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Identification of Highly Efficient Delay-Rational
Macromodels of Long Interconnects
From Tabulated Frequency Data

Piero Triverio, Member, IEEE, Stefano Grivet-Talocia, Senior Member, IEEE, and Alessandro Chinea

Abstract—We introduce a novel formulation of black-box models
for long multiconductor interconnects, together with an identifi-
cation algorithm from tabulated scattering parameters. The fun-
damental assumption requires a modal decomposition matrix that
does not depend on frequency. The model structure includes low-
order rational coefficients with suitable delay operators. The latter
are included in a feedback loop; therefore, all infinite signal reflec-
tions are automatically accounted for. This feature may lead to sig-
nificant speed up factors during circuit-based transient simulation
with respect to other state-of-the-art solutions. The model is cast in
a delayed descriptor form, leading to a straightforward conversion
to an equivalent SPICE-compatible netlist. Finally, a purely alge-
braic stability test is presented based on a linear matrix inequality.
The very high efficiency of the proposed models is demonstrated
through several application examples.

Index Terms—Delay extraction, descriptor systems, high-speed
interconnects, macromodeling, rational approximation, scattering
parameters, transmission lines.

I. INTRODUCTION

LECTRICAL interconnects constitute a major limiting
factor for the performance of high-speed systems [1], [2].
Severe attenuation, dispersion, crosstalk, and other parasitic ef-
fects may indeed compromise the signal integrity of the overall
system if not properly characterized and accounted for during
the system design flow. The above problems become more and
more prominent when the physical length of the interconnects
and the signals bandwidth increase. Therefore, the availability
of accurate and efficient interconnect models that are able to
predict all relevant signal degradation phenomena is of para-
mount importance. These models must be compatible with stan-
dard circuit simulation environments, such as SPICE, enabling
system-level transient simulations of the interconnect closed on
nonlinear terminations like digital or mixed-signal devices.
This study focuses on the generation of black-box simulation
models of electrically long interconnects starting from tabulated
frequency responses in scattering form. These are usually ob-
tained from direct measurements or from field-based character-

Manuscript received July 10, 2009; revised November 24, 2009. First pub-
lished February 05, 2010; current version published March 12, 2010. This work
was supported in part by the Istituto Superiore Mario Boella (ISMB).

The authors are with the Department of Electronics, Politecnico di Torino,
Turin 10129, Italy (e-mail: piero.triverio@polito.it; stefano.grivet@polito.it;
alessandro.chinea@polito.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2010.2040349

izations. This process, usually called macromodeling [1], aims
at extracting a SPICE-compatible netlist having a response ma-
trix that matches the raw data with a prescribed accuracy.

Lumped macromodeling via vector fitting [3] or similar algo-
rithms [4], [5] is now a standard practice for electrically short in-
terconnects [1], [2], [6], as well as microwave devices [7]—-[10].
A rational curve-fitting scheme based on iterative least squares
solutions [3] is performed on the data, leading to a state-space
model and to a straightforward SPICE synthesis [11]. Unfortu-
nately, this approach fails when the electrical length of the inter-
connect is significant since an excessive number of pole/residue
terms is needed to represent the fast phase variations induced
by propagation delays. For this reason, several extensions have
been proposed for an explicit inclusion of such propagation de-
lays in the model structure [12]-[19].

The so-called delayed vector fitting [12], [13] expands the
transfer matrix into a finite number of single-delay terms, each
representing the response contribution coming from an indi-
vidual signal reflection from internal or external discontinuities.
Quite significant improvements in model efficiency have been
demonstrated by delayed vector fitting with respect to purely
rational macromodeling schemes [12], [13]. Unfortunately, the
number of delay terms must be fixed a priori based on heuristic
considerations. Increasing the number of such delays also in-
evitably leads to more complex and less efficient models.

In the case of structures with no internal discontinuities,
such as transmission lines and cables, delay-rational models
including delay operators in a feedback loop have been pro-
posed in [14]. Such model structures can represent all infinite
reflections from the (generally unmatched) terminations,
leading to more compact and efficient models with respect to
delayed vector fitting. Currently, this compact formulation is
only available for scalar (two-port) interconnects [14]. The
main objective of this study is to generalize these methods by
applying a delay-rational approximation in the modal domain,
thus allowing a consistent treatment of interconnects with
multiple and generally different modal delays.

It should be noted that the presented approach shares the same
objective of all delay-based macromodeling methods for fre-
quency-dependent multiconductor transmission line structures
such as ToPLine [20] or DEPACT [21]. However, these tech-
niques require knowledge of the per-unit-length parameter ma-
trices defining the electrical behavior of the structure via telegra-
pher’s equations [2]. This information is not available here since
we are interested in a purely black-box identification strategy
able to process tabulated frequency responses possibly coming
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from direct measurements. Another generalization of the pro-
posed method is the applicability to structures with a nonuni-
form and smoothly varying cross section, as will be demon-
strated by the numerical examples.

The main limitation of the proposed technique is on the struc-
ture of the interconnect modes of propagation. We explicitly
require that these modes do not depend on frequency [2] or
that they can be reasonably approximated by constant modal
profiles. This limitation obviously restricts applicability of the
approach. However, several classes of structures that are com-
monly employed for high-speed signaling can be modeled, in-
cluding uniform or nonuniform interconnects characterized by
some degree of symmetry in their cross section [2]. The gen-
eralization to the case of frequency-dependent modes will be
subject for a future investigation.

II. FORMULATION

We consider an L-conductor interconnect characterized by its
2L x 2L tabulated scattering matrix at several frequency points

wi,ws, . ..,ws. We denote these available samples as
H, e C*x2F, E=1,...,k. 1)
The near-end ports are numbered consecutively as 1, . . . , L, fol-

lowed by the far-end ports L+1, . . ., 2L. Emphasis is on electri-
cally long structures with a much larger physical length than the
wavelength associated to the propagating fields at the maximum
modeling frequency. This condition is associated, in the time
domain, to nonnegligible propagation delays of the signals trav-
eling along the interconnect. The main objective of this paper
is to devise a robust black-box identification technique for ex-
tracting a compact equivalent model by taking into account the
presence of suitable delay operators in the model structure.

Due to the adopted port numbering scheme, we have the fol-
lowing block structure:

Hi
H, = ’
k |:H21,k

where all blocks have size L x L. We restrict our attention
to those interconnects having propagation modes that do not
depend on frequency. Although this assumption may seem
overly restrictive, several cases of interest fall into this class,
including balanced differential pairs or cyclic-symmetric lines
(see Section II-A). Moreover, even if the modes are frequency
dependent, excellent constant approximations may often be
used with almost no impact on the model accuracy [22], as
described in Section III-A. Therefore, we assume that there
exists a constant orthonormal eigenvector matrix R € REXE
that diagonalizes simultaneously all four blocks in (2). Defining
a global decomposition matrix T € R2LX2L a5

H””“}, k=1,....k )

Hy, i,

R O
T [0 R} 3)
we obtain
A Ao
I TTH T = 11,k 12,k:| 4
¢ ¢ [Am oo @

Mode 1  HW(s)
o - ] o
o— ' —o
o— T H T o
o— ' —o
o — — o
Modal Mode L HP)(s) Modal
transform transform

Fig. 1. Structure of the propose macromodel, composed by two modal trans-
formation blocks and L macromodels H () (s) representing modal lines.

where Ajjj. = diag{A\{), .. AT} g = 1,20 We will
also consider cases where this diagonalization is not exact, as
far as the off-diagonal terms in A;;  are sufficiently small to be
neglected without significant loss of accuracy.

If we rearrange the rows and columns of Hj with a suitable
permutation matrix P, we can make the original samples Hj,
block diagonal

H/ = PTH,P = blkdiag {H;’)} (5)
where each diagonal block has size 2 X 2 and reads
)\(l) )\(l)
H{ = [ Wk CIZEL =1L ()
A A
21,k 122,k

This decomposition suggests the model structure shown in
Fig. 1 with L modal lines and two modal transformation
blocks. The modal lines will be represented by L macro-
models H(")(s) identified from the samples (6), as discussed in
Section III. Once all macromodels H()(s) have been obtained,
the global interconnect macromodel H(s) will read

H(l)(s)
H(s) = TP P'T". (1)

H®) (s)

Reminiscent of the method of characteristics model for uniform
transmission lines [2], [20], this structure inherits many of its
properties, most notably the high computational efficiency.

Before proceeding any further, we highlight the differences
between the adopted modal decomposition and [22]. In [22], the
modal projection matrix (3) is full, meaning that the intercon-
nect is treated as a generic 2L-port with 2L modes excited by a
combination of both near- and far-end signals. There is, there-
fore, no connection between such modes and the forward and
backward propagating waves supported by the structure. This
physical connection is instead retained in (7) due to the block-di-
agonal structure of matrix (3). Therefore, the interpretation of
the proposed model in terms of the modal transmission lines
(see Fig. 1) is straightforward. Only L modal macromodels are
needed instead of 2L, thus improving physical consistency and
efficiency.

A. Cyclic-Symmetric Interconnects

An important case for which the diagonalization (4) holds
with no approximations is provided by cyclic-symmetric inter-
connects [2]. These are formed by an arbitrary number L of
identical conductors placed symmetrically with respect to a ref-
erence (return) conductor. The surrounding medium must be
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symmetric and can possibly be inhomogeneous, as in the case
of a set of wires with dielectric coating.

For cyclic-symmetric interconnects, each scattering matrix
block in (2) is such that

H,, e Cl*t vk (8)
where CE* T is the set of complex-valued matrices of size L x I,
in the form
cit €2 -+ C3 C2
cg e C3
MeCeM=|: -~ . -~ |, )
c3 e e
C2 C3 s Co C1

These matrices are usually referred to as circulant symmetric
matrices [23], [24]. Their eigenvalues are given by [23], [25]

L—-1

A0 = c1 + covp + 031112 +...+ 03vlL72 + cov; (10)

where v; = exp(j2n(l — 1)/L) for ! = 1,..., L. Most of the
eigenvalues (10) are double since we have

AD ZAEH2D g, (11)
where
_[(L+1))2, if L is odd
v= {L/Z7 if L is even. (12)

Only A" and, if L is even, also A("/2+1) are distinct.
Due to the coincident eigenvalues, the choice of an eigen-
vector matrix R € RI*L that diagonalizes M
RYMR = diag{\("}. (13)

is not unique. Among the infinite choices of R, we adopt the
only one that is purely real [25], which is given by

1

Rpi1= I (14a)
R D" it L 14b
L2+l = T (only if L is even)  (14b)
2 2

R,.:=1/ 7 cos [%(m —1)(l - 1)} (14c)

2 2
R p42—1=—/ Esin [%(m - 1)(l - 1)] (144d)
withl =2,...,v,m =1,..., L, and where R,,; denotes the

(m, 1) entry of matrix R. The realness of (14a)-(14d) is impor-
tant for the macromodel synthesis in an equivalent electrical cir-
cuit (see Section IV). Other complex-valued choices [2] would
make the synthesis procedure more difficult and are, therefore,
avoided.

We finally note two properties of R. First, R descends from
the circulant symmetric structure of (9) and does not depend on
the actual matrix entries. Second, R is an orthonormal matrix,
ie., RTR = RR” = I, where I, is the identity matrix of
size L x L.

B. Structure of Modal Macromodels

The formulation of modal macromodels H") (s) must be able
to represent the frequency response of modal lines described
by (6), even for electrically long interconnects where propaga-
tion delays are very large. Purely rational approximations, as
those generated by vector fitting [3], are ruled out by the pos-
sible presence of large delays, which would dramatically in-
crease the required number of poles. We adopt a highly efficient
black-box model with delays that has been recently proposed for
long scalar lines [14]. This formulation, applied to the above-de-
fined modal lines, reads

CNO) 1 [NDs) ND(s)

O — _
NO(s) =QW(s) + Q) (s)e ™, p=1,2  (15b)
N () = N (s) = Q1P (s)e =™ (15¢)
dD(s) =g (s) + a5 (s)e =2 (15d)

where 7; is the time-of-flight of the /th modal line, and the fac-

tors Q,gi),,(s), gl)(s), and q,(fl)(s) are rational coefficients
W)= RY,u(s), m=0,2 (16)
n=0
¢ () =Y rionda(s),  m=0,2  (16b)
n=0
()= 3 Rijda(s) (160)
n=0
defined using the partial fractions basis
1, forn =0
Pn(s) = 1 forn=1,...,7. a7

The adopted transfer function of (15a)—(15d) mimics the
method of characteristics model for a uniform transmission
line. It includes a combination of delay operators e~*™ to
represent pure propagation, and rational terms to represent
nonideal effects like signal dispersion and attenuation. Thanks
to the delay operator in the denominator d(")(s), this formu-
lation represents in a closed form all infinite signal paths due
to multiple reflections at line terminations. A small number of
poles will be sufficient for the rational terms le)p(s), §” (s),
and q,g,)(s) since fast phase variations induced by propagation
delays are explicitly accounted for in the model structure.
Therefore, the model complexity is significantly reduced with
respect to a purely rational transfer function.

III. FITTING ALGORITHM

We now describe the main curve-fitting scheme for minimiza-
tion of the least squares error between the model response and
the raw frequency samples (2). We define this error as

k
£2 = |[H(jwr) — Hyll7: (18)
k=1

where ||A||r denotes the Frobenius norm.
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A. Estimation of Modal Decomposition Matrix

For interconnects that are not cyclic symmetric, an approx-
imate modal decomposition matrix R can be estimated from
the raw scattering samples (1) with the algorithm described in
[22]. The eigendecomposition of H; j, is computed at each fre-
quency point wy, as

RIH xRy = Ay g (19)
The imaginary part of Ry, is minimized by rotating each eigen-
vector and then discarded. Finally, the result is reorthogonalized
using QR decomposition [26]. This procedure leads to a set of
possible modal decomposition matrices Rj. Among them, the
optimal R is selected as the matrix R, that minimizes the off-di-
agonal terms in (5).

B. Fitting in Modal Domain

Once the modal decomposition matrix (3) is formed, the
modal macromodels H()(s) in (7) can be directly identified
from the projected samples (6). Setting

Ay = blkdiag {H(l)(jwk)} —H/ (20)

and substituting (4), (5), and (7) into (18), we can show that!

k
= Y |TPARTT!;

k=1
k
_ HpTmT
_k_lTr{TPAkAkP T }
k L
_ AH )
k:1Tr{AkAk} ;(5 ) 1)
where
GO ) "I

and Tr {-} denotes the matrix trace. The global fitting error (21)
is thus expressed as the sum of the fitting errors between each
modal model H(")(s) and the corresponding frequency sam-
ples (6). As all these error terms depend on separate subsets
of unknowns, minimization of £2 can be performed as L inde-
pendent tasks, each one minimizing (22), i.e., fitting the model
(15a)—(15d) to the corresponding modal line samples (6).
Minimization of (22) is a nonlinear problem in the un-
knowns of (15d) and in 7;, which can be solved in principle
with nonlinear optimization algorithms of the Newton and
quasi-Newton type, like steepest descent, conjugate gradient,
Broyden—Fletcher—Goldfarb—Shanno (BFGS) [27]. However, it
is well known that these methods can be slow and may stagnate
at local minima when applied to this kind of fitting problems.
Other approaches that require only the solution of linear least
squares problems are preferred in general [3]-[5]. Minimization
of (22) is achieved here by an iterative Sanathanan—Koerner

IThe trace property Tr { ABC} = Tt {CAB} = Tr {BCA} is used.

fitting algorithm combined with a delay estimation procedure
[14].

C. Delay Estimation

The first step in the minimization of (22) is the estimation of
the propagation delay 7; in (15a)—(15d) from the frequency sam-
ples (6). This task can be accomplished in several ways, using ei-
ther time-frequency decompositions [12], [13], [28], vector fit-
ting [29], or the Hilbert transform [16], [18]. For the purpose
of the identification of 7; in (15a)—(15d), all approaches are fea-
sible, and we adopted [29] because of its simplicity. This algo-
rithm has been applied to the insertion loss samples for the /th
modal line )\512)’ x> Where 7; appears as the dominant delay.

D. Rational Identification

Once all propagation delays 7; are known, the model coeffi-
cients R, R and r({), are estimated usin lizati
mpns 14, mn g a generalization
of the Sanathanan—Koerner method [14] that iteratively finds a
minimum to the error (22). This procedure is well established in
macromodeling [3]-[5], [12], [14], [30]. We, therefore, summa-
rize only its main steps, and point the reader to the references
above for more details. Error (22) is rewritten as a function of

the numerator and denominator of (15a)—(15d)

-3

k=1
Main difficulty in minimizing (23) is the presence of unknowns
in the denominator d¥), which makes this problem nonlinear.
The Sanathanan—Koerner iteration [4] overcomes this issue with
an iterative process that at each iteration minimizes the lin-
earized error

() = 3o

2
N (juy) = dO (juwr) HY

d® (jws)

(23)

F

(l) wy) — d( (ka)H(l)

d(t 1)(ka)

(24)
F

where subscript ¢ is the iteration counter. Since the denominator
of (24) is known from previous iteration (or initialized at one
at first iteration), minimization of (24) is a linear least squares
problem that can be easily and efficiently solved using QR or
singular value decomposition (SVD) [26].

E. Optimizations

The delay-rational identification of Sections III-C and D can
be further improved in two ways. First optimization involves a
refinement of the modal delay estimates 7;. An accurate delay
estimation is indeed very important since an optimal value can
minimize the order 7 of the rational factors in (16a)—(16c¢), thus
improving model accuracy and efficiency. However, a coarse
data sampling and/or a restricted measurement bandwidth of (1)
can limit the accuracy of all delay estimation algorithms cited
in Section III-C because of the fundamental limits set by the
time-frequency uncertainty principle [31] and the sampling the-
orem [32]. In this situation, the initial estimate for 7; obtained
from the raw frequency data can be used to setup an optimiza-
tion loop that minimizes the fitting error £() by refining 7.
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Fig. 2. Graphical illustration of the proposed realization procedure, with no-
tation. (a) Separate realization of numerator and denominator. (b) Inversion of
denominator and cascading.

This task, which is not time consuming because only one op-
timization variable is involved, was performed in all examples
of Section VI using the simplex method [33].

A second optimization is possible if the interconnect under in-
vestigation is cyclic symmetric, by exploiting the spectral prop-
erties of circulant symmetric matrices (11). Since all entries in
the projected frequency data (6) satisfy (11), we have

HY =\ ) =2 .. v 25)
Hence, only the modal macromodels (15a)-(15d) for

l=1,...,L/2+ 1 when Lisevenorl =1,...,(L+1)/2
when L is odd must be identified since

HIA2-0(5) =HO(s), [1=2,...,v (26)
Thanks to this observation, the computational cost of the model

identification is reduced by a factor that approaches 2 for large
L.

IV. MODEL REALIZATION

An important requirement for black-box macromodels is the
possibility to cast them as equivalent electric circuits, compat-
ible with any circuit solver. Circuit synthesis is quite trivial for
purely rational macromodels [11] or for models with only delay
operators at the numerator [12]. Conversely, a direct synthesis
is more difficult for models including delay operators at denom-
inator, as in (15a)—(15d). In this section, we present a sound
mathematical procedure to convert transfer functions in the form
of (15a)—(15d) into a set of differential equations with delays,
thus enabling a straightforward equivalent circuit synthesis. The
main result will also play a crucial role in the design of a numer-
ical algorithm to ascertain model stability (see Section V-A).

Among the different terms of the model transfer function
(7), synthesis of matrices P and T is straightforward since it
is achieved with a set of current- or voltage-controlled sources.
Main difficulty is instead the realization of the modal macro-
models H(")(s). Throughout this entire section, we consider
a single modal macromodel, dropping the superscript (' to
enhance readability. Realization of (15a)-(15d) involves three
steps. First, two separate realizations are derived for the model
numerator N(s) and denominator D(s) = d(s)I» indepen-
dently. Second, a realization for D~!(s) is obtained. Finally,
the latter is cascaded with the numerator to realize the complete
transfer function (15a)—(15d). This process is depicted in Fig. 2.

A. Numerator and Denominator Realizations

The numerator N(s) and denominator D(s) defined in
(15a2)—(15d) and depicted in Fig. 2(a) are the sum of rational
terms and exponential delay operators. The rational terms are
readily converted into state-space systems using the standard
approach documented in [6]. The result is

2
N(s) = Z [Gr(sI—A) "By +Ly|e ™™ (27)
m=0
D(s) = [Fin(sI— A)7'Bg + D] e7™7 (28)
m=0,2
where
A =blkdiag{a,I>} (29a)
By = [L,....L]" (29b)
[ Rmu 0 o Rpan 0 .
Gom = | 0 Rpor - 0 RmZn:|7 m=0,2
(29¢)
_ [ 0 R11 e 0 Rlﬁ
G| = Ry 0 - Rim 0 } (29d)
[ Rum1o 0 .
L, = 0 Rm20:| , m =20,2 (29¢)
[ 0 R
Li= |y o0 } (299
F,, = [TmlI2 TmﬁIZ] ) m = 07 2 (29g)
Dm = Tm0127 m = 0./ 2. (291’1)

By taking the inverse Laplace transform of (27), we obtain a set
of delay-differential equations representing numerator N (s)

Zb1(t) = A.211,‘1(t) + Bou (t)
v, (1) :mZZO[Gm Lo ] |:z1(t_m7'):|

uy (t — mT)

(30)

where u;(t) and y, (t) correspond to input and output of the
numerator block, as depicted in Fig. 2(a). Similarly, we have
for the denominator D(s) the realization

ig(t) = A.’L‘Q (t) + B()’U,Q (t)

_ zo(t — m7) 31)
yz(t) = Em:O,Q [Fm Dm] [uz(t . mr)} .
A representation of the inverse denominator D=1 (s) is now ob-
tained by exchanging the roles of input us (%) and output y, (%),

followed by a simple rearrangement of the terms in (31)

IR ER A R
] [ o0

B. Cascading

The complete macromodel realization is the cascade of
the subsystems representing D~!(s) and N(s), as shown in
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Fig. 2(b). This is obtained by combining (32) and (30) while en-
forcing w1 (t) = uo(t) = z(t). This step leads to the realization

E's'(t) = Ajz'(t) + AL/ (t — 27) + Blu(t)
2

y(t) = >, CL.&'(t —mr). (33)
m=0

where u(t) = y,(t) and y(t) = y,(t) define the macromodel
input and output signals, and where

I 00
E=]01 0
00 0
B'=]|0 (34a)
| -1
[A 0 By
A,=10 A By
|0 Fo Dy
[0 0 0
A,=10 0 0 (34b)
0 F, D
C =[G, 0 L,]
o) =[z(t) z2(t) 2(t)]" (34c)

C. Complexity Reduction

Realization (33) is not minimal. Indeed, several uncontrol-
lable states [34] are revealed by applying the following state
vector transformation:

1 [ 7(t) +z2(1)
/() = W g/ (t) = —= | z1(t) — za(1) (35)
2 2(t)
where
1 I I O
W=W-1l=_"_|1I -I 0 (36)
V2 0 0 I

and by multiplying the first equation of (33) on the left by W 1.
This similarity transformation leads to an equivalent represen-
tation of (15a)—(15d) with matrices

I 00
E'=W'EW=1|01 0
0 0 0
0
B'=W™!B' = 0 (37a)
—I/\/§
[ A 0 By |
Aj=WTTAW=| 0 A 0 (37b)
| Fo/2 —Fo/2 Dg/2]
[0 0 0
A=WTALW=| 0 0 0 (37¢)
| F2/2 —F»/2 Dy/2]

The states corresponding to the second block row in the above
matrices are uncontrollable since they are not coupled to the
other states by the system dynamics and they are not excited
by any input. The second block row and the (z1(t) — z2(t))
block in z(t) can, therefore, be removed without affecting the
input—output transfer function. As a result, we obtain a more
compact realization of (15a)—(15d)

Ez(t) = Aoz(t) + Asz(t — 27) + Bu(t)

y(t) = 22:)0 Crz(t —m7) (38)

where
E= {1(2)71 8] B = :_(}2] (39)
o= [1?:) gg] A=, 32] (396)
Cov =[G Tl ()= | 72O o

This realization is one of the main achievements of this paper,
as it enables both a SPICE synthesis and a stability check of
proposed model (7).

We note that (38) is in the form of a descriptor system with
delays [35], differing from state space systems because of the
matrix E in front of &(¢). When rankE < rankA, the system is
not fully differential, but includes also algebraic relations.

D. SPICE Synthesis

The conversion of the modal macromodels H®(s),
I = 1,...,L into equivalent circuits including only stan-
dard (constant) elements is straightforward once (38) is
available. Capacitors are used for time derivatives, resistors and
controlled sources for multiplication by constants, and matched
ideal transmission lines for delay operators [12].

Once separate circuit realizations are available for the modal
macromodels, they are connected to the external macromodel
ports by a set of constant controlled sources representing the
modal profile matrices TP and PTTT in (7). Details are
omitted here for the sake of brevity. We remark that since only
basic circuit elements are used in the synthesis, the proposed
circuit realization is intrinsically compatible with any free or
commercial circuit solver.

V. PHYSICAL CONSISTENCY

Physical consistency has been recognized as a crucial
requirement for stable and reliable results from transient sim-
ulations. In case of lumped models, this consistency amounts
to preserving stability, causality, and passivity [36]. These
requirements, which are appropriate for standard rational
macromodels, are not sufficient to ensure a proper physical
behavior for systems in descriptor form (38). This section
presents the appropriate generalizations together with a nu-
merical algorithm for checking the physical consistency of the
proposed macromodel.
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A. Admissibility Test

The descriptor form (38) encompasses a broader class of sys-
tems with respect to the standard state space formulation. Be-
sides unstable behavior, it may also include impulsive modes
and even a nonunique solution [35]. A stable descriptor system
having a unique solution and no impulsive modes is called ad-
missible [35]. It turns out that admissibility is the right require-
ment to make (15a)—(15d) physically consistent. The following
theorem [35] gives an algebraic condition to check if the pro-
posed model in its descriptor form (38) is admissible.

Theorem 1: If there exist matrices P; > 0, Q > 0, and Q;
such that

ATY + YTA +Q YTA,
ATY -Q

where Y = P1E + SQ; and S € R?"+2%2 js any full column
rank matrix satisfying ET'S = 0, then the system (38) is admis-
sible (hence, stable).

Application of this theorem to system (38) is straightforward
since matrix S can be chosen in closed formasS = [0 Iy]7T. A
main advantage of Theorem 1 is that the admissibility condition
is expressed as a set of linear matrix inequalities. Therefore, sev-
eral well-established algorithms for convex optimization prob-
lems, like interior point methods [37], [38], can be used for its
solution. In all application examples of Section VI, we solved
(40) with SeDuMi [39].

<0 (40)

B. Passivity

It is well know that stable, but nonpassive macromodels
do not guarantee a stable solution when connected to arbi-
trary loads, even when the latter are passive [36]. Passivity
enforcement of interconnect macromodels has been the subject
of intense research over the last few years. Several methods
are now available for the detection and the a-posteriori cor-
rection of passivity violations in the case of purely rational
macromodels. We can cite optimal methods based on convex
optimization [40] or suboptimal methods based on linear and
quadratic programming [41], [42] or eigenvalue perturbation
of Hamiltonian matrices [43], [44]. Suboptimal techniques
are usually preferred since optimal methods have a very high
computational cost for medium to large-size macromodels [45].

Recently, Hamiltonian methods have been extended to
models with delays. Good results are available for both pure
transmission line models [46]-[48] and for more general
black-box models [49] including delay operators only at the
numerator. Extension of such techniques to the proposed
macromodel structure, with delay operators appearing at the
denominator, seems to be feasible given the available theoret-
ical framework. This investigation is outside the scope of this
paper and will be presented in a future publication.

VI. NUMERICAL RESULTS

A. Coupled Coplanar Lines

The first example considers a pair of coplanar lines having
the cross section depicted in Fig. 3. The interconnect length is
set to the very large value of 80 cm in order to demonstrate

2w d w d w d 2w

Fig. 3. Cross section of the coupled coplanar lines considered in Section VI-A.
Geometrical dimensions are d = 762 ym, w = 381 pm, and h = 1193.8 pum.
The thickness of all metal layers is ¢ = 35.1 pm. The dielectric has ¢,. = 4.6,
tan 6 = 0.02, and conductors are made of copper.
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Fig. 4. Comparison of the S14 model response (red dashed—dotted line in on-
line version) with the raw data (black solid line) for the coupled coplanar lines.
Real (top panel) and imaginary (bottom panel) parts are depicted on a reduced
bandwidth to improve readability.

the feasibility of proposed approach. The scattering parameters
were computed using IBM EIP tools [50] from 1 kHz up to
40 GHz, and then supplied to the proposed modeling algorithm.
A very accurate macromodel was obtained using only 14 poles
an, as shown in Fig. 4, with a worst case error of 9.3 X 1073,
The refined model delays turned out to be 7y = 4.58 ns and
79 = 4.33 ns, and the test of Section V-A proved that the model
is well posed, stable, impulse free, and with a unique solution for
any given initial condition. Model identification required 610 s,
including the delay optimization of Section III-E, and the ad-
missibility check only 1 s.

A comparative test was finally performed between the pro-
posed technique, standard vector fitting, and delayed vector
fitting. In order to reach the accuracies reported in Table I,
vector fitting required 1500 poles, while delayed vector fitting,
needed a combination of 14 poles and six delay elements for
each response. Thus, the proposed technique provides a simpler
model than all other black-box modeling strategies (vector
fitting and delayed vector fitting), while retaining a similar
accuracy. Table I also shows that delay-based macromodels
provide a better accuracy compared to vector fitting because
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TABLE I
MODELING ERROR AND SIMULATION TIME FOR VECTOR FITTING (VF),
DELAYED VECTOR FITTING (DVF), METHOD OF CHARACTERISTICS (MoC),
AND PROPOSED MACROMODELS OF THE COUPLED COPLANAR LINES OF
SECTION VI-A. THE TWO NUMBERS IN THE POLES COLUMN FOR THE
MoC MODEL REFER, RESPECTIVELY, TO THE DELAYLESS PROPAGATION
OPERATOR AND THE CHARACTERISTIC ADMITTANCE OPERATOR

Method Poles (72) Max error Sim. time | Speed up
VF 1500 1.8-1072 3572s -
DVF 14 7.6-1073 74.17 s 48x
Proposed 14 9.3-1073 875 s 408x
MoC 16,10 3.0-1073 527s 678x
0.8 T T T T
A * VF
— 06 i o DVF H
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S 04r i 3 * MoC i
S g, ! !
o : i \ A
& \ .
s 0 R B WVL’P- #—B—0-——
w
-021 ; 1
0 5 10 15 20
Time [ns]
. A 1
2 % A ‘
o 04 depeageenseos A b\‘—*-&-ﬂ-e- sethgd M\ =
g i
S ¢
T -02f : 1
(]
= |
(3]
Z -04r 1
0 5 10 15 20

Time [ns]

Fig. 5. Far-end (top panel) and near-end (bottom panel) crosstalk predicted
using the vector fitting (VF), delayed vector fitting (DVF), method of character-
istics (MoC), and proposed macromodels for the coupled coplanar lines.

of the substantial simplification in the fitting equations to be
solved.

The reduced model complexity has a huge impact on the
model efficiency, which was tested with a transient simulation
using the four different macromodels converted to SPICE
format. The line was excited at port 1 by a pulse voltage
source (internal resistance 40 €2, pulsewidth 0.5 ns, rise and
fall times 30 ps, peak voltage 1 V), and loaded on ports 2—4
with the parallel of a 3-pF capacitor and a 250-{) resistor.
Table I demonstrates a major improvement in efficiency of
the proposed model, with 408 and 8.5x speedup factors
with respect to the vector fitting and delayed vector fitting,
respectively. The transient simulation results obtained with the
different modeling techniques are reported in Fig. 5, showing a
very good agreement among all methods.

‘We now compare our approach with the method of character-
istics [2], [20], the most efficient algorithm for modeling uni-
form cross-section lines starting from per-unit-length param-
eters. With these assumptions, telegrapher’s equations can be
used to formulate the macromodel, leading to an optimal model

TABLE 11
MODELING ERROR AND SIMULATION TIME FOR VECTOR FITTING (VF),
DELAYED VECTOR FITTING (DVF), AND PROPOSED
MACROMODELS OF THE DIFFERENTIAL LINK OF SECTION VI-B

Method Poles (1) Max error Sim. time | Speed up
VF 80 1.0-10~2 4.66 s -
DVF 20 3.0-1072 85 0.54x

Proposed 16 3.2.1072 1.6s 2.9x

1
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Frequency [GHZz]
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Fig. 6. Comparison of the S3; model response (red dashed—dotted line in on-
line version) with the raw data (black solid line) for the differential link of
Section VI-B. Real (top panel) and imaginary (bottom panel) part.

efficiency and accuracy. Comparison with the method of char-
acteristics is, therefore, a challenging benchmark for the pro-
posed macromodel. Table I shows that the performance of the
proposed approach are not far from the method of characteris-
tics, a quite remarkable result given the more general and chal-
lenging problem addressed in this paper. The identification of
the method of characteristics model took only 6.5 s, making this
modeling approach clearly preferable for uniform transmission
lines. However, the proposed solution gives models of unprece-
dented efficiency for structures that cannot be modeled with the
method of characteristics, as shown in the next three application
examples.

B. Differential Printed Circuit Board Stripline

This second example is a 10-cm differential link on a printed
circuit board, including two coupled striplines and the corre-
sponding signal launches. This structure is the same considered
in the second example of [14], where, however, only a single
trace model was computed. Now, thanks to the new theoret-
ical developments, we are able to model the whole four-port
S-matrix. Raw scattering data are known from direct measure-
ment over the bandwidth of 0-20 GHz (courtesy of Prof. C.
Schuster, formerly with IBM, Yorktown Heights, NY). Due to
the moderate interconnect length, this example is a challenging
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Fig. 7. Far-end voltage for the differential link predicted with vector fitting
(VF), delayed vector fitting (DVF), and proposed macromodels.

benchmark for the proposed technique since a standard rational
vector-fitting model will be a competitive alternative.

Table II reports the number of poles and the corresponding
modeling error obtained with vector fitting, delayed vector fit-
ting, and the proposed algorithm. Approximation quality is quite
good, especially taking into account that data come from mea-
surement, as can be seen in Fig. 6, where the proposed model in-
sertion loss S3; is compared with measured data. The computed
modal delays are 73 = 0.617 ns and 75 = 0.66 ns. The model
fulfills all physical consistency requirements of Section V-A, as
we proved by solving the linear matrix inequality of Theorem 1.
Model identification took 33 s, and the admissibility test re-
quired only 1.2 s.

As in the previous example, a transient simulation was per-
formed to assess the model efficiency with respect to vector-fit-
ting and delayed vector-fitting models. A voltage source was
applied at port 1 (internal resistance 40 €2, pulsewidth 0.3 ns,
rise and fall time 0.1 ns, peak voltage 1 V). The other ports were
terminated into identical passive loads (2.3-nH inductance in se-
ries with a parallel RC termination with R = 900 Q and C' =
1.5 pF). Fig. 7 depicts the voltage waveform at port 3, showing
good agreement between the results obtained with the three dif-
ferent macromodels. Table II compares the corresponding total
simulation times: while delayed vector-fitting model turns out to
be less competitive than the rational approximation from vector
fitting, the proposed model outperforms vector fitting by almost
a factor of 3, which is a remarkable result given the moderate
line length. We finally remark that this interconnect cannot be
modeled with the method of characteristics because it is not uni-
form and only the scattering parameters at terminal ports are
available.

C. Shielded Multiconductor Cable

Third example is a shielded multiconductor cable of length
2.56 m with six inner signal conductors and an outer shielding
layer made by several thin wires. Inner and outer wires are
twisted along a helix of step 1 cm in a clockwise and coun-
terclockwise direction, respectively. The diameter is | mm for
the inner wires and 0.4 mm for the outer wires. The inner and
outer conductor circles have radius equal to 1.6 and 3 mm, re-
spectively. Inner conductors are surrounded by a 0.2-mm-thick
insulation layer with dielectric constant equal to 4. The back-
ground dielectric constant is instead equal to 3. Fig. 8 shows
the cable cross section at one end and the lines numbering. The
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Fig. 8. Cross section of the multiconductor cable of Section VI-C.
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Fig. 9. Comparison of the S4; model response (red dashed—dotted line in on-
line version) with the raw data (black solid line) for the multiconductor cable of
Section VI-C. Magnitude (top panel), and phase (bottom panel) are shown only
up to 2 GHz for readability.

cable S-parameters were computed as follows. First, each step
of the helix was divided into 20 sections; each short section
was then approximated as a uniform transmission line, and its
per-unit-length parameters were computed with the technique
described in [51]. Finally, the S-parameters of the cable were
computed by cascading the S-matrix of each small section.
The excellent accuracy of the proposed model is shown in
Fig. 9, where we intentionally depicted the scattering matrix
entry having smallest magnitude; hence, the most sensitive to
approximation errors. The worst case modeling error turned out
to be equal to 1.0 x 10™2 for a model with 7 = 14 poles and
delays 71 = 13.50ns, 7o = 76 = 13.12ns, 73 = 75 = 12.73 ns,
and 74 = 12.61 ns. Model identification required 470 s, in-
cluding the delays optimization described in Section III-E. De-
layed vector fitting provided a model of similar accuracy (see
Table III), but at the price of a higher complexity, since seven
delays per response turned out to be necessary. The excessive
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TABLE III
MODELING ERROR AND SIMULATION TIME FOR DELAYED VECTOR
FITTING (DVF) AND PROPOSED MACROMODELS OF THE
MULTICONDUCTOR CABLE OF SECTION VI-C

Method Poles (1) Max error Sim. time | Speed up
DVF 14 2.0-1072 || 747.02s -
Proposed 14 1.0-1072 11.05 s 67.6 x
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Fig. 10. Far-end voltage (top panel) and far-end crosstalk (bottom panel) for the
multiconductor cable of Section VI-C, obtained with the delayed vector fitting
(DVF) and the proposed model.

computational cost instead made the generation of a vector-fit-
ting model impossible. The proposed macromodel passed the
admissibility check of Section V-A that was solved by SeDuMi
in only 7 s.

A comparative transient simulation was finally performed
using both macromodels. A voltage pulse (10-€2 internal resis-
tance, 1-nH internal inductance, pulsewidth 0.4 ns, rise and fall
time 0.05 ns, peak voltage 1 V) was applied at port 1, while
all other ports were terminated into a series 1-nH inductor
with a parallel RC load ( R = 1.2 k2, C = 3.3 pF). Simu-
lation results in Fig. 10 show that delayed vector fitting and
proposed macromodels lead to the same waveforms, but with
very different computational effort. As reported in Table III,
the proposed model is able to cut simulation time by a factor
of 67, as compared to delayed vector fitting. Also in this case,
the nonuniform cross section impedes the application of the
method of characteristics.

D. Ribbon of Microcoaxial Cables

The last example is a ribbon made by four microcoaxial ca-
bles having the cross section depicted in Fig. 11. A typical ap-
plication for these cables is in PDAs, cellphones, and digital
cameras, where flexible high-speed connections are needed to
connect the main body with the rotating or flipping display unit.
The 15-cm line, which is clearly not cyclic symmetric, is made
by four signal conductors with diameter 75 pum, each being sur-
rounded by a 100-pm-thick insulation coating (perfluoroalkoxy,

[mm]

[mm]

Fig. 11. Cross section of the ribbon cable of Section VI-D.

TABLE IV
MODELING ERROR AND SIMULATION TIME FOR VECTOR FITTING (VF),
DELAYED VECTOR FITTING (DVF), AND PROPOSED
MACROMODELS OF THE RIBBON CABLE OF SECTION VI-D

Method Poles (72) Max error Sim. time | Speed up
VF 155 4.5-1073 62.6 s -
DVF 8 6.8-1073 163 s 3.8 x

Proposed 6 7.7-1073 1.7 s 36.8 x

e, = 2.1). Each wire is partially shielded by a set of eight small
wires (diameter 30 pm), which are twisted along the center
wire. Partial shielding is used to cut metal volume and weight.
Center-to-center separation between adjacent signal conductors
is 0.37 mm.

The per-unit-length parameters of the line were obtained
using the algorithm of [51], and the S-parameters of the
eight-port interconnect were computed from 0 up to 40 GHz
at 2000 linearly spaced points. Modeling was performed with
vector fitting, delayed vector fitting, and the proposed tech-
nique, leading to the results summarized in Table I'V. Since the
line is not cyclic symmetric, a frequency-independent modal
decoupling matrix R was obtained from the raw frequency
data, as in Section III-A. The estimated matrix turned out to
provide a very good decoupling of the original data samples
since all off-diagonal terms of (5) had a magnitude below
3.2 x 107, This result thus validates the assumption of a
frequency-independent modal decoupling matrix.

The proposed fitting algorithm produced a highly accurate
model with a worst case error of 7.7 x 107>, Fitting accuracy
can be also appreciated on Fig. 12, where the near-end crosstalk
So; is plotted versus the model response. The whole fitting
procedure took 370 s, including the delays optimization step,
which led to the modal delays 71 = 0.613 ns, 75 = 0.605 ns,
73 = 0.617 ns, and 74 = 0.615 ns. Numerical solution of the
linear matrix inequality (40) of Section V-A took 2.6 s and cer-
tified that the proposed model is admissible. The vector-fitting
and delayed vector-fitting models turned out to have larger com-
plexity: vector fitting required 155 poles per response, whereas
delayed vector fitting needed eight poles and three delay terms
per response.

We finally assess the high efficiency of the proposed model
with a transient SPICE simulation. Port 1 was excited by a
voltage pulse source (25-€2 internal resistance, 0.8-nH internal
inductance, pulsewidth 0.4 ns, rise and fall time 0.05 ns, peak
voltage 1 V), with all other ports connected to a 0.8-nH inductor
in series with a parallel of a 1-k€2 resistor and a 1.5-pF capac-
itor. Simulation results obtained with the three macromodels
are in good agreement, as shown in Fig. 13. The simulation
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Fig. 12. Comparison of the S2; model response (red dashed—dotted line in
online versoin) with the raw data (black solid line) for the ribbon cable of
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Fig. 13. Far-end (top panel) and near-end (bottom panel) voltage obtained by
SPICE simulation of the ribbon cable models returned by vector fitting (VF),
delayed vector fitting (DVF), and the proposed algorithm.

times in Table IV confirm the effectiveness of the theoretical
developments of this paper since the proposed model outper-
forms vector fitting by 36.8 times, and delayed vector fitting by
3.8 times.

VII. CONCLUSION

This paper introduced a novel macromodeling technique for
long multiconductor interconnects characterized by tabulated

frequency data. This method is able to directly synthesize all in-
finite delays due to multiple reflections. A formal description of
model identification, stability certification, and equivalent-cir-
cuit synthesis has been presented.

Several application examples demonstrate the accuracy and
robustness of the proposed algorithms and the remarkable ef-
ficiency of the proposed model that clearly outperforms more
standard solutions. Future research will address model passivity
qualification and extension to the more challenging case of fre-
quency-dependent modal profiles.
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