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In many engineering applications the dynamics may significantly be affected by nonlinear effects,
which must be accounted for in order to accurately understand and robustly model the dynamics.
From a practical point of view, it is very important to solve the inverse problem related to system
identification and output prediction. In this paper the recently developed Nonlinear Subspace
Identification (NSI) method is presented and applied to an oscillator described by the Duffing
equation, with different types of excitation including random forces, which are demonstrated to be
very suitable for the identification process. The estimates of system parameters are excellent and,
as a consequence, the behaviour of the system, including the jump phenomena, is reconstructed
to a high level of fidelity. In addition, the possible memory limitations affecting the method are
overcome by the development of a novel algorithm, based on a specific computation of the QR
factorisation.

1. Introduction

In many applications nonlinear effects may affect significantly the dynamics, even when the
amplitude of the motion is sufficiently small. These dynamical effects must be accounted for
in order to accurately understand and robustly model the dynamics.

In general, bifurcations of equilibrium positions or periodic orbits of nonlinear
systems are the source of additional nonlinear features in the dynamics [1], which result
in a qualitative change in the response and also in a substantial quantitative variation in
oscillatory behaviour of the system. For example [2], in the externally excited pendulum a
relatively small amplitude periodic attractor, under the variation of a control parameter (such
as the frequency), may lose its stability at a saddle-node bifurcation in which the system may
then start to oscillate with a relatively large amplitude.
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Among essentially nonlinear dynamics caused by bifurcations [1], such as the
possibility of multiple coexisting stable equilibrium positions (each with its own separate
domain of attraction), this paper focuses on sudden nonlinear transitions between stable
attractors (jumps) caused by nonlinear hysteresis phenomena.

Moving to the inverse problem of nonlinear systems, many studies have been recently
conducted: in this case, system parameters are unknown and have to be estimated through an
identification procedure, consisting in the development of mathematical models from input
and output measurements performed on the real system.

Nonlinear system identification has been thoroughly investigated in recent years and
many efforts have been spent leading to a large number of methods. An exhaustive list of the
techniques elaborated to identify the behaviour of nonlinear dynamical systems is hard to
write and, moreover, there is no general analysis method that can be applied to all systems in
all circumstances. A comprehensive list describing the past and recent developments is given
in [1].

One of the established techniques is the Restoring Force Surface (RFS) method, firstly
introduced by Masri and Caughey [3]: this simple procedure allows a direct identification
for single-degree-of-freedom (SDOF) nonlinear systems. There exist in the literature several
applications of RFS method to experimental systems: in a recent paper [4], it is applied for
the analysis of a nonlinear automotive damper. A similar approach is the Direct Parameter
Estimation (DPE) method, which may be applied to multidegree-of-freedom (MDOF)
nonlinear systems: a practical implementation of the procedure was made by Mohammad
et al. [5].

Recent methods are suitable for identification of more complex nonlinear systems, in
particular MDOF systems. One of them is the Conditioned Reverse Path (CRP) method,
developed by Richards and Singh [6, 7]: this technique is based on the construction of
a hierarchy of uncorrelated response components in the frequency domain, allowing the
estimation of the coefficients of the nonlinearities away from the location of the applied
excitation. One of the examples of experimental application is given by Kerschen et al. [8].

More recently, Adams and Allemang [9] proposed a frequency-domain method called
Nonlinear Identification through Feedback of the Outputs (NIFO), which has demonstrated
[10] some advantages with respect to the CRP, mainly due to the lighter conceptual and
computing effort. This method exploits the spatial information and interprets nonlinear forces
as unmeasured internal feedback forces.

Starting from the basic idea of NIFO, the Nonlinear Subspace Identification (NSI)
method has been developed by Marchesiello and Garibaldi [11], showing a higher level of
accuracy with respect to NIFO. NSI is a time-domain method which exploits the robustness
and the high numerical performances of the subspace algorithms.

In this paper the NSI method is applied to a Duffing oscillator, which has been
studied for many years as representative of many nonlinear systems [12]. This system can
be considered in order to simply describe the sudden transitions between coexisting stable
branches of solutions. For this type of system there are frequencies at which the vibration
suddenly jumpsup or down, when it is excited harmonically with slowly changing frequency.

One of the main topics about the study of the Duffing oscillator consists in searching
for analytical expressions of the jump frequencies and the amplitudes of vibration at these
frequencies. For example, Worden [13] and Friswell and Penny [14] computed these points
by using the harmonic balance method, while Malatkar and Nayfeh [15] determined the
minimum excitation force required for the jump phenomenon to appear, by using a method
based on the elimination theory of polynomials. A recent paper by Brennan et al. [16]
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provides a full set of expressions determined by using the harmonic balance approach, as
a link between the earlier analytical work and the later numerical studies.

In this paper the NSI estimates of system parameters are excellent and, as a
consequence, the behaviour of the Duffing oscillator, including the jump phenomena, is
reconstructed to a high level of fidelity.

In addition, the NSI method is enforced by the development of a new algorithm to
compute the QR factorisation in a Matlab environment, in those cases in which the data matrix
is too large to be stored or factorised. This new algorithm, which exploits some useful features
of the Householder transformations, allows the NSI method to reach more accurate results in
the parameter estimation.

2. Nonlinear Subspace Identification

2.1. Nonlinear Model

The adopted mathematical approach follows the one used in [11], in order to derive a
mathematical model for a nonlinear dynamical system. The expression for a linear time-
invariant system is first considered, as described by the following continuous state-space
model:

ẋ = Acx + Bcu,

y = Cx +Du,
(2.1)

where the output y(t) is a q-dimensional column vector, t is time, the input u(t) is an m-
dimensional column vector, and the order of the model, that is, the dimension of the state
vector x(t), is n.

A dynamical system with h degrees of freedom and with lumped nonlinear springs
and dampers can be described by the following equation of motion:

Mz̈(t) + Cvż(t) +Kz(t) = f(t) −
p∑

j=1
µjLnjgj(t) = f(t) + fnl(t), (2.2)

where M,Cv, and K are the mass, viscous damping, and stiffness matrices, respectively,
z(t) is the generalised displacement vector, and f(t) is the generalised force vector, both of
dimension h, at time t. Each of the p nonlinear components depends on the scalar nonlinear
function gj(t), which specifies the class of the nonlinearity (e.g., Coulomb friction, clearance,
quadratic damping, etc.), and on a scalar nonlinear coefficient µj. The vector Lnj , whose
entries may assume the values 1, −1, or 0, is related to the location of the nonlinear element:
it specifies the degrees-of-freedom joint by the jth nonlinear component and the sign of the
term appearing in the equation of motion (2.2).

Written as in (2.2), the original system may be viewed as subjected to the external
forces f(t) and the internal feedback forces due to nonlinearities fnl(t), expressed as the
sum of the p nonlinear components. This concept, already used in [9] to derive the NIFO
frequency-domain method, is also on the basis of the present time-domain identification
method.
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Assuming that the measurements concern displacements only, the state-space
formulation of the equation of motion, corresponding to a state vector chosen as x =
[zT żT ]T ∈ Rn×1 and to an input vector u = [f(t)T − g1(t) · · · − gp(t)]T ∈ Rm×1, is

{
ż
z̈

}
=
[

0h×h Ih×h
−M−1K −M−1Cv

]{
z
ż

}
+
[

0h×h 0h×1 · · · 0h×1
M−1 M−1µ1Ln1 · · · M−1µpLnp

]
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(t)
−g1(t)

...
−gp(t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (2.3)

y =
[
Ih×h 0h×h

]{z
ż

}
+
[
0h×h 0h×1 · · · 0h×1

]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(t)
−g1(t)

...
−gp(t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (2.4)

and matrices Ac ∈ Rn×n, Bc ∈ Rn×m,C ∈ Rl×n, and D ∈ Rl×m of (2.1) are consequently defined.
Then the continuous model of (2.1) may be converted [11] into the following discrete

state-space model:

xr+1 = Axr + Bur,

yr = Cxr +Dur,
(2.5)

where A = eAc∆t ∈ Rn×n and B = (eAc∆t − I)A−1
c Bc ∈ Rn×m.

2.2. Subspace Identification

Given a deterministic-stochastic state-space model with s measurements of the input and of
the output

xr+1 = Axr + Bur +wr,

yr = Cxr +Dur + νr ,
(2.6)

where wr and νr are unmeasurable vector signals called process error and measurement error,
respectively, the subspace identification problem consists in estimating the model order n and
the system matrices A,B,C, and D up to within a similarity transformation, which does not
affect the parameter estimation.

In the “data-driven approach” [17] the input data are gathered in a block Hankel
matrix

U0|2i−1
def=

⎡
⎢⎢⎢⎣

u0 u1 · · · uj−1
u1 u2 · · · uj
...

...
. . .

...
u2i−1 u2i · · · u2i+j−2

⎤
⎥⎥⎥⎦
∈ R2mi×j , (2.7)
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Figure 1: The nonlinear system described by the Duffing equation.

Table 1: System parameters.

m (kg) k (N/m) c (Ns/m) k3 (N/m3)
1.3 800 1.3 1.5 × 106

where the number of block rows i is a user-defined index. The number of columns j is
typically equal to s − 2i + 1, which implies that all given data are used. The output block
Hankel matrix Y0|2i−1 ∈ R2li×j is defined in a similar manner by replacing u with y in (2.3).

Subspace methods take advantage of robust numerical techniques such as QR
factorisation and Singular Value Decomposition (SVD) by using geometric tools such as the
oblique projections of the row space of matrices. For a complete description of the estimating
procedure see [17].

The nonlinear identification procedure is based on the computation of system
parameters, once the state-space matrices A,B,C, and D have been estimated by a subspace
method in the time domain. In fact, system parameters (included in M,Cv,K, and µj) are
contained in the matrix

HE(ω) = D + C(iωI −Ac)−1Bc, (2.8)

which is invariant under the similarity transformation corresponding to the application of a
subspace method [11].

3. Application: The Duffing Equation

Consider the SDOF system with cubic hardening stiffness depicted in Figure 1, whose motion
is described by the following Duffing equation:

mz̈(t) + cż(t) + kz(t) + k3z
3(t) = f(t) (3.1)

with system parameters summarized in Table 1. The strength, the type, and the location of
the nonlinearity are defined respectively by the three scalar quantities µ1 = k3, g1(t) = −z3(t),
and obviously Ln1 = 1. The system is excited by two different types of force.
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Table 2: Identification results: percentage error (100 · |estimated–actual|/actual).

m k c k3

(Case 1-up) Upward sweep 4.63 4.01 4.04 5.86
(Case 1-down) Downward sweep 1.71 1.30 2.64 3.97
(Case 2) Random 0.13 0.54 0.73 0.73

Case 1. The first one is a linearly varying frequency sweep (of amplitude A = 1) between 3
and 6 Hz, applied for an upward (up) and a downward (down) frequency sweep.

Case 2. The second one is a zero-mean Gaussian random input whose r.m.s. is 20 N, selected
so that the r.m.s. of the nonlinear force is equal to 67% of the corresponding linear stiffness
force.

A fourth-order Runge-Kutta numerical integration (with a time step ∆t = 10−3 s) of
the equation of motion has been performed and a total number of s = 105 samples has been
generated (so tfin = 100 s) and then corrupted by adding a zero-mean Gaussian noise (1% of
the r.m.s. value of the output).

3.1. Identification

The invariant matrix HE(ω), defined in (2.8), can be easily computed for ω = 0:

HE(0) = D − CA−1
c Bc =

[
0 0

]
−
[
1 0

]
⎡

⎣
−
c

k
−
m

k

1 0

⎤

⎦

⎡

⎣
0 0
1
m

k3

m

⎤

⎦ =
[

1
k

k3

k

]
. (3.2)

From the eigenvalues of the system matrix Ac it is possible to obtain [18] estimates for the
angular frequency ωn of the undamped system and for the damping factor ζ, so that all
system parameters can be estimated from (3.2) and from the following relationships:

ωn =

√
k

m
, ζ =

c

ccrit
=

c

2
√
km

. (3.3)

It is observed here that in each of the identification procedures performed, the model order
n = 2 is determined by inspecting a singular value plot (with i = 60 block rows), as shown in
[11].

The identification results for all system parameters are presented in Table 2: the best
estimates are obtained by applying a random input. In fact, for Case 1, it should be observed
that the added noise is related to the r.m.s. of the entire time history, which is nonstationary;
so, samples corresponding to small displacements are more deeply corrupted by noise
and are consequently counterproductive for the identification procedure. This is shown in
Figure 2 for Case 1-up, in which this concept is more evident because the system reaches
higher values of response amplitudes (and then a higher r.m.s. of the time histories).

A slightly better result for Case 1 can be obtained by considering k3 as depending on
ω: for each ω, matrix HE(ω) defined in (2.8) simply reduces to a vector hE with two elements
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Figure 2: Effect of noise corruption for Case 1-up. The r.m.s. of the entire time history is 0.0088 m. (a) Zoom
just before the jump-down (large amplitudes). (b) Zoom after the jump (small amplitudes).
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Figure 3: Real part of the estimated nonlinear coefficient k3, in the frequency range considered.

as in (3.2), and it is possible to compute k3 = hE(2)/hE(1). The estimated coefficient of the
nonlinear term is frequency dependent and complex, albeit its imaginary part is some orders
of magnitude smaller than the real part. A single value can be obtained by performing a
spectral mean in the frequency range from 3 to 6 Hz (Figure 3). In this way, the percentage
errors related to the k3 estimates become 2.74 for Case 1-up and 1.78 for Case 1-down. Note
that this procedure is not applicable to get a spectral mean for k, because for ω > 0 vector hE

is not defined as in (3.2).
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Figure 4: (a) Frequency response curves. The crosses and the circles denote the responses at the jump-up
and jump-down frequencies, respectively. The dashed lines denote unstable solutions. (b) Zoom near the
jump-up.

In Figure 4(a) the true Frequency Response Functions (FRFs) of the nonlinear and
underlying linear system are shown in comparison with the NSI estimates, computed from
the identified system parameters in Case 2. As a consequence of the results reported in
Table 2, the curves are almost overlaid: an excellent agreement can be observed, even in
estimating the jump-up and jump-down frequencies and responses. The values for the jump-
down and the jump-up (Figure 4(b)) have been obtained from the approximate expressions
derived in [16]: the approximation of the true jump is obtained with the real system
parameters of Table 1 while the approximation of the estimated jump is obtained with the
NSI estimates of Case 2.

3.2. Output Prediction

The NSI method presented in this paper is also attractive for its predictive capability. In fact,
once the system matrices A,B,C, and D in (2.5) have been estimated, it is possible to predict
the system behaviour when it is subject to a different type of excitation.

It is important to remark that recent methods such as CRP [6, 7] and NIFO [9] would
require a second step to perform output prediction in a general case of MDOF systems. In
fact, these methods only produce estimates of the underlying linear FRFs and of nonlinear
coefficients. On the contrary, the NSI capability of predicting the output is intrinsic in its
formulation, since a state-space model is used. In other words, system parameter estimation
is not strictly necessary and this represents a great advantage of NSI in case of MDOF systems.
However, for simplicity’s sake, in this paper an SDOF numerical example is considered,
so estimating system parameters out of state-space matrices is both possible and easy to
perform.

Starting from the best estimates of system parameters, obtained through Case 2
identification procedure, it is possible to generate new time histories considering the system
as excited by the frequency sweeps described in Case 1. Now the numerical integration has
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Figure 5: Downward prediction. (a) Comparison between true and predicted output, near the jump-up.
(b) Zoom just after the jump.

been performed for tfin = 1000 s, in order to have a slower frequency sweep and to obtain a
more accurate representation of jump phenomena.

In Figure 5 the results are shown, in terms of a comparison between the true (i.e.,
system parameters as in Table 1) and the predicted (i.e., identified system parameters) time
histories, for Case 1-down. In Figure 5(a) it can be observed that the predicted jump-up
occurs at a higher frequency (at a lower time instant in the downward sweep), as expected
from the FRFs zoom shown in Figure 4(b). After the jump-up, this slight shift has no longer
effect on the prediction: as shown in Figure 5(b), the true and the predicted output are almost
overlaid just a few seconds after the jump. Notice the high global level of accuracy of the
prediction results, albeit system parameters have been estimated starting from a time history
corrupted by measurement noise.

4. QR Factorisation

A common feature in the implementation of all algorithms concerning the subspace methods
is the following QR factorisation of a block Hankel matrix H ∈ Rj×2(m+l)i, constructed from all
input and output measurements:

H =
1
√
j

[
UT

0|2i−1 YT
0|2i−1

]
=

1
√
j

[
UT

0|i−1 UT
i|i UT

i+1|2i−1 YT
0|i−1 YT

i|i Y T
i+1|2i−1

]
= QR, (4.1)

where R ∈ R2(m+l)i×2(m+l)i is an upper triangular matrix; note that, as shown in [17], the
computation of the orthonormal matrix Q ∈ Rj×2(m+l)i is not needed.
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Figure 6: Flow chart representation of the new algorithm, from step (3) to step (8).

4.1. Memory Limitations

Assuming to work in a Matlab environment, matrix R in (4.1) should easily be computed
through the standard “qr” function, after constructing the block Hankel matrix H ∈ Rj×2(m+l)i.
This procedure is certainly valid and efficient for linear systems, because an accurate
identification does not require the values of i and j to be so large to fall into the problem
described below (typically j ∼ 104 and i do not exceed some tens).

In order to apply subspace methods to nonlinear systems with satisfactory results, it is
necessary to consider as many samples s as possible (so j ≈ s should be of the order of 105 or
106) and in particular to extend the index i to some hundreds, especially in presence of noisy
measurements. The consequent problem consists in dealing with a matrix H which results in
being too large to be stored nor factorised.

Therefore, it is clear that the NSI method undergoes severe limitations in its
applicability, in particular as regards MDOF systems (increasing l) or systems having many
nonlinear terms (increasing m).

4.2. New Algorithm

It is then necessary to conceive a new algorithm to compute the QR factorisation. This
algorithm is based on Matlab commands “save” and “load”, which allow to save and load
variables directly from the hard disk, and the command “clear”, useful to clean virtual
memory.

Moreover, it is observed that the development of this new procedure exploits the
particular structure of the matrix H to be factorised and the useful features of Householder
transformations: in particular, from now on, Algorithms 1 and 2 reported in the appendix
will be considered.

The new algorithm is described in the following and a flow chart representation is
given in Figure 6.

(1) Load measured data y, representing the l system outputs, and the values of the
external force f ; compute from these data the vector u of the m system inputs.

(2) Choose the number of samples s for the identification procedure and the number
of block rows i; this choice determinates the number of rows and columns of matrix
H, respectively, j = s − 2i + 1 and d = 2(l +m)i.
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(3) Start a Cycle 1, k = 1, . . . , d; define δ as the kth column of matrix H. δ is constructed
by using the input (if it is a column of submatrix UT

0|2i−1) or output (if it is a column
of submatrix YT

0|2i−1) data, as defined in (4.1).

(4) Start a Cycle 2, g = 1, . . . , k − 1; for each iteration g:

(a) “load” from the hard disk vector Qg = [vg, . . . , vj]T ;

(b) execute, on part δ̃ = [δg, . . . , δj]T of vector δ, the transformations defined in
Algorithm 2, also using number βg ; vector δ is obtained;

(c) “clear” vector Qg from virtual memory.

End of Cycle 2.

(5) Subdivide vector δ into two vectors γ = [δ1, . . . , δk−1]
T

and ξ = [δk, . . . , δj]
T
. Make

a copy ψ of vector ξ.

(6) Apply Algorithm 1 to vector ψ, which becomes the new Qk = [vk, . . . , vj]T obtaining
also number βk.

(7) Execute, on vector ξ, the transformations defined in Algorithm 2, in order to obtain
the new vector ξ = [ξ1, 0, . . . , 0].

(8) Attain the kth column of matrix R, denoted here as Rk:

(a) construct vector R̃ = [γ ξ]
T
∈ Rj ;

(b) truncate vector R̃, by eliminating all unnecessary zeros and keeping only the
first d elements, in order to obtain Rk ∈ Rd.

(9) “save” vectors Qk and Rk on the hard disk, and “clear” them from the virtual
memory.

End of Cycle 1.

(10) Reconstruct matrix R, by loading (load) the d columns Rk from the hard disk.

At the end of the algorithm, all saved vectors Qk and Rk (and β also) will be deleted
from the hard disk.

Note (referring in particular to step (3) of the above algorithm) that in this way it is
not necessary to store the entire matrix H, and the already discussed memory problems can
be avoided. It is indeed sufficient to construct and factorise a new column for each iteration
k of Cycle 1.

As a final consideration, it should be observed that this new algorithm does not present
any limitations about the choice of index i and the number of samples s to be considered in the
NSI procedure. The only limitation may be represented by a larger (depending on the system
considered and on the choice of i and s) amount of time requested for the computation of
matrix R.

4.3. Application

In order to test the new algorithm and to analyse the results of the NSI procedure exploiting
it, the numerical application described in Section 3 is considered. Note that the previously
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Table 3: Identification results (noise 1%): percentage error (100 · |estimated–actual|/actual).

i m k c k3

60 0.13 0.54 0.73 0.73
90 0.13 0.33 0.57 0.49
120 0.08 0.13 0.15 0.21
180 0.07 0.11 0.33 0.18

Table 4: Identification results (noise 3%): percentage error (100 · |estimated–actual|/actual).

i m k c k3

60 0.68 1.87 1.54 2.98
90 0.76 1.37 1.22 2.32
120 0.57 0.74 0.80 1.37
180 0.51 0.66 0.63 1.20

adopted i = 60 is the maximum index (for the calculator used for the computations) which
allows to avoid the memory limitation problems described in Section 4.1. In fact, for larger
values of i, Matlab goes out of memory and the NSI procedure with the standard “qr”
function fails.

The same time histories (s = 105 samples) as in Section 3 are considered, and the NSI
procedure with the novel algorithm is performed for higher values of the number of block
rows i.

Since Table 2 shows that the best parameter estimations are obtained in Case 2
(Gaussian random input), the results presented in this section refer only to Case 2. Note also
that in all the following tables the results obtained by choosing i = 60 are also reported for
comparison purposes. For this value of i the results are the same as in Table 2, as expected:
the novel algorithm does not alter the NSI results, it just proposes a useful way to compute
matrix R in those cases in which Matlab produces an “out of memory” message. However it is
observed that, when the standard Matlab “qr” function is still applicable, the novel algorithm
is about 26 times slower because of its many savings and loadings from the hard disk.

Table 3 shows the identification results relative to an output corrupted by 1% of noise:
it is clear that the percentage error in the estimates of k and k3 decreases as i increases. This
trend is not so evident for the estimates of m and c: this is due to the fact that these parameters
are not directly estimated from matrix HE(ω = 0), as k and knl in (3.2), but they depend on
the estimates of k,ωn, and ζ through the relationships of (3.3); this may cause a sort of error
propagation or compensation. This remark is also valid for Tables 4 and 5.

From Table 3 it can also be observed that a value of i = 60 is anyway sufficient to obtain
an excellent level of accuracy in the estimates, so the application of the new algorithm is not
necessary.

The new algorithm appears to be more appealing when the output is corrupted by a
higher level of noise: in this case it is necessary to increase the value of i in order to attain
acceptable accuracy in the estimates, in particular as regards the nonlinear coefficient k3.

For this reason, the previously generated output is corrupted by adding a higher
percentage of zero-mean Gaussian random noise, and the results of the identification
procedures are shown in Tables 4 and 5 for 3% and 5% noise, respectively. It can be observed
that the index i required in order to obtain the same level of accuracy increases as the noise
percentage increases.
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Table 5: Identification results (noise 5%): percentage error (100 · |estimated–actual|/actual).

i m k c k3

60 1.19 3.08 0.53 6.24
90 1.60 2.62 0.15 5.29
120 1.41 1.84 0.73 3.82
180 1.26 1.61 1.59 3.34

5. Conclusions

In this paper the NSI method is presented and applied to an oscillator described by the
Duffing equation, in order to handle the inverse problem related to identification and output
prediction.

It is shown that the best results in parameter estimation are obtained when the system
is excited by a Gaussian random input, in particular in presence of a measurement noise.
However, the NSI method is also applicable in case of a linearly varying frequency sweep:
with this type of excitation jump phenomena are highlighted, but a reduced level of accuracy
is attained.

The best parameter estimates are then exploited in order to predict the system
behaviour when it is subject to a frequency sweep excitation: the output reconstruction
is excellent, in particular as regards the amplitudes and the frequencies at which jump
phenomena occur.

The predictive accuracy depends on the quality of parameter estimates, but their
improving implies the need of processing a larger amount of data. To this purpose, the NSI
method is enforced by the development of a new algorithm to compute the QR factorisation
in a Matlab environment, in those cases in which the data matrix is too large to be stored or
factorised.

Appendix

Householder Transformations

In this appendix some concepts, exploited in Section 4.2 to conceive a new useful algorithm
to compute the QR factorisation of a matrix, are presented. For a detailed overview of
Householder transformations (also known as elementary reflectors), see [19]. In particular,
the algorithms presented below are a revised form of those contained in [19, pages 40-41].

Given a generic vector x different from zero, the Householder transformation

U = I − βuuT (A.1)

with u = x + σ · e1, e1 = [1, 0, . . . , 0]T , σ = ±||x||2 and β = 2/||u||22 yields the following relation:

Ux = −σ · e1. (A.2)

It can be observed that the couple (u, β), formed of n+1 real numbers, is sufficient to uniquely
determine matrix U, having n2 elements. Thus, given a vector x = [ξ1, ξ2, . . . , ξn]T , it is possible
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to write an efficient algorithm providing the quantities u (which is overwritten to x) and β
(and also σ).

Algorithm 1. We have the following:

(1) η ← max{|ξi|, i = 1, . . . , n}
(2) σ ← 0

(3) cycle 1: i = 1, . . . n

(4) if |ξi| ≥ η
√eps then σ ← σ + (ξi/η)2

(5) end of cycle 1

(6) σ = sgn(ξ1)η
√
σ

(7) ξ1 ← ξ1 + σ

(8) β ← 1/(σ · ξ1).

Note that eps stands for the lowest possible machine number, and that this algorithm
avoids possible phenomena of overflow, underflow, and numerical cancellation.

The couple (u, β) determined through the above algorithm is sufficient to construct
products of the form

UA = U[a1, a2, . . . , an] = [Ua1, Ua2, . . . , Uan]. (A.3)

In fact, given the two vectors u = [v1, v2, . . . , vn]T and a = [α1,α2, . . . ,αn]T , and the number β,
the substitution of a with vector Ua can be computed in the following way.

Algorithm 2. We have the following:

(1) τ ← β
∑n

i=1 viαi

(2) αi ← αi − τ · vi, i = 1, . . . , n.

As an application of the concepts introduced above, it is possible to construct n − 1
elementary reflectors U1, U2, . . . , Un−1 such that the new matrix

Un−1 · · ·U2U1A = QTA = R (A.4)

is upper triangular; note the orthogonality of Q, which is a product of orthogonal matrices.
As a final observation, the QR factorisation can be computed even if matrix A is

rectangular m × n; in this case A = QR with Q ∈ Rm×m and R ∈ Rm×n and the factorisation is
attained with r = min{m − 1, n} elementary reflectors U1, U2, . . . , Ur .
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