
21 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

MEDEA: A Hybrid Shared-memory/Message-passing Multiprocessor NoC-based Architecture / Tota, Sergio Vincenzo;
Casu, MARIO ROBERTO; RUO ROCH, Massimo; Rostagno, Luca; Zamboni, Maurizio. - ELETTRONICO. - (2010), pp.
45-50. (Intervento presentato al convegno Design, Automation and Test in Europe Conference and Exhibition - DATE
2010 tenutosi a Dresden, Germany nel 8-12 March, 2010).

Original

MEDEA: A Hybrid Shared-memory/Message-passing Multiprocessor NoC-based Architecture

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2335729 since:

IEEE

MEDEA: a Hybrid

Shared-memory/Message-passing Multiprocessor

NoC-based Architecture

Sergio V. Tota, Mario R. Casu, Massimo Ruo Roch, Luca Rostagno, Maurizio Zamboni

Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

{sergio.tota,mario.casu,massimo.ruoroch,maurizio.zamboni}@polito.it

Abstract—The shared-memory model has been adopted, both
for data exchange as well as synchronization using semaphores
in almost every on-chip multiprocessor implementation, ranging
from general purpose chip multiprocessors (CMPs) to domain
specific multi-core graphics processing units (GPUs). Low-latency
synchronization is desirable but is hard to achieve in practice due
to the memory hierarchy. On the contrary, an explicit exchange
of synchronization tokens among the processing elements through
dedicated on-chip links would be beneficial for the overall system
performance. In this paper we propose the Medea NoC-based
framework, a hybrid shared-memory/message-passing approach.
Medea has been modeled with a fast, cycle-accurate SystemC
implementation enabling a fast system exploration varying sev-
eral parameters like number and types of cores, cache size and
policy and NoC features. In addition, every SystemC block has
its RTL counterpart for physical implementation on FPGAs and
ASICs. A parallel version of the Jacobi algorithm has been
used as a test application to validate the metodology. Results
confirm expectations about performance and effectiveness of
system exploration and design.

I. INTRODUCTION AND RELATED WORK

The increasing number of cores that can be integrated in

a die is leading to a deep revolution in the microprocessor

semiconductor industry [1]. General purpose architectures like

chip multiprocessors (CMPs) as well as domain specific multi-

core architectures like graphics processing units (GPUs) are

quickly switching from few complex out-of-order processors

to many smaller and simpler in-order architectures [2][3][4].

The communication infrastructure plays a key role in this

environment. Current implementations use bus or ring network

solutions [5][6] which do not provide enough scalability for

next-generations multi-core architectures. The use of packet-

switched on-chip networks (called NoC) using switches placed

on-chip according to a regular topology in order to provide

an efficient and scalable communication sub-system is now a

well-accepted concept [7]. The scalability of the programming

model is another facet of the problem. Classic shared-memory

paradigm is facing the limit of the standard memory-hierarchy,

which is the true performance wall [8]. Historically, the

message passing approach was proposed as a solution for

parallel and efficient communication of cluster-based systems.

The reasons that brought to that choice now seem to be

appropriate for the new environment which looks like a cluster-

on-chip. In particular, the opportunity that is given by the

message-passing paradigm is that synchronization as well as

data-exchange among different cores can be done in parallel

thanks to the distributed low-latency on-chip network without

any need to access a shared memory resource even if shared-

memory programming model is fully supported.

In this work we propose the Medea framework, a con-

figurable hybrid shared-memory/message-passing architecture.

Instructions fetch and load/store operations adhere to the

standard shared-memory model whereas synchronization and

data exchange among cores may occur, for performance or

cost reasons, by means of an explicit low-latency message-

passing technique using a NoC. System design exploration

is performed with a high-performace cycle-accurate simulator

which makes it possible to perform simulations of more than

one hundred configurations in just one day and use obtained

results in order to properly tune the system.

The idea of an architecture including hardware support

both for shared memories and message passing dates back

to the 90’s. Examples are Stanford FLASH multiprocessor

[9], [10], MIT Alewife machine [11] and ASCOMA [12] in

which a conventional processor with cache and local memories

interfaces to a special purpose device managing I/O and inter-

connection to other nodes in the network. Tilera [4] produces

a chip with 64 microprocessors organized in an 8x8 mesh,

and interconnected through a network-on-chip approach. Each

microprocessor is a 3-wide VLIW machine. As this device

is targeted to high data bandwidth applications, five different

interconnection networks co-exist, dedicated to different tasks,

and with different routing policies. Our approach differs from

the preceding one because our nodes do not include any

MMU with TLB. Each node includes a simple RISC-type

microprocessor with a special link for NoC I/Os. Only a single

interconnection network is used. The router itself is as simple

as possible due to the so-called hot-potato routing strategy.

The choice of architecture parameters is application-driven

thus requiring a highly-efficient design-exploration technique

which is provided in our work.

The paper is organized as follows. Section II describes

the Medea architecture with details about different system

components. Simulation results are presented in section III to-

gether with their interpretation. Finally, section IV reports the

conclusions and gives hints about future research directions.

978-3-9810801-6-2/DATE10 © 2010 EDAA

II. SYSTEM ARCHITECTURE

The system is composed of three basic elements: an on-chip

network, Processing Elements and their interface to the NoC,

and the Multiprocessor Memory Management Unit (MPMMU)

(Fig.1).

PE

PE

DDR

MPMMU

PE

PE

PE PE

PE PE

PE PE PE

PEPEPE

PE

Fig. 1. An example Medea configuration

A. NoC Infrastructure

The Network-on-Chip infrastructure is based on a two-

dimensional folded torus topology. Intrinsically 2-dimensional

networks such as meshes and tori optimally suit silicon

implementation [13]. Concerning network routing strategies,

switches implement the deflection-routing algorithm which

uses a full-blown packet-switching methodology by allowing

different routing for every flit of the same packet. The basic

idea is that of choosing the presently “best” route for each

incoming flit, without ever keeping more than one flit per input

channel (thus the alternative name of “Hot Potato” routing).

This type of adaptive routing does not suffer from deadlock

[14] while livelock may occur in theory. However in our

previous works [15] we observed sporadic cases of single flits

delivered with high latency (larger than average) that did not

significantly hamper execution times. In this case too we did

not observe any overhead due to significant excess of latency.

Another advantage of deflection-routing is the small area of the

switch. Its storage requirements are the theoretically minimal

ones (as much memory as the incoming flits), no bottleneck is

created by long packets as in wormhole routing, and no back-

pressure mechanism is needed. The expense is the introduction

of potentially out-of-order reception of flits belonging to the

same packet at destination. These considerations have been

taken into account during the implementation of our network

interface as discussed in the next paragraph.

B. Processing Element and NoC Interfacing

The high degree of configurability of the Tensilica Xtensa-

LX processor was used to implement the MPI message-passing

interface as a high-speed direct link between each processor

and the switch using TIE (Tensilica Instruction Extension)

ports. This I/O directly connects to the processor register-

file and behaves as a FIFO queue interface (Fig.2-a). When

a packet of length L flits must be sent, the interface puts a

sequence number into all flits. An address in the form X-

Y is put as well. In order to speed-up the operation and to

afford a maximum throughput of a flit per cycle, an additional

counter for the sequence number and a LUT for addressing

has been instantiated within the processor core and is directly

supported by custom TIE instructions. The sequence number

is used at the receiver to avoid any buffer for sorting out-

of-order received flits. When a flit arrives, the PE first reads

a flit from the NoC storing it into a register and then uses

the sequence number of the given flit as an offset address for

the storage into the processor data memory. Another register

contains the base address. A double buffer technique enables

one clock cycle read operations (Fig.2-b).

messgage−passing
 TIE interface

messgage−passing
 TIE interface

Xtensa

Xtensa

Processor ’i’

Processor ’j’

NoC−Reg1

TIE message−passing input port

Double buffer

Processor Local Memory

Packets request
segment

+
Address

Data

(seq−num)
Offset

(b)(a)

NoC

NoC−Reg0

Data/Req bit

Data Base Addr

Req Base Addr Packets data segment

Packet data ’i’

Packet request ’k’

Fig. 2. FIFO-like IPC model and details of the receiving interface

The size of the sequence-number field determines the size

of logic packets. Additional hardware consists of a small

adder and two registers, which are seamlessly integrated by

Tensilica core development tools in the processor pipeline. The

choice of embedding the interface in the processor allowed

the ISA and consequently the compiler to natively support

all message-passing I/O thus facilitating the development of

an ad-hoc scalable programming model. This is mandatory

because scalability of the hardware infrastructure must be

fully supported by software layers. Gate count overhead is

around 5k gates for a 64 bit wide flit. The shared-memory

interface between the processor and the NoC has been im-

plemented through the pif2NoC bridge, which translates the

Tensilica PIF protocol bus transactions to a sequence of NoC

flits accordingly. The bridge is capable of single read/write

operations as well as block transfers. The translation of a

specific shared-memory address into a NoC address depends

on a configuration memory inside the bridge and can be

directly configured by the microprocessor. In the simplest

Medea implementation, all the memory mapped address space

is located at the unique MPMMU of the system, (even if

there are no limitations in the number of MPMMUs of the

system) thus the corresponding NoC address is hardwired. This

solution reflects the choice of a single physical memory node.

In every block-read transaction, the different flits containing

words read from the MPMMU may arrive out-of-order. Block

read are common during cache misses. The current processor

configuration supports a cache line of 16 bytes thus a miss

causes a block read of four 32 bits words. For this reason,

the pif2NoC bridge also contains a reordering buffer which

currently has a depth of four words. Access to the NoC of the

two different interfaces, message-passing and shared-memory,

is guaranteed by a simple and configurable arbiter.

PIF Bus TIE Ports

Reord.

FIFO
MPMMU

LUT
pif2NoC Bridge

Arbiter

NoC−Out

NoC−In

Tensilica Xtensa Processor

Fig. 3. Shared-memory and message-passing interface to and from the NoC

Three possible configurations are possible depending on

required system performance and area availability. In the first

configuration the two interfaces connect to the NoC with

a simple multiplexer and no buffers (Fig. 3). In case of

contention, one interface will be granted to write to the NoC

while the other will wait until the release of the resource.

In a second implementation a single FIFO is available thus

even if the switch connected to the given processor can not

accept other packets due to congestion, the two interfaces still

have the possibility to store packets in the queue. In the last

implementation, two FIFOs are used, one for High-Priority

traffic and one for Best-Effort traffic. In this case the arbiter

will read the best-effort queue only if the high-priority one is

empty. Since the Medea architecture can be used for scientific

computations, a double precision floating point acceleration

provided directly by Tensilica has been included [16]. With

just 4k-7k more gates, an Xtensa processor can perform double

precision adds and subtracts in an average of 19 cycles while

multiplies take an average of 60 cycles using 16 or 32 bit

multipliers and only 26 cycles for a processor configuration

that includes the ”Multiply High“ option.

C. Multiprocessor Memory Management Unit

The Multiprocessor Memory Management Unit (MPMMU)

is a special processor which handles shared-memory transac-

tions (reads/writes) using a protocol defined by the authors.

The MPMMU has one NoC interface, - i.e. the TIE ports

previously discussed - and a PIF bus connected to a DDR

controller. The MPMMU can be seen as a slave, i.e. it always

answers to transactions initiated by other processors. The

NoC interface uses two FIFOs for incoming packets and one

FIFO for outgoing packets. Incoming packets can be of Pif-

Requests/Control or Pif-Data type. The Pif-Request/Control

FIFO receives ”request-for-transaction” tokens generated by

cores which aims to perform read/write (single/block) shared-

memory transactions. The depth of this queue is as large

as the number of processors. The token contains source-

id of transaction, memory address and type of transaction.

In case of a write request, the MPMMU issues a grant to

the sender. Incoming data will be stored into the Pif-Data

queue, read by the MPMMU and stored into memory. At

the end of this operation a second acknowledge is sent to

the transaction initiator (Fig.4.a). In case of a read transaction

request, the MPMMU sends requested data immediately using

the outgoing FIFO (Fig.4.b). Since the MPMMU has a local

cache for both instructions and data, the latency of read

operations strongly depends on the availability of the given

word inside the cache or not. The Request/Data protocol has

been implemented to provide an implicit flow-control scheme

in order to minimize local buffers in the MPMMU.

(a)

Req

Ack

Data

Ack

Processor
Generic

MPMMU

Data

Req

(b)

Processor
Generic

MPMMU

Fig. 4. Write (a) and Read (b) protocol between a processor and the MPMMU

The global shared-memory is divided into two logic seg-

ments, shared and private area. A system with N cores will

thus have N private segments and one shared segment. Since

the private area can be accessed only by one processor, no

coherency is required between the L1 cache of that processor

image of the private segment on the system memory. In

order to support atomic operations like critical sections, a

lock/unlock mechanism of a given word in shared-memory

has been implemented. Every processor which aims to access

the shared memory segment for read/write operations must

first request lock. If granted, the line can be read/written.

Before releasing the locked line with an unlock command,

the processor must perform a L1 cache flush operation of the

locked line in order to keep coherency. After the line flush the

processor can issue an unlock. All the lock/unlock requests

are stored in the Pif-Requests/Control queue.

D. Network Protocol

The system network protocol can be divided into three lev-

els: transport, bridge and application. Transport-level is used

by NoC switches to route flits through the network, requiring

only the destination address expressed as X-Y coordinates and

a validity bit. Destination address field depends on network

size. For a 4x4 folded-torus topology two bits are required for

each coordinate. A pif2NoC bridge supports memory-mapped

transactions, thus some extra fields are required: type, sub-type

and sequence-number. The first one is a three bits field and

expresses seven possible types of packets: single-read, single-

write, block-read, block-write, Lock and Unlock for shared-

memory transactions plus another one for generic message-

passing packets. The sub-type field, is a two bits field used

in shared-memory transactions to define if the given packet is

an Ack/Nack or has an Address/Data in the payload. In case

of a message-passing flit, it is used to distinguish requests

from generic data packets. The third one, sequence-number,

is a four bits field and is used at the receiver to perform

the re-ordering process of incoming packets in case of out-

of-order delivery. The pif2NoC bridge has an internal re-

ordering buffer which has a depth of 4 elements in current

Medea implementation. The TIE message-passing interface

instead has an internal hardware, supported at instruction-

level, which uses the sequence number as an offset to properly

store incoming packets in memory. All the protocol fields

of the application-level are written and used by the software

layer. Source-Id and burst-size are an example. In this Medea

implementation the source-Id is a four bits while the burst-size,

2 bits wide, is used by the receiver and indicates how many

flits, belonging to the same logic packet, must be expected.

(1)network−level

bridge−level (2)

application−level (3)

V X Y

T
Y
P

E

SEQ
NUM SIZE

BURST SRC
ID

DATA

324242322

E
P
Y
T

SUB

header(3) payload(3)

header(2) payload(2)

payload(1)

h
e
a
d
e
r
(
1
)

1

Fig. 5. Three-levels packet format description of the Medea architecture

E. Programming Model

At startup, the code to be executed is placed in an external

DDR memory. After reset all processors start to fetch ini-

tialization routines. If a processor accesses its own private

memory segment located in system-memory, no particular

precautions are needed for cache-coherency, thus this segment

is completely cacheable. More attention is required for shared-

data. First of all shared data-structures must be placed in the

shared-memory segment and declared as volatile to alert the

compiler that this structure has potential side-effects. Second,

when the producer wants to write a data in this shared segment,

a cache flush of the line must be performed to make sure that

coherency exists between the local L1 cache and the global

system-memory. Also the consumer of a given data in the

shared segment must avoid incoherency making its address

uncacheable. For small memory regions the DII instruction

can be used, in order to invalidate a specific address of the

cache thus forcing a fetch from the system memory. For wider

segments of at least 512MB it would be a better choice to

set all the segment as uncacheable bypassing completely the

cache, mainly in case of frequent accesses.

For the message-passing model, we implemented a sub-

set of MPI APIs [17] called embedded-MPI (eMPI). With

just three basic primitives, MPI send(), MPI receive() and

MPI barrier() for synchronization, a direct communication

between cores is possible totally avoiding in some cases the

access to the global-memory. These high-performance I/O

primitives can be used for synchronization between cores as

well as for data exchange. In this case the best conditions is

when data to be sent completely resides in the local L1 cache.

III. RESULTS

Cycle-accurate system-C models of architectural blocks

have been developed together with their RTL versions. Tests

of compliance as well as speedup compared to a HDL-ISS co-

simulation have been run. On average, we achieved a speedup

of 15x and perfect overlap of behavior. Such speed enables

accurate design space explorations of many potential candidate

architectures in hours, a relatively small time compared to days

for the HDL-ISS version.

In order to highlight architectural properties, it was nec-

essary to select a benchmark that was able to stress both

computation and communication resources. Moreover, such

application must be scalable with both number of processing

elements as well as memory sizes in such a way to keep a

constant level of pressure on system with different charac-

teristics. The chosen algorithm is an iterative solver for 2D-

partial differential equations. It can be shown that the Jacobi

algorithm [18] is a solver for this class of problems. The

Jacobi algorithm was selected as a good representative of the

class of scientific computational kernels that may fully exploit

the potential of a manycore CMP architecture using a hybrid

shared-memory/message-passing approach. We have been able

to run a parallel implementation of the Jacobi algorithm for

three different sizes of input data on 168 different architectures

in about 1 day using 5 servers equipped with dual Xeon 3.2

GHz/1MByte L2 cache processors, 8 GByte RAM and SCSI

Ultra 320 10k rpm hard disks. The 168 points in the design

space have been obtained varying the number of processor

cores between 3 and 16 (1 of which is the MPMMU,) cache

size between 2kB and 64kB (scaled according to the power

of 2,) Write-Back and Write-Through cache policy. As for

the data size, the Jacobi algorithm was run on arrays of

16x16, 30x30 and 60x60 double precision floating-point. The

three sizes, though relatively small compared to a large Jacobi

problem solved by a cluster of hundreds nodes, in this case of

up to 16 on-chip cores cover three cases of small, moderate,

and large amount of data per core. In particular, the smallest

case will be dominated by communication costs whereas the

performance of the largest one will be dictated by computation

costs, at least for a properly designed system, as we will be

able to demonstrate shortly.

It will also be clear that a system optimally configured

for the hybrid approach (cache size and core number) is

not optimal for the purely shared memory case, particularly

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 1.2e+007

 2 4 6 8 10 12 14 16

E
x
e
c
u
ti
o
n
 T

im
e
 (

c
lo

c
k
 c

y
c
le

s
)

Number of cores

2kB $ WB

4kB $ WB

8kB $ WB

16kB $ WB

32kB $ WB

64kB $ WB

2kB $ WT

4kB $ WT

8kB $ WT

16kB $ WT
32kB $ WT

64kB $ WT

Fig. 6. Execution time for a 60x60 array varying number of cores, cache
size and cache policy.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20 22

S
p
e
e
d
 U

p

Chip Area (sqmm)

2P_2:8k$
3P_2:16K$

4P_16k$
5P_16k$

6P_16k$
7P_16k$

8P_16k$

9P_16k$

10P_16k$

11P_16k$

13P_16k$14P_16k$
15P_16k$ 13P_32k$ 15P_32k$

Fig. 7. Run on 60x60 array: optimal speedup and corresponding architecture
configuration versus chip area.

in terms of number of cores. The curves in figure 6 are

representative of the type of system data the simulator can

present to the user. In this case, plots represent execution

time in clock cycles for an iteration of the Jacobi algorithm

after cache warm-up as a function of the number of active

processors (2 to 15) and varying the cache size. The data size

is 60x60. As expected, the Write-Through policy, if on the

one hand makes it easier to keep caches coherent, shows poor

performance due to the excessive amount of traffic. As for

the Write-Back case, communication cost due to high miss

rate almost dominates for cache size less than 8kB leading to

small or no speedup at all. When the amount of data per core

fits in the cache size, computation costs emerge that clearly

scale with core number. Figure 8 reports execution time for

the 30x30 case, write-back only. Scalability is hampered if

caches are not properly sized. In the 30x30 case cache must

be at least 4kB large, a value 4x less than the larger 60x60

case because the array is 4x smaller here.

The last remark concerning area (and as a related variable

also power consumption) is important for cost-effective or

power-constrained multicore implementations. In general, a

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 2 4 6 8 10 12 14 16

E
x
e
c
u
ti
o
n
 T

im
e
 (

c
lo

c
k
 c

y
c
le

s
)

Number of cores

2kB $ WB

4kB $ WB

8kB $ WB

16kB $ WB
32kB $ WB

Fig. 8. Execution time for a 30x30 array varying number of cores and cache
size, write-back case.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

S
p
e
e
d
 U

p

Chip Area (sqmm)

2P_2:32k$
3P_4:16k$

4P_8:16k/5P_4k$

5P_16k$

6P_16k$

7P_16k$11P_4k$

8P_16k$
13_4k$

14P_4k$

15P_4k$

Fig. 9. Run on 30x30 array: optimal speedup and corresponding architecture
configuration versus chip area.

good rule-of-thumb allows an increase of a resource size only

if for every 1% increase in core area there is at least a 1% in-

crease in core performance (the “Kill” rule, t.i. “kill if less than

linear” [19]). We thus pruned the explored solutions that were

Pareto-dominated (larger area for a smaller performance) and

kept only those that resulted in a performance increase at the

minimum cost, starting from the architecture with the smallest

area. The resulting “optimal Speedup” is plotted in figure 7

for the three cases of data size as a function of the chip area.

The latter was estimated from core/cache data given by the

processor vendor for a TSMC 65nm CMOS technology and

including an overhead for NoC switches, bridges and routing

area of about 100% of the total core area (excluding caches)

[20]. Labels along the curves describe the processor/cache

configuration that corresponds to the optimal (area, speedup)

point of the curve to which the label is attached. The first

reported case of figure 7 concerns the bigger data size case.

It can be easily correlated with the curves in figure 6 which

show that execution time decreases in 4-10 cores range faster

than in 11-15 range. This corresponds to the upper knee of

the optimum speedup curve. The 11 processor pool equipped

with 16 kB L1 cache each is the limit beyond which increasing

area any further does not produce a proportional performance

increase (kill rule). As for the lower knee, the speedup abruptly

increases when the amount of data for each processor fits in a

16kB cache. In the range 7-10 mm2 area increase is worth as

the speedup increase is (70-20)/20=2.5 for an area increase of

(10-7)/7=0.43. 8-11 is then the range of processor cores that

will lead to an “optimal” design in the sense that perfectly

exploits the available area.

As for the second case of figure 9 which describes the

optimal speedup for the 30x30 data size, a similar remark can

be done concerning the lower knee of the curve which occurs,

as expected, for a 4x lower cache and, somewhat unexpectedly,

for a larger number of cores. The upper knee and so the limit

of the kill rule would probably occur for a number of cores

larger than 15. Below the lower knee, the optimal cache size

is bigger than 4kB, a symptom that miss rate dominates in

that area range.

In order to understand and quantify the advantage of the hy-

brid shared-memory/message passing approach, we redesigned

the Jacobi code in two ways: a pure shared memory and

a hybrid solution where only synchronization uses message

passing primitives while data exchange occurs through the

shared memory. We expect that the amount of traffic generated

toward the memory as well as the serialization of accesses

will degrade the performance in both cases, but it is important

to understand how much of the speedup will be due to

synchronization and how much to data exchange. Given a

60x60 array, we compared the optimal speedup of Medea

reported in figure 7 to the pure shared memory case and

observed a 2x improvement of Medea below the lower knee

and an increasing gap beyond the knee ranging from 2x at

6 processors 16 kB to more than 5x at 10 processors, same

cache size. This behavior confirms expectations. When the

traffic generated by the miss rate is relevant in the Medea

case, results are still better than the shared memory case in

which, even in the absence of miss rate, traffic is always

present. The difference, however, is not as dramatic as where

memory accesses beyond the L1 cache are nullified in the

hybrid case. In the same conditions, we evaluated the speedup

when both data and synchronization exchanges occur through

message-passing with respect to the case in which messages

are sent for synchronization only. In the same range in which

the speedup was 2x compared to the pure shared memory case,

the speedup is similar (only 2-20% smaller). When miss-rate

is negligible, the speedup ranges between 2x and 2.8x instead

of 2x-5x. We can thus state that much of the improvement

of the full-blown message-passing approach is due to better

synchronization which accounts for at least 100·2.8/5=56% of

the record 5x improvement that we mentioned above and up to

100% of the 2x cases. As a partial conclusion of this analysis,

the hybrid approach - in both its variants, synchronization only

as well data plus synchronization case - seems to scale better

and to utilize silicon area for additional core instances in a

more efficient way compared to a standard shared memory

approach. Cache size is a critical parameter: When miss rate

becomes relevant, the advantage fades out.

IV. CONCLUSION AND FUTURE WORK

In this paper, Medea, a hybrid shared memory/message

passing architecture has been proposed. Measurements per-

formed on a specific algorithm, the Jacobi iterative solver,

confirm the work hypotheses concerning the ability of a hybrid

approach in reducing synchronization overheads as well as

allowing fast on chip exchange of data among the cores.

The Medea framework has been subsequently used to find

optimal solutions for area-constrained designs. Result show

that, using the Jacobi algorithm for a given data structure size,

it is possible to obtain the best trade-off between number of

processors and cache size. Future work will be based on the

porting and execution of standard parallel benchmarks, the

MPMMU optimization, simulation base enlargement.

REFERENCES

[1] International Technology Roadmap for Semiconductors Web Site,
http://www.itrs.net

[2] Umesh Gajanan Nawathe et al., “An 8-core, 64-thread, 64-bit, power
efficient SPARC SoC (Niagara2)”, ISSCC 2007, February 2007

[3] M. Tremblay et al., “A Third-Generation 65nm 16-Core 32-Thread Plus
32-Scout-Thread CMT SPARC Processor”, ISSCC 2008, February 2008

[4] S. Bell et al., “TILE64 - Processor: A 64-Core SoC with Mesh Intercon-
nect”, ISSCC 2008

[5] B. Flachs et al., “A streaming processing unit for a CELL processor”,
ISSCC 2005, February 2005

[6] L. Seiler et al., “Larrabee: A Many-Core x86 Architecture for Visual
Computing”, ACM Transactions on Graphics, Vol. 27, No. 3, Article 18,
August 2008

[7] L. Benini et al., “Networks on Chips: A new SoC paradigm”, IEEE
Computer, vol. 35, no. 1, pp 70-78, January 2002

[8] Xu Wang et al., “A Quantitative Study of the On-Chip Network and Mem-
ory Hierarchy Design for Many-Core Processor”, 14th IEEE International
Conference on Parallel and Distributed Systems, 2008

[9] J. Kuskin et al., “The Stanford FLASH multiprocessor,” Proceedings
of the 21st Annual International Symposium on Computer Architecture,
April 1994.

[10] J. Heinlein et al., “Integration of Message Passing and Shared Memory
in the Stanford FLASH Multiprocessor,” Proceedings of the 6th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) 1994, October 1994.

[11] A. Agarwal et al., “The MIT Alewife Machine,” Proceedings of the
IEEE, March 1999.

[12] C.-C. Kuo et al., “ASCOMA: an adaptive hybrid shared memory
architecture,” In proceedings of International Conference on Parallel
Processing, August 1998

[13] C. Grecu et al, “Timing Analysis of Network on Chip Architectures for
MP-SoC Platforms,” Microelectronics J., vol. 36, no. 9, pp. 833-845.

[14] M. Steenstrup, ed., Routing in Communication Networks, pp. 263-305,
Prentice Hall, 1995.

[15] S. V. Tota, M. R. Casu, L. Macchiarulo, “Implementation Analysis of
NoC: A MPSoC Trace-Driven Approach”, pp. 204-209, in Proceedings
of the 2006 ACM Great Likes Symposium on VLSI, Philadelphia, April
30-May 2

[16] Tensilica White Papers
http://tensilica.com/pdf/DoublePrecision FPEmulationAcceleration.pdf

[17] Marc Snir et al., “MPI: The Complete Reference”, MIT Press, 1998.
[18] G.E. Karniadakis et al., “Parallel Scientific Computing in C++ and MPI,”

Cambridge University Press, 2003.
[19] A. Agarwal et al., “The KILL Rule for Multicore,” Design Automation

Conference (DAC), 2007. 4-8 June 2007, pp. 750-753.
[20] S. Tota et al., “A Case Study for NoC Based Homogeneous MPSoC Ar-

chitectures,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, March 2009.

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

