄ and χx̄ such that
Bρ(x̄) ⊂ int(Ω) and ‖D(x)−1‖ ≤ χx̄ for any x in Bρ̄/2(x̄).

We remark that (iii) implies the constraint compatibility of ĝk: this property
avoids the problem of running directly into a bound by ensuring that the stepsize
to the boundary remains bounded away from zero. Furthermore, it is straight-
forward to note that, as D(x) satisfies (4), it is nonsingular for x ∈ int(Ω).

Given an iterate xk ∈ int(Ω) and the trust region size ∆k > 0, we consider
the following trust region subproblem

min
p∈Rn

{mk(p) : ‖Gk p‖ ≤ ∆k, xk + p ∈ int(Ω)} (7)

where mk is the norm of the linear model for F (x) at xk, i.e.

mk(p) = ‖Fk + F ′
kp‖ (8)

and Gk = G(xk) ∈ R
n×n with G : R

n 7→ R
n×n. Different choices for the

matrix G lead to different algorithms. In particular, the choice Gk = I yields

the standard spherical trust region and Gk = D
−1/2
k leads to an elliptical trust

region framework.
A suitable way of approximating the solution of (7) is the following dogleg

method. Let pN
k be the Newton step satisfying

F ′
k pN

k = −Fk. (9)

Since pN
k does not guarantee that xk + pN

k is a feasible point, we consider the
projection of xk+pN

k onto Ω followed by a step toward the interior of the feasible
set. In other words, we consider the step p̄N

k given by:

p̄N
k = αk(P (xk + pN

k ) − xk), αk ∈ (0, 1), (10)

where P (x) is the projection of x onto Ω, i.e. P (x)i = max{li, min{xi, ui}}, 1 ≤
i ≤ n. Clearly, the point xk + p̄N

k is strictly feasible (see Figure 1) and we have

‖p̄N
k ‖ < ‖pN

k ‖. (11)
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To define the dogleg curve and find the next iterate, we move along the scaled
gradient direction ĝk and locate the so-called generalized Cauchy point pc(∆k),
i.e. the minimizer of (8) along ĝk constrained to be in the trust region and to
satisfy xk + pc(∆k) ∈ int(Ω). The vector pc(∆k) has the form

pc(∆k) = τk ĝk, (12)

with ĝk given by (5) and the scalar τk given by

τk =

{

τ ′
k if xk + τ ′

k ĝk ∈ int(Ω)
θλk, θ ∈ (0, 1) otherwise,

(13)

where λk is the stepsize along ĝk to the boundaries, i.e. (6), and τ ′
k is computed

in the following way

τ ′
k = argmin

‖τGkĝk‖≤∆k

mk(τ ĝk) = min

{

−FT
k F ′

k ĝk

‖F ′
kĝk‖2

,
∆k

‖Gkĝk‖

}

. (14)

Now, we consider the linear path p(γ) given by:

p(γ) = (1 − γ)pc(∆k) + γp̄N
k , γ ∈ R, (15)

and we look for the value of γ minimizing the model mk(p), i.e. (8), along p(γ)
within the strictly feasible set and the trust region. In [3], the authors show
that the convex function φ given by

φ(γ) = ‖Fk + F ′
kp(γ)‖

reaches a minimum at γ = γ̂ with

γ̂ = −aT b

bT b
= − (Fk + F ′

kpc(∆k))T F ′
k(p̄N

k − pc(∆k))

‖F ′
k(p̄N

k − pc(∆k))‖2
, (16)

and that p(γ) has two intersections with the trust region boundary, at γ = γ±
with γ± given by:

γ± =

(

pc(∆k)T G2
k(pc(∆k) − p̄N

k ) ±
(

(

pc(∆k)T G2
k(pc(∆k) − p̄N

k )
)2−

‖Gk(pc(∆k) − p̄N
k )‖2(‖Gkpc(∆k)‖2 − ∆2

k)
)

1

2

)

/‖Gk(pc(∆k) − p̄N
k )‖2.

(17)
We remark that both pc(∆k) and p̄N

k are feasible steps. Then, xk + p(γ)
belongs to the interior of Ω if γ ∈ [0, 1]. But, if we move along p(γ) with γ < 0
or γ > 1 we need to check if the new point xk + p(γ) is strictly feasible and
shorten the step if necessary. Then, we take into account that p(γ) is given by

p(γ) = pc(∆k) + γ(p̄N
k − pc(∆k)),
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and we consider the stepsize to the boundary from xk+pc(∆k) along p̄N
k −pc(∆k).

So, if γ > 1, we set:

Λi =

{

max
{

li−((xk)i+(pc(∆k))i)

(p̄N

k
−pc(∆k))i

, ui−((xk)i+(pc(∆k))i)

(p̄N

k
−pc(∆k))i

}

if (p̄N
k − pc(∆k))i 6= 0

+∞ if (p̄N
k − pc(∆k))i = 0

and take
γ̄+ = min

i
Λi(p), (18)

whereas if γ < 0 we set:

Λi =

{

max
{

li−((xk)i+(pc(∆k))i)

−(p̄N

k
−pc(∆k))i

, ui−((xk)i+(pc(∆k))i)

−(p̄N

k
−pc(∆k))i

}

if (−p̄N
k + pc(∆k))i 6= 0

+∞ if (−p̄N
k + pc(∆k))i = 0

and
γ̄− = −min

i
Λi(p). (19)

To summarize, the choice of γ is made as follows. Since we want to minimize
‖Fk + F ′

kp(γ)‖, we seek γ = γ̂ given by (16). Moreover, since p(γ) must belong
to the trust region and xk + p(γ) is required to be strictly feasible, we choose
γ = min(γ̂, γ+, θγ̄+) if γ̂ > 0, whereas if γ̂ < 0, we choose γ = max(γ̂, γ−, θγ̄−),
with θ ∈ (0, 1), γ±, γ̄+, γ̄− given by (17), (18), (19), respectively. With γ at
hand, we compute p(γ) by (15) and we set the trial step p(∆k) = p(γ).

In brief, the following is the procedure we use for determining the trial steps.

Step Selection Procedure.

Input parameters: xk ∈ int(Ω), ∆k > 0, ĝk, p̄N
k , θ ∈ (0, 1)

Compute pc(∆k) by (12) and (13).
Compute γ̂ by (16).
If γ̂ > 0

compute γ+ by (17)
compute γ̄+ by (18)
set γ = min{γ̂, γ+, θγ̄+}

Else
compute γ− by (17)
compute γ̄− by (19)
set γ = min{γ̂, γ−, θγ̄−}

Set p(∆k) = (1 − γ)pc(∆k) + γp̄N
k

In Figure 1 we can see how our step selection works. In this figure,the dotted
ellipses represent level curves of the local linear model norm, the solid ellipse
represents the trust region boundary and the box is the domain Ω. The linear
model is minimized along the segment in bold belonging to the line connecting
the generalized Cauchy step and the projected Newton step.
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0

p̄N
k

p

p

k

k
N

C

Figure 1: Illustrative constrained path p(γ) in R
2. The segment in bold is the

path along with the model is minimized.

It is worth noting that above choice of the trial step produces a decrease in
the value of the model which is at least the decrease provided by the generalized
Cauchy step. In other words, the step satisfies the condition

ρc(p(∆k)) =
‖Fk‖ − ‖Fk + F ′

kp(∆k)‖
‖Fk‖ − ‖Fk + F ′

kpc(∆k)‖ ≥ 1. (20)

On the other hand, a trial step p(∆k) will be used to form the next iterate if the
point xk + p(∆k) produces a reduction of ‖F‖ sufficiently large compared with
the reduction predicted by the local linear model. Then, we test if the following
sufficient improvement condition

ρf (p(∆k)) =
‖Fk‖ − ‖F (xk + p(∆k))‖
‖Fk‖ − ‖Fk + F ′

kp(∆k)‖ ≥ β (21)

holds for a given constant β ∈ (0, 1) independent of k. If (21) is satisfied, then
p(∆k) is accepted, the new iterate xk+1 = xk + p(∆k) is formed and the trust
region radius may be increased. Otherwise, p(∆k) is rejected, ∆k is shrunk and
a new trial step is computed.

The following is our general constrained dogleg method where the positive
constant ∆min is a lower bound on the initial trust region size allowed at each
iteration.

Constrained Dogleg Method
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Input parameters: the starting point x0 ∈ int(Ω), the scaling matrix D(x), the
matrix G(x), the scalar ∆min > 0, the initial trust region size ∆̄0 > ∆min, the
constants β ∈ (0, 1), δ ∈ (0, 1), θ ∈ (0, 1).

For k = 0, 1, . . .
1. Set ∆k = ∆̄k.
2. Choose αk ∈ (0, 1).
3. Compute the solution pN

k to (9).
4. Form p̄N

k by (10).
5. Set ĝk = −Dk∇fk.
6. Find p(∆k) by the Step Selection Procedure.
7. While ρf (p(∆k)) < β

7.1 Set ∆k = δ∆k.
7.2 Find p(∆k) by the Step Selection Procedure.

8. Set xk+1 = xk + p(∆k).
9. Choose ∆̄k+1 > ∆min.

The Constrained Dogleg Method outlined in the above algorithm is globally
and fast locally convergent, as it can be easily derived from the convergence
analysis carried out in [3]. In fact, from Theorem 3.2 of [3] the following global
convergence result holds:

Theorem 2.1 Let (i-iii) in Assumption A1 be satisfied. If the sequence {xk}
generated by the CoDo Method is bounded, then

• all the limit points of {xk} are stationary points for problem (2).

• If there exists a limit point x∗ ∈ int(Ω) of {xk} such that F ′(x∗) is non-
singular, then ‖Fk‖ → 0 and all the accumulation points of {xk} solve
problem (1).

• If there exists a limit point x∗ ∈ Ω such that F (x∗) = 0 and F ′(x∗) is
invertible, then xk → x∗.

Moreover, Theorem 3.3 of [3] yields the following asymptotic convergence
result:

Theorem 2.2 Let (i-iv) in Assumption A1 be satisfied, ‖F ′‖ be bounded above
on

L = ∪∞
k=0 {x ∈ X : ‖x − xk‖ ≤ r}, r > 0,

and F ′ be Lipschitz continuous in an open, convex set containing L. Assume
that there exists a solution x∗ of (1) such that F ′(x∗) is nonsingular and that
the sequence {xk} converges to x∗. If αk in (10) satisfies αk → 1, as k → ∞,
and

• either Gk = I, k ≥ 0, or

• Gk = D
−1/2
k , k ≥ 0, and ‖GkpN

k ‖ → 0 as k → ∞,
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then, eventually, p(∆̄k) satisfies (21) and the sequence {xk} converges to x∗

superlinearly. Moreover, if

αk = 1 − O(‖Fk‖) as k → ∞,

the convergence rate is quadratic.

Summarizing, suitable choices of the scalar αk in the computation of the
projected Newton step ensure quadratic convergence of CoDo method whenever
spherical trust region are used (i.e. Gk = I, k ≥ 0), independently of the
position of the solution. On the other hand, when elliptical trust regions are

employed, (i.e. Gk = D
−1/2
k , k ≥ 0), fast convergence is ensured whenever

the solution lies in the interior of the feasible set, while fast convergence is not
guaranteed to solutions on the boundary of Ω.

From above presentation, this procedure clearly is a generalization of the
classical dogleg methos based on projected Newton Step. Presence of bounds
is taken into account as well. This approach is expected to work better than
those employed in [1, 2, 4] as the double-dogleg procedure is avoided here. More
precisely, in [1, 2] a classical dogleg step is computed and then it is truncated
to produce a feasible point. This projected dogleg step is rejected if it does not
satisfy the Cauchy decrease condition. In this latter case, the scaled Cauchy step
is employed. Then, all the computational work spent to compute the Newton
step is completely lost. On the other hand, in [4], a first dogleg procedure is
invoked to compute a classical dogleg step. Then, a projected dogleg step is
computed and, whenever it does not satisfy the Cauchy condition, a further
dogleg procedure is applied along the path connecting the scaled Cauchy step
and the projected dogleg step. In these cases, the Newton step still contribute to
the formation of the step, but requires two dogleg procedures. In the approach
used in the present work, this double-dogleg is not required at all.

3 Scaling matrices

We remark that different methods in the above scheme distinguish themselves
by the choice of the scaling matrix D(x). Further, it is important for global and
locally fast convergence to consider diagonal scalings from the rather general
class of matrices satisfying Assumptions A1. In this section we consider several
scaling matrices proposed by different authors in the numerical optimization
literature and we show how they match our requirements. More specifically, we
consider the following diagonal matrices.

- DCL(x) given by Coleman and Li [6]. The diagonal entries are:

dCL
i (x) =















ui − xi if (∇f(x))i < 0 and ui < ∞,
xi − li if (∇f(x))i > 0 and li > −ty,
min{xi−li, ui−xi} if (∇f(x))i = 0 and li > −∞ or ui < ∞,
1 otherwise.

(22)
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- DHUU (x) given by Heinkenschloss et al. in [13]. The diagonal entries DHUU (x)
have the following form:

dHUU
i (x) =







dCL
i (x) if |∇f(x)i| < min{xi − li, ui − xi}p or

min{xi − li, ui − xi} < |∇f(x)i|p
1 otherwise

(23)

where p > 1 is a fixed constant.

- DKK(x) given by Kanzow and Klug [15, 16]. The diagonal entries are:

dKK
i (x) =







1 if li = −∞ and ui = +∞
min {xi − li + γ max{0,−∇f(x)i},

ui − xi + γ max{0,∇f(x)i}} otherwise
(24)

for a given constant γ > 0.

- DHMZ (x) implicitly given by Hager et al. in [12]. The diagonal entries are:

dHMZ
i (x) =

Xi(x)

α(x)Xi(x) + |∇f(x)i|
(25)

being

Xi(x) =







ui − xi if ∇f(x)i < 0 and ui < ∞
xi − li if ∇f(x)i > 0 and li > −∞
1 if ∇f(x)i = 0

(26)

and α(x) is a continuous function, strictly positive for any x and uniformly
bounded away from zero.

Concerning this last matrix, we underline that in [12], the authors do not give
explicitly the scaling matrix DHMZ (x). In fact, they study a cyclic Barzilai-
Borwein gradient method for bound constrained minimization problems and
replace the Hessian of the objective function with λkI, where λk is the classical
Barzilai-Borwein parameter. Then, in order to compute the new iterate, they
move along the scaled gradient dk = −DHMZ (xk)∇f(xk), with α(xk) = λk in
(25).

In what follows, we verify if the above scaling matrices satisfy the four re-
quirements specified in Assumption A1.

(i) The scaling matrices DCL , DHUU and DKK clearly satisfy this condition.
In fact, as noted in [13] and [16], they satisfy (4). It is easy to prove that also
DHMZ (x) given by (25) satisfies (4). Indeed, we clearly have di(xk) ≥ 0. In
particular, if (xk)i = li and ∇f(xk)i > 0 or if (xk)i = ui and ∇f(xk)i < 0 we
have Xi(xk) = 0, hence dHMZ

i (xk) = 0. If ∇f(xk)i = 0 and (xk)i ∈ {li, ui} we
have dHMZ

i (xk) ≥ 0. Finally, if li < (xk)i < ui, we clearly have dHMZ
i (xk) > 0.

Then, all the matrices verify condition (i) in Assumption A1.
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(ii) This condition is satisfied by all the matrices as for any x̄ ∈ Bρ(x), we have
ui − x̄i ≤ ui −xi + ρ and x̄i − li ≤ xi + ρ− li. Note that in all the four matrices
the term ui − xi appears only if ui is finite and the same is true for xi − li.

(iii) To discuss this condition, it is useful to note that, given ĝk = −Dk∇fk, we
have

max

{

li − (xk)i

(ĝk)i
,
ui − (xk)i

(ĝk)i

}

=

{

li−(xk)i

(ĝk)i
if (∇f(x))i > 0

ui−(xk)i

(ĝk)i
if (∇f(x))i < 0

. (27)

Let us consider the DCL(x) scaling matrix. From (27), (6) and (22) we have

λk = min
i

(

1

|(∇fk)i|

)

≥ 1

‖∇fk‖∞
, (28)

and therefore condition (iii) is satisfied.
DHUU (x) given by (23) does not join the nice property (iii). In fact, let us focus
on the case min{xi − li, ui − xi}p < |∇f(x)i| < (min{xi − li, ui − xi})1/p and

(∇fk)i > 0. In this case dHUU
i (x) = 1 and li−(xk)i

(ĝk)i

= (xk)i−li
(∇fk)i

. Note that, in this

case, as (xk)i approaches li, (∇fk)i tends to zero and (xk)i−li
(∇fk)i

is not guaranteed

to be bounded away from zero.
DKK(x) is defined by (24). From its definition we have dKK

i (x) ≤ xi − li,
whenever (∇fk)i > 0. Then, in this latter case from (27) and (22) we have

λk =
li − (xk)i

(ĝk)i
=

(xk)i − li
dKK

i (xk)(∇fk)i
≥ 1

(∇fk)i
.

Similarly, if (∇fk)i < 0, we have dKK
i (x) ≤ ui − xi and we get

λk =
ui − (xk)i

−dKK
i (xk)(∇fk)i

≥ 1

|(∇fk)i|
.

This implies

λk ≥ min
i

(

1

|(∇fk)i|

)

≥ 1

‖∇fk‖∞
and then, DKK verifies condition (iii).
DHMZ (x) verifies condition (iii), too. In fact, from Lemma 3.4 in [12] it follows
that λk > 1 and this ensures that condition (iii) is satisfied.

(iv) This condition is satisfied by all the matrices considered. In fact, since
dCL

i (x) ≥ min{xi − li, ui − xi} ≥ ρ/2, it is easy to see that ‖(DCL(x))−1‖ ≤
2/ρ whenever x ∈ Bρ/2(x̄) with x̄ ∈ int(Ω) and ρ sufficiently small (see also
[1, Corollary 3.1]). The same is true, clearly, for the DHUU (x) and DKK(x)
matrices. Regarding the DHMZ (x) matrix, we have Xi(x) ≥ min{xi − li, ui −
xi} ≥ ρ/2. Furthermore Xi(x) and ∇f(x)i are bounded above in Bρ/2(x̄) and
this yields boundedness for (DHMZ (x))−1 in Bρ/2(x̄).
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To conclude, the scaling matrices DCL(x) , DKK(x) and DHMZ (x) match the
four conditions of Assumptions A1 while DHUU (x) is not suitable for our con-
strained dogleg approach, as the constrained compatibility condition (iii) is not
ensured to hold.

We end this section with the following general observations that stress some
theoretical implications of choosing the scaling matrix. First of all, we note
that DCL(x) is, in general, discontinuous at points where there exists an index
i such that ∇f(x)i = 0 and this may happen even at the solution, while the
scaling matrix DKK(x) has the advantage of being locally Lipschitz continuous
and, finally, scaling matrix DHMZ (x) (25) is continuous.

We remark that in [15, 16], Kanzow and Klug motivate the choice of the
scaling matrix DKK(x) and carefully analize the differences with DCL(x). Their
analysis justifies our interest in investigating the effect of DKK(x) in our context,
too.

Further remarks arise from a comparison between DCL(x) and DHMZ (x).
The Coleman-Li matrix DCL(x) takes into account the distance from x to the
boundary of Ω while the scaling DHMZ takes into account the value of ∇f(x)i:
the larger it is, the smaller is the scaling. To make evident the effects of this
scaling let us assume, for the sake of simplicity, Ω = {x ∈ R

n : x ≥ 0} and
consider a point x ∈ Ω close to ∂Ω such that the component xi is small while
∇f(x)i is large and positive. The Coleman-Li matrix DCL(x) prevents from
taking a step in the −∇f(x) direction which is too large along the ith axis. In
fact, we have

(DCL(x)∇f(x))i = xi∇f(x)i

which, if xi is small, is much smaller than ∇f(x)i. Further, since DCL does not
depend on the value of ∇f(x)i it follows that dCL

i (x) = xi independently of the
value of ∇f(x)i. For this reason, if ‖∇fk‖∞ is not small, it is not guaranteed
that a full-step may be taken in the scaled direction without violating the bounds
(see (28)). In other words, the scaling DCL ensures that the distance to the
boundary along the scaled gradient is bounded away from zero. The effectiveness
of the scaling DHMZ is more evident. In fact, as previously remarked, Lemma
3.4 in [12] ensures that the distance to the boundary along the scaled gradient
is bounded away from one when the scaling DHMZ is used. Further, we remark
that

(DHMZ (x)∇f(x))i =
xi

α(x)xi + ∇f(x)i
∇f(x)i.

and then, if xi is small, we have (DHMZ (x)∇f(x))i ≃ xi

∇f(x)i
∇f(x)i = xi, i.e.

the ith component of the step is not reduced by a factor xi, but has length xi.
In other words, since the ith component of the scaled gradient is essentially the
distance from the boundary, a full-step along the scaled direction may be taken,
without violating the bounds. We remark that, since the ith component of the
gradient scaled by DHMZ (x) results essentially equal to xi, the scaled gradient
has actually lost any gradient-related information. This is a a possible drawback
of using DHMZ (x) when getting onto situations as above described. On the
other hand, when xi ≫ 0 and ∇f(x)i is close to zero, the scaling DHMZ (x)
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reduces to the value 1/α(x) and does not take into account the distance from
the boundary, while the Coleman and Li DCL(x) scales the gradient by xi.

4 Experimental studies

In this section, we report on the numerical experiments we performed to prove
the computational feasibility of the proposed approach and give general infor-
mation about its numerical performance. Our primary goal is to show the basic
effectiveness of the proposed dogleg approach compared with the affine scaling
trust region methods STRSCNE given in [1, 2] and IATR given in [4]. Then,
the numerical behaviour of the new algorithm for a set of alternative scaling
matrices is analyzed.

We implemented the Constrained Dogleg method in the Matlab code CoDoSol
and, in the following, we give a brief account of this solver. Then, we discuss
the details of the major issues addressed in performing the numerical experi-
ments and describe the set of test problems used. Finally, we show the results
obtained.

4.1 The Matlab solver CoDoSol

We implemented the Constrained Dogleg method, with both spherical and el-
liptical trust region, in the Matlab code CoDoSol. This solver is freely accessible
through the web site:

http://codosol.de.unifi.it

Its usage is carefully described in helpful comments making easy to understand
the use of multiple input and output arguments. The simplest usage of CoDoSol
is to write a function that evaluates the given F and then call the solver. The
minimum information that the solver must be given is the initial point x0, the
name of the function defining the system, and the bounds defining the feasible
region.

A finite difference approximation to the Jacobian is provided, freeing the
user from computing the derivatives of F . However, if the Jacobian of F is
available in analytic form, the user can provide the code to compute it.

The user can choose among the three scaling matrices: DCL(x), DKK(x),
and DHMZ (x) or can apply his own scaling matrix. Moreover, spherical or
elliptical trust region may be selected.

The default choice is elliptical trust region in conjunction with Coleman-Li
scaling matrix.

If the problem to be solved has sparse Jacobians and a relatively big size,
the user can choose to work with sparse memory storage. Then, the Newton
step is computed via the built-in Matlab function LU with the syntax for calling
the UMFPACK package [7], when Matlab 6.5 or later versions are used.

Several different output levels may be requested by the user. The conver-
gence history of the algorithm and a variety of diagnostic information allow the
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user to be safeguarded against unsatisfactory approximations of the required
solution.

In particular, in the code different values of an output flag ierr are provided
corresponding to the following situations:

0 upon successful termination, i.e. fulfilment of the condition norm(F_k)<=tol;

1 the limiting number of iterations has been reached;

2 the limiting number of F -evaluations has been reached;

3 the trust region radius Delta has become too small (Delta<sqrt(eps));

4 no improvement for the nonlinear residual could be obtained:
abs(norm(F(x_k))-norm(F(x_{k-1})))<=100*eps*norm(F(x_k));

5 the sequence has approached a minimum of f in the box:
norm(D(x_k)*grad(f(x_k)))<100*eps;

6 an overflow would be generated when computing the scaling matrix D since
the sequence is approaching a bound.

Finally, we point out here how the code deals with possible singular Jacobian
matrices. If F ′

k is singular, the new step is just set equal to the Cauchy step. We
remark that the code only checks an “exact” singularity of F ′

k. A nearly singular
Jacobian is not discarded. In fact, if a nearly singular Jacobian is encountered,
we expect a “bad” Newton step to be computed. If this is the case, the step
selection rule automatically neglects the contribution of the Newton step by
choosing a γ very close to 0. On the other hand, if the step computed - despite
obtained with an inaccurate solution of the Newton step - satisfies sufficient
improvement conditions (20)-(21), it means that the new step is a “good” step
for our purposes and it is kept.

4.2 The numerical experiments

All numerical experiments have been performed on a 3.4 Ghz Intel Xeon (TM)
with 1GB of RAM using the Matlab 7.6 version of the code CoDoSol and
machine precision ǫm ≈ 2.10−16.

The experiments were carried out on a set of 36 problems with dimension
between n = 2 and n = 12500, specified in Tables 1 and 2. This set of prob-
lems provides us with various types of representative constrained systems, and
includes systems with solutions both within the feasible region Ω and on the
boundary of Ω, systems with only lower (upper) bounds and systems with vari-
able components bounded from above and below.

To form this set we used the nonlinear constrained systems given in Chapter
14 of [10] (problems Pb1 to Pb6) and in [28] (problems Pb20 to Pb23), two equi-
librium problems modeled by parameter dependent nonlinear equations (Pb7
and Pb8), four chemical equilibrium systems given in [24, 23, 29] (Pb9 to Pb12),
seven nonlinear complementarity problems (NCPs) given in [14, 8, 29] (Pb13
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to Pb19). The NCPs were reformulated as systems of smooth box-constrained
nonlinear equations (see [30]). Seven problems arise from finite discretization
of continuous problems, specifically Pb34 and Pb35 given in [20] are finite dif-
ferences analogues of two PDE problems, while Pb24 [25] and Pb27 [20] comes
from nonlinear BVPs; problems Pb25 and Pb36 are discretization of integral
equation and Pb30 is the discretization of the well-known Chandrasekhar H-
equation, that we solved with the challenging value c = 0.99. Finally, Problems
Pb26, Pb28, Pb29, Pb31, Pb32 and Pb33 are widely used nonlinear systems
given in the Test Problems collection [20].

Problems Pb1-Pb23 appear in literature already equipped with bounds on
the variables, which are specified in the references given in Table 1. Problems
Pb24-Pb36 have more than one solution and we added bounds in order to select
specific solutions. The bounds used in the numerical results are reported in
Table 2.

Pb # Name and Source n

1 Bullard-Biegler system [10, 14.1.3] 2
2 Ferraris-Tronconi system [10, 14.1.4] 2
3 Brown’s almost linear system [10, 14.1.5] 5
4 Robot kinematics problem [10, 14.1.6] 8
5 Series of CSTRs, R = .935 [10, 14.1.8] 2
6 Series of CSTRs, R = .995 [10, 14.1.8] 2
7 Chemical reaction problem [19, Problem 5] 67
8 A Mildly-Nonlinear BVP [19, Problem 7] 451
9 Chemical equilibrium system [24, system 1] 11
10 Chemical equilibrium system [24, system 2] 5
11 Combustion system (Lean case) [23] 10
12 Combustion system (Rich case) [23] 10
13 Josephy problem [8] 8
14 Problem HS34 [14] 16
15 Problem Wachter and Biegler [29] 9
16 Bratu NCP [8] 12500
17 Trafelas [8] 2904
18 Opt cont 31 [8] 2048
19 Obstacle [8] 7500
20 Effati-Grosan 1, a = 2 [28] 2
21 Effati-Grosan 1, a = 100 [28] 2
22 Effati-Grosan 2, a = 2 [28] 2
23 Effati-Grosan 2, a = 100 [28] 2

Table 1: Test Problems equipped with bounds

We performed our experiments starting from good and poor initial guesses.
As a general rule, the starting points x0 = l + 0.25ν(u − l), ν = 1, 2, 3,
have been used for problems having finite lower and upper bounds, whereas
x0 = 10ν(1, . . . , 1)T and x0 = −10ν(1, . . . , 1)T , ν = 0, 1, 2, have been used for
problems with infinite upper and lower bounds, respectively. We remark that
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Pb # Name and Source n box

24 Discrete boundary value function [26, Problem 28] 500 [−100, 100]
25 Discrete integral [26, Problem 29] 1000 [−10, 10]
26 Trigexp1 [20, Problem 4.4] 1000 [−100, 100]
27 Troesch [20, Problem 4.21] 500 [−1, 1]
28 Trigonometric system [20, Problem 4.3] 5000 [π, 2π]
29 Tridiagonal exponential [20, Problem 4.18] 2000 [e−1, e]
30 H-equation, c = 0.99[17] 400 [0, 5]
31 Countercurrent Reactors [20, Problem 4.1] 10000 [−1, 10]
32 Five Diagonal [20, Problem 4.8] 5000 [1,∞]
33 Seven Diagonal [20, Problem 4.9] 5000 [0,∞]
34 Bratu Problem [20, Problem 4.24] 10000 [−∞, 1.5]
35 Poisson Problem [20, Problem 4.25] 10000 [−10, 10]
36 Integral Equation [18] 1000 [−∞, 0]

Table 2: Test Problems with bounds added to select specific solutions

the vector x0 obtained with ν = 3 is solution of problem Pb3. Further, the
Jacobian matrices of Pb4 and Pb8 are singular at the starting point obtained
with ν = 2. These critical values of ν have been replaced by ν = 2.5. More-
over, the Jacobians of problems Pb20 and Pb21 are singular at points such that
(x)1 = (x)2. Despite these cases can be addressed by CoDoSol (see previous
subsection), other codes we used here for comparisons would fail. So, in these
cases, we modified the first component of x0 by putting (x0)1 = 0.5.

Summarizing, 36 problems occurring in applications have been choosen and
solved starting from three different initial points for a total of 108 tests.

In CoDoSol, the trust region size is updated as in [5], i.e. at the step 7.1
of the CoDo algorithm we reduced the trust region radius by setting ∆k =
min{0.25 ∆k, 0.5 ‖pk‖} and, at the step 9, we allowed the next iteration with an
increased trust region radius if condition (21) holds with β = 0.25 (in this case,
we set ∆̄k+1 = max{∆k, 2‖pk‖}) otherwise, we left unchanged the radius. We
remark that the parameter ∆min, which gives a lower bound on the initial trust
region radius at each iteration, helps in simplifying the convergence theory and
it is an internal parameter in the code. It is set equal to

√
ǫm.

The projected step p̄N
k is computed by using αk = max {0.99995, 1− ‖Fk‖}

for all k.
We stopped the runs when the condition

‖Fk‖ ≤ 10−6 (29)

was met. Such occurrence was indicated as a successful termination.
Failure was declared either if the number of iterations was greater than 300

or if the number of F -evaluations was greater than 1000.
Since different algorithms in our constrained dogleg framework distinguish

themselves by the choice of the scaling matrix, we tested the algorithm with the
scaling matrices analyzed in the previous section and studied the effect of this
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choice on numerical performance of the resulting Constrained Dogleg method.
More specifically, for DKK(x) and DHMZ (x) we decided to adopt the constant
choices used in the practical implementations of [16] and [12], respectively.

So, we tested CoDoSol in conjuction with the following choices of the scaling
matrix Dk, at each iteration k:

• DCL(xk) given by (22),

• DKK(xk) given by (24) with γ = 1 as suggested in [16]

• DHMZ (xk) given by (25) where αk = α(xk) is computed by the following
rule given in [12]:







α0 = max(10−10, ‖∇f0‖)
αk = max(10−10,

pT
k (∇fk −∇fk−1)

pT
k pk

), pk = xk − xk−1.

4.3 The experimental study

We first investigated the robusteness and efficiency of the new algorithm com-
pared with the affine scaling trust region methods STRSCNE given in [1, 2] and
IATR given in [4]. These methods are based on elliptical trust region approaches
and use the Coleman and Li diagonal scaling. So, we applied CoDoSol with the
options D(x) = DCL(x), G(x) = D(x)−1/2, ∆0 = 1. Further, for sake of com-
parison, we run the three Matlab solvers with the same values of the common
parameters and the same choices of algorithmic options. More specifically, we
used analytical Jacobian matrices and ∆min =

√
ǫm, β = 0.75, θ = 0.99995,

δ = 0.25.
We measured the efficiency of the three algorithms by the number It of

iterations and the number Fe of F -evaluations performed to obtain convergence.
We remark that the computational cost of all the algorithms considered increases
with the number of rejected trial steps. In fact, if the initial trial step is accepted,
we have Fe = It + 1 and so, the measure of efficiency in terms of iteration
count is equivalent to considering the number of function evaluations. On the
other hand, if Fe > It + 1, the number of trial steps rejected is given by
R = Fe − (It + 1).

All results are summarized in Tables 3, 4 and 5 where, for each problem,
we give the value of the parameter ν used to compute the initial guess x0 and
the value ‖F0‖ of ‖F (x0)‖.1 Further, for each method, we show the number of
iterations (It) and the number of function evaluations (Fe) performed to reach
convergence. Finally the symbol ∗ indicates a failure and the rather standard
notation m(c) denotes m.10c.

We now comment in more details our results.
The CoDoSol successfully solved 26 test problems starting from all the initial

guesses, 5 test problems starting from two of the three x0 used and 4 test

1Problems P2 and P3 appear in Table 3 with just 2 and 1 initial guesses, respectively, as
for the missing initial guesses the three solvers under comparison did not converge to the same
solution. This reduces the number of compared runs to 105.
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problems starting from only one initial guess. It failed with all initial guesses
here considered only with one problem. As a whole, the new method succeeded
89 times on a total of 105 runs. Moreover, 50% of failures were detected with
output flag ierr=1, that means the stopping criterion (29) was not met within
the maximum number of nonlinear iterations; 25% of failures were due to trust
region radius becoming too small (ierr= 3) and in the remaining failures the
solver stopped as a stagnation was detected (ierr= 4).

The STRSCNE solver succeeded 85 times: it solved 20 problems starting
from all the x0 used, 12 problems starting from two initial guesses and 4 prob-
lems with only one x0. It solved all problems with at least one starting guess.

The IATR method was a bit less robust than the other two. On the chosen
set of tests it solved 20 problems starting from all the x0, 9 problems starting
from two x0 and 5 problems starting from one x0. Further, it failed on two
problems with all initial guesses. Summarizing, it succeeded in solving 80 tests.

Tables 3, 4 and 5 provide us with other information on the numerical per-
formance of the constrained dogleg method proposed here. It does not seem to
be very expensive since most of the successful runs were performed with a small
number of iterations and with a moderate value of R.

To make in more significant evidence above observations we compare the
three algorithms by adopting the performance profile approach (see [9]). In Fig-
ure 2, the computational effort is measured both in terms of the number It of it-
erations performed (left picture) and in terms of the number Fe of F -evaluations
(right picture). Again, the profiles indicate that the CoDoSol outperforms IATR
and STRSCNE as it is more efficient in solving about the 70%/65% (in terms
of It/Fe) of the tests and it solves the 85% of tests within a factor 2 from the
best solver. Finally, it fails in solving the 15% of tests. However, it should be
taken into account that this percentage of failures decreases to 12% if we exclude
Problems Pb13-Pb19, i.e. problems obtained reformulating NCPs. This could
be expected as our method does not exploit at all the special structure of NCPs.
The performance profiles correponding to tests with no NCPs are depicted in
Figure 3.

The second step of our experimental study is to verify how the choice of
the scaling matrix affects the numerical performance of the constrained dogleg
approach.

We run CoDoSol using both spherical and elliptical trust regions. Our runs
clearly indicated that the elliptical trust region yields a more robust and effi-
cient approach than the spherical one. Then, here we report the results of our
numerical experience adopting the elliptical trust region.

For each scaling, we tested the algorithm using as initial trust region size
both ∆0 = 1 and ∆0 = D−1

0 ∇f0. We observed that the choice of the initial
trust region radius is crucial for the performance of CoDoSol, and the optimal
choice depends on the adopted scaling matrix. In particular, numerical evidence
shows that D = DCL(x) and D = DKK(x) should be used in conjunction with
the choice ∆0 = 1, whereas when D = DHMZ (x) is employed is fundamental to
adopt the choice ∆0 = D−1

0 ∇0f . This is not surprising as this scaling matrix
depends on the size of the gradient, and ∆0 = 1 yields in practice a too small
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Figure 2: CoDoSol with Coleman-Li scaling, IATR and STRSCNE: Performance
profiles in terms of iterations (left) and F -evaluations (right)
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Figure 3: CoDoSol with Coleman-Li scaling, IATR and STRSCNE: Performance
profiles in terms of iterations (left) and F -evaluations (right). Without NCPs
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Figure 4: CoDoSol with different scalings: Performance profiles in terms of
iterations (top) and F -evaluations (bottom). Right: details of the left-sided
plots.

initial trust region size. Hence, the performance profiles depicted in Figure 4 are
obtained with these choices (∆0 = 1 in the cases D = DCL(x), D = DKK(x)
and ∆0 = D−1

0 ∇f0 in the case D = DHMZ(x)).
As it can be clearly seen by the performance profiles, the pioneer Coleman

and Li scaling seems to be preferable to the other two scaling matrices, despite
its weaker theoretical properties in terms of continuity. The Hager-Maier-Zhang
scaling matrix shares with the Coleman-Li scaling the property of giving the
best solver in 55% of the tests, in terms of number of iterations. In terms
of F -evaluations, its behavior is in between the other two scalings, despite it
provides the desirable property of having a well centered step along the scaled
gradient; in fact a step of length one can always be taken along the scaled
gradient without crashing in to the bounds. In terms of robustness, the Hager-
Maier-Zhang scaling is just a bit less robust than the Coleman-Li scaling. As a
whole, the Kanzow-Klug scaling appears to give both the less efficient and the
less robust solver.
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5 Conclusions

We presented an affine scaling trust region algorithm for medium scale bound
constrained systems of nonlinear equations. The algorithm combines Newton
method and trust region procedures where the merit function used is the norm
of the nonlinear residual. The trust region and the corresponding scaled gra-
dient are defined by suitable diagonal scaling avoiding the problem of running
directly into a bound. The trust region problem is approximately solved by
a constrained dogleg method where the scaled Cauchy step is combined with
an interior point Newton step, i.e. the projection of the Newton step onto the
interior of Ω. The convergence analysis does not require to specify the scaling
matrix used to handle the bounds. Focusing on diagonal scalings from the nu-
merical optimization literature, we show that a number of choices are possible
in our context, too. It follows that different constrained dogleg algorithms can
be defined. To test the numerical features of the proposed approach, we im-
plemented the constrained dogleg method in the freely accessible Matlab solver
CoDoSol. We give a brief account of this solver and discuss the major issues
addressed in performing our numerical experiments.

From the obtained results the new proposal seems to be a useful tool to
solve bound-constrained systems of nonlinear equations. We are well aware
that the actual performance of an algorithm may strongly depend on the set of
test problems used to perform numerical experiments. Then, we consider the
conclusions of this study indicative to suggest that the flexibility of the adopted
constrained dogleg method in choosing the scaling matrices is appropriate for
application dependent purposes.
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CoDoSol IATR STRSCNE

Pb# n ν ‖F0‖ It Fe It Fe It Fe

2 2 2 7(-1) 5 6 5 6 5 6
3 2(-1) 4 5 6 8 6 8

3 5 1 2(1) 6 7 9 10 9 10

4 8 1 1(0) 6 7 6 7 9 10
2.5 2(0) 6 7 5 6 6 7
3 2(0) 5 6 5 6 7 8

6 2 1 5(-1) 3 4 3 4 3 4
2 1(1) 5 6 4 5 6 7
3 1(1) 7 8 8 9 8 9

7 67 1 2(6) 20 23 24 31 24 31
2 6(0) 9 11 24 34 26 37
3 8(4) 15 17 17 20 18 20

8 451 1 6(5) 18 19 18 19 18 19
2.5 1(5) 17 18 17 18 17 18
3 6(5) 20 22 19 20 19 20

10 5 0 4(0) 66 86 76 95 74 92
1 3(3) 12 13 12 13 12 13
2 3(6) 16 17 16 17 16 17

16 12500 0 9(1) 18 24 15 16 18 19
1 9(1) 14 20 14 15 23 24
2 1(2) 15 22 15 16 18 19

22 2 1 1(0) 5 6 5 6 5 6
2 1(0) 1 2 2 3 1 2
3 1(0) 5 6 5 6 5 6

24 500 1 8(1) 14 15 14 15 14 15
2 5(-6) 2 3 2 3 2 3
3 5(1) 14 15 14 15 14 15

25 1000 1 1(6) 11 12 10 11 10 11
2 1(1) 5 6 5 6 5 6
3 1(6) 11 12 11 12 10 11

27 600 1 6(-1) 9 11 9 11 9 11
2 6(-1) 6 7 6 7 6 7
3 2(-1) 7 8 7 8 7 8

29 2000 1 5(1) 8 9 8 9 8 9
2 5(1) 7 8 7 8 7 8
3 2(1) 7 8 7 8 7 8

31 10000 1 3(1) 17 19 17 19 17 19
2 1(0) 19 21 19 21 19 21
3 2(4) 20 22 20 22 20 22

32 5000 0 4(0) 5 6 5 6 5 6
1 5(0) 7 8 7 8 7 8
2 2(3) 12 15 12 13 12 13

34 10000 0 7(-6) 2 3 2 3 2 3
1 6(-1) 3 4 3 4 3 4
2 2(-1) 6 7 6 7 6 7

Table 3: CoDoSol with Coleman-Li scaling, IATR and STRSCNE: comparative
numerical results for problems successfully solved by all codes
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CoDoSol IATR STRSCNE

Pb# n ν ‖F0‖ It Fe It Fe It Fe

1 2 1 5(4) 21 30 20 26 21 30
2 2(5) 6 7 27 34 17 21
3 5(5) * * *

5 2 1 3(-1) * * *
2 4(0) * * *
3 2(2) 10 11 10 11 10 11

9 11 0 1(2) 13 14 12 13 16 17
1 4(4) 20 21 18 20 26 28
2 4(7) 26 27 * * 32 33

12 10 0 2(14) 20 21 20 21 20 21
1 2(17) 27 28 25 26 25 26
2 2(20) 31 32 34 36 *

11 10 0 8(13) 26 27 26 27 26 27
1 8(16) 32 33 37 39 32 33
2 8(19) 38 40 36 37 *

13 8 0 2(1) * * 10 12
1 1(3) 15 18 * 14 15
2 1(5) 18 19 * 19 20

14 16 0 1(2) 27 38 29 39 30 40
1 3(5) 23 26 14 15 15 16
2 4(45) 113 116 * *

15 9 0 6(0) 7 9 8 10 9 10
1 3(2) 9 11 9 10 10 11
2 3(4) * 18 22 *

17 2904 0 1(2) 61 65 44 45 55 56
1 1(2) 38 42 121 124 42 43
2 2(2) * * *

18 2048 0 5(1) 12 16 * 25 26
1 5(1) 15 20 * 24 25
2 5(1) 13 16 * 29 30

Table 4: CoDoSol with Coleman-Li scaling, IATR and STRSCNE: comparative
numerical results for problems where failures occurred
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CoDoSol IATR STRSCNE

Pb# n ν ‖F0‖ It Fe It Fe It Fe

19 7500 0 4(-2) * 49 58 11 12
1 4(-1) * 9 10 14 15
2 3(0) * * 16 17

20 2 1 2(0) 7 9 * *
2 2(0) 4 5 4 5 4 5
3 2(0) 5 7 4 5 4 5

21 2 1 1(2) 10 11 10 11 10 11
2 3(0) 4 5 4 5 4 5
3 1(2) 8 9 * *

23 2 1 3(3) 13 14 * *
2 1(0) 1 2 2 3 1 2
3 5(21) 55 56 * 55 56

26 1000 1 1(7) * * *
2 2(2) * * *
3 1(7) 23 26 23 26 24 27

28 5000 1 7(4) 18 28 18 19 *
2 4(4) 17 26 18 19 23 24
3 1(4) 16 25 16 17 17 18

30 400 1 6(0) 7 8 7 8 7 8
2 4(1) 7 8 7 8 7 8
3 8(3) * * *

33 5000 0 8(1) * * *
1 8(1) * * *
2 4(-1) 4 5 4 5 4 5

35 10000 1 1(2) 232 233 * *
2 1(1) 6 7 6 7 6 7
3 8(1) 10 11 12 13 12 13

36 1000 0 1(2) * * *
1 1(2) * * *
2 3(0) 4 5 4 5 4 5

Table 5: CoDoSol with Coleman-Li scaling, IATR and STRSCNE: comparative
numerical results for problems where failures occurred
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