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Abstract

Multi-echelon distribution systems are quite common in supply-chain and logistic
management. They are used by public administrations in their transportation and
traffic planning strategies as well as by companies to model their distribution sys-
tems. In the literature, most studies address issues related to the movement of flows
throughout the system from the origins to their final destinations.

In this paper we consider the Two-Echelon Vehicle Routing Problem (2E-CVRP),
the two-echelon variant of the well known Capacitated Vehicle Routing Problem,



where the delivery from one depot to the customers is managed by routing and con-
solidating freight through intermediate depots, called satellites. Valid inequalities
based on the TSP and CVRP, the network flow formulation, and the connectivity
of the transportation system graph are presented.

Extensive computational results on instances with up to 50 customers show an
improvement of the best known results between 4% and 15%.

Keywords: Multi-Echelon VRP, Valid Inequalities, Lower Bounds.

1 Introduction

In Multi-Echelon Vehicle Routing Problems the delivery from one or more
depots to the customers is managed by routing and consolidating the freight
through intermediate depots, called satellites. This family of problems differs
from Multi-Echelon Distribution Systems present in the literature, where the
attention is focused on the flow assignment among the levels only. In our case
we also consider the fleet management and the overall distribution system
routing. The routing in Multi-Echelon Distribution Systems is challenging,
both in theory and in practice (e.g., City Logistics problems), where keeping
big trucks far from the city, while using efficiently small and environmental
friendly vehicles in the historical city centers is one of the main goals [9].

In this work we consider the Two-Echelon Vehicle Routing Problem (2E-
VRP), the variant of Multi-Echelon Vehicle Routing with one depot and a fixed
number of satellites. First level routing manages depot-to-satellites delivery,
while the second level deals with the satellites-to-customers delivery. The fleet
size is fixed and the trucks are homogeneous inside each level. Vehicles and
satellites are capacitated, while neither synchronization between the vehicles
in each satellite, nor time-windows of the customers are considered. The
literature on 2E-VRP, due to the recent introduction of the problem itself, is
limited. A model for the 2E-VRP, able to solve to optimality instances with
up to 32 customers, has been presented in [6] and [9]. In [9], the authors
also derived two math-heuristics able to solve instances up to 50 customers.
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Concerning larger size instances, a fast cluster-based heuristic method has
been proposed by Crainic et al. [2] able to heuristically solve instances up
to 150 customers. For an application of the 2E-VRP on freight distribution
system we refer the reader to [3], where advanced freight distribution systems
are provided, and [4].

The main goal of this work consists in detecting and defining new classes
of valid inequalities for strengthening the continuous linear formulation of
the 2E-VRP. Starting from the flow-based model presented in [9], we first
extend the model giving a stronger formulation for it. Moreover, several valid
inequalities are presented, derived from the TSP and CVRP literature, the
network flow formulation, and the connectivity of the network.

2 Problem definition and existing cuts

Defined the central depot set V0 = {v0}, a set Vs of intermediate depots
called satellites and a customer set Vc, wherein each customer i ∈ Vc has a
positive demand di associated, the problem consists in minimizing the total
transportation costs, calculated by considering arc costs cij for shipping goods
from one point to the other of the transportation network, while satisfying the
demand of all the customers with a limited fleet of vehicles. Differing from
classical VRP problems, the freight stored in V0 must transit through inter-
mediate depots, called satellites, and then be delivered to the customers. The
demand of each customer has to be satisfied by only one satellite, and there
are no thresholds on minimum and maximum number of customers served by
a single satellite. This assumption induces, for each 2E-VRP feasible solu-
tion, a partition of Vc set in, at most, |Vs| subsets, each one referring to a
different satellite. Customer-satellite assignments are not known in advance,
not allowing to solve the problem by decomposition into |Vs|+ 1 VRPs. Two
distinct fleet of vehicles m1 and m2, with different capacity size K1 and K2,
are available to serve first and second network level, respectively.

In order to guarantee the feasibility of the 2E-VRP solutions, a two com-
modity model formulation has been introduced. Any 2E-VRP problem is
expressed by the following variables:

• first level arc activation variables xij, i, j ∈ V0 ∪ Vs and second level ones
yk

lm, l, m ∈ Vc ∪ Vs, k ∈ Vs, for routing information on directed graph;

• first level flow variables Q1
ij, i, j ∈ V0 ∪ Vs and second level ones Q2

lmk,
l, m ∈ Vc ∪ Vs, k ∈ Vs, each one related to a direct arc, describing freight
quantities running on the two networks;



• customer-satellite assignment variables zkj.

The mathematical formulation is mainly composed by a set of equations, re-
lated to the unique assignment of each customer to one satellite, and conser-
vative flow equations, avoiding the presence of subtours in the second network
level. Additional arc capacity constraints are introduced, due to the presence
of size constraints on the vehicles (see [9] for details).

In [9] two families of valid inequalities are introduced in order to strengthen
the 2E-VRP formulation: the edge cuts, subtour elimination constraints de-
rived from Traveling Salesman Problem (TSP)∑

i,j∈Sc

yk
ij ≤ |Sc| − 1, ∀Sc ⊂ Vc, 2 ≤ |Sc| ≤ |Vc| − 1, k ∈ Vs (1)

and flow cuts
Q2

ijk ≤
(
K2 − di

)
yk

ij ∀i, j ∈ Vc,∀k ∈ Vs, (2)

strengthening the logical constraints linking arc flows to arc usage variables
in the 2E-VRP formulation.

3 New families of cuts for the 2E-VRP

Several classes of valid inequalities can be introduced in the 2E-VRP formu-
lation by extending the CVRP literature (for a survey on last advances and
trends, see [1]). Under the assumption 2E-VRP feasible solutions, restricted
to the second level network, can be seen as solutions of |Vs| VRPs, any valid
inequality class for the VRP can be reformulated for the 2E-VRP. Consider-
ing the subtour elimination feature concerning edge cuts for the 2E-VRP, the
following inequalities restricted to a candidate subset of customer S ∈ Vc∑

k∈Vs

∑
i,j∈S
i 6=j

yk
ij ≤ |S| − r (S) ∀S ⊂ Vc 2 ≤ |S| ≤ |Vc| − 1 (3)

are valid for the 2E-VRP, where r (S) is the minimum number of 2nd level
vehicles required to serve customers in S. The separation is performed by a
heuristic algorithm based on the corresponding heuristic for the CVRP prob-
lem presented in [8].

In the same way, strengthened comb inequalities and multistar inequalities
for the VRP ([7], [8]) can be introduced as cutting planes classes also in 2E-
VRP formulation. The heuristic separation procedure is a specialization of
the algorithm from [8] (see [10] for further details).



The existence of the network flows in the mathematical formulation lets
us define new classes of valid inequalities, based on the interaction between
routing and arc activation variables related to particular sets of arcs. Upper
bound variable constraints on arc capacity

djy
k
ij ≤ Q2

ijk ∀i ∈ Vc ∪ Vs,∀j ∈ Vc,∀k ∈ Vs (4)

and special cases of node feasibility inequalities

Q2
ijk −

∑
l∈Vc∪Vs
l 6=i

Q2
jlk ≤ djy

k
ij ∀i ∈ Vc ∪ Vs, j ∈ Vc,∀k ∈ Vs (5)

are cuts for the 2E-VRP and link routing information of LP fractional solution
to its arc activation variables.

Other classes of valid inequalities are derived from considering connectivity
and feasibility properties of any feasible solution of routing problems, through
zkj customer-satellite assignment variables. The following inequality

zki ≥ yk
ij + yk

ji ∀i, j ∈ Vc, i 6= j, ∀k ∈ Vs, (6)

stated as constraint on the activation of two arcs incident to the same couple
of customer nodes, can be seen as a special case of the simple connectivity
condition on subroutes not containing the satellites.

Both (5) and (6) can be trivially separated by direct inspection in polyno-
mial time.

Concerning route feasibility assumptions, let us define the i− th partition
of the customer set Vc defined as follows

Pi =

{
Sj ⊂ Vc, j = 1, ...,m2 :

m2⋃
j=1

Sj = Vc ∧ Sj ∩ Sk = ∅, k 6= j ∧ Sj 6= ∅

}
.

Then, considered the set P containing all the possible partitions Pi. An ele-
ment in P may not correspond to a feasible solution. A simple rule to exclude
a partition Pi from the set of possible solutions is considering if the demand
associated to one of its subsets is greater than the capacity size of second level
vehicle, i.e., d(Sj) > K2. Another rule is based on considering partitions for
which a given subset with a restricted number of customers does exist. If it
exists a customer set S ∈ Vc such that complementary demand is equal to
zero, i.e.,

m2 −
⌈

d (S)

K2

⌉
= 0 (7)



then the following inequalities∑
j∈S

(
yk

jk + yk
kj

)
+ yk (E(S)) ≤

∑
j∈S

zkj ∀k ∈ Vs (8)

are valid for the 2E-VRP. The separation procedure is done by a heuristic
algorithm building S by iteratively considering the customers in non-increasing
order of their demand. For further details, please refer to [10].

4 Computational results

This section is devoted to present the computational results of the valid in-
equalities presented in the paper. In order to give a better insight of the
2E-CVRP and the valid inequalities themselves, they have been inserted in
a Branch & Cut framework. The Branch & Cut has been implemented in
SYMPHONY [11] interfaced with XPress 2008 [5]. As in [9], tests have been
performed using a personal computer Intel 3.0 GHz with 1 GB RAM where a
time limit of 10000 seconds has been imposed on each instance.

In order to compare the results with the literature we use the same in-
stances of [9] and [2]. The instances cover up to 50 customers and 5 satellites
and are grouped in two sets, Set 2 from [9] and Set 4 from [2]. All the cuts
presented in Section 2 and 3 are applied at the root node in same order we
presented them in this paper. For the other nodes, due to the computational
effort in the largest instances, we only apply the Lifted cover cuts and Lift-and-
Project separation implemented in the XPress 2008 package. The branching is
prioritized on zjk variables and a pseudocost-based rule for choosing the vari-
able on which to branch is enabled on this variables. For a detailed discussion
about the effect of the different families of cuts, please refer to [10].

The results of Set 2 and 4 are summarized in Tables 1 and 2, respectively.
Columns 1 and 2 report the instance details, i.e. instance name and number
of satellites in the instance. The SOA columns reports the best results taken
from the literature, while columns BC show the behavior of our Branch &
Cut. For each method, we give the best solution, the lower bound at the end
of the optimization and the gap between them. Optimal values are reported
in bold. The computational time is not reported, being fixed a priori to 10000
seconds for both methods.

From the results, we can notice how the Branch & Cut overcomes the
cuts and the model introduced in [9] both in accuracy and number of optimal
solutions. Our Branch & Cut is able to solve to optimality all the instances in



E-n22-k4-s6-17 2 417.07 417.07 0.00% 417.07 417.07 0.00%
E-n22-k4-s8-14 2 384.96 384.96 0.00% 384.96 384.96 0.00%
E-n22-k4-s9-19 2 470.60 470.60 0.00% 470.60 470.60 0.00%
E-n22-k4-s10-14 2 371.50 371.50 0.00% 371.50 371.50 0.00%
E-n22-k4-s11-12 2 427.22 427.22 0.00% 427.22 427.22 0.00%
E-n22-k4-s12-16 2 392.78 392.78 0.00% 392.78 392.78 0.00%
E-n33-k4-s1-9 2 730.16 725.50 0.64% 730.16 730.16 0.00%
E-n33-k4-s2-13 2 714.63 701.04 1.94% 714.63 714.63 0.00%
E-n33-k4-s3-17 2 707.62 683.42 3.54% 707.41 707.41 0.00%
E-n33-k4-s4-5 2 787.29 764.80 2.94% 778.73 778.73 0.00%
E-n33-k4-s7-25 2 766.49 739.24 3.69% 756.84 756.84 0.00%
E-n33-k4-s14-22 2 779.19 764.38 1.94% 779.05 779.05 0.00%
E-n51-k5-s2-17 2 599.20 576.97 3.85% 597.51 556.55 7.36%
E-n51-k5-s4-46 2 561.80 513.09 9.49% 530.76 529.34 0.27%
E-n51-k5-s6-12 2 593.71 526.91 12.68% 554.80 541.17 2.52%
E-n51-k5-s11-19 2 646.66 550.99 17.36% 584.09 558.27 4.63%
E-n51-k5-s27-47 2 538.22 524.00 2.71% 538.22 535.04 0.59%
E-n51-k5-s32-37 2 553.64 540.14 2.50% 552.27 552.27 0.00%
E-n51-k5-s2-4-17-46 4 694.83 502.82 38.19% 542.37 515.75 5.16%
E-n51-k5-s6-12-32-37 4 571.80 509.35 12.26% 539.02 516.02 4.46%
E-n51-k5-s11-19-27-47 4 724.09 506.99 42.82% 589.14 511.09 15.27%
Mean 8.70% 1.92%

SOA BC
GapFinal 

Solution
Best 

Bound
GapInstance Satellites Final 

Solution
Best 

Bound

Table 1
Comparison with State-of-the-art on Set 2

Instance50-s5-37.dat 5 1548.07 1355.8 14.18% 1548.07 1434.54 7.91%
Instance50-s5-39.dat 5 1525.24 1365.78 11.68% 1525.24 1423.48 7.15%
Instance50-s5-41.dat 5 1775.06 1453.03 22.16% 1775.06 1580.8 12.29%
Instance50-s5-43.dat 5 1455.4 1259.55 15.55% 1455.4 1341.04 8.53%
Instance50-s5-45.dat 5 1497.91 1246.26 20.19% 1497.91 1331.59 12.49%
Instance50-s5-47.dat 5 1621.48 1405.34 15.38% 1621.48 1487.09 9.04%
Instance50-s5-49.dat 5 1499.52 1297.08 15.61% 1499.52 1370.83 9.39%
Instance50-s5-51.dat 5 1436.3 1265.66 13.48% 1436.3 1289.45 11.39%
Instance50-s5-53.dat 5 1571.34 1385.72 13.40% 1571.34 1483.19 5.94%
Mean 16.75% 9.35%

SOA BC
Instance Satellites Final 

Solution
Best 

Bound
Gap Final 

Solution
Best 

Bound
Gap

Table 2
Comparison with State-of-the-art on Set 4

Set 2 with 32 customers and one of the instances with 50 customers, for a total
of 7 new instances solved to optimality. The trend is confirmed by the mean
gap, which is less than 2%. In particular, notice how the gap is reduced in the
instances with 4 satellites, which where the most problematic in literature.

The same behavior is confirmed also in Set 4, where the mean gap is
reduced by more than 7 percentage points. Finally, notice how the mean of
Set 4, which considers instances with 5 satellites, is similar to the mean of
instances with 4 satellites in Set 2, which is about 8%, prooving that, even
increasing the number of satellites, the mean gap obtained by the Branch &
Cut is stable. Moreover, the reduction of the gap from 16.75% to 9.35% in
Set 4 is due only to the valid inequalities. In fact, the best integer solutions



obtained in literature and by the Branch & Cut are the same.
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