POLITECNICO DI TORINO
Repository ISTITUZIONALE

Assessing the Precision of FindBugs bymining Java Projects developed at a University

Original

Assessing the Precision of FindBugs bymining Java Projects developed at a University / Vetro', Antonio; Torchiano,
Marco; Morisio, Maurizio. - (2010), pp. 110-113. (Intervento presentato al convegno Mining Software Repositories 2010
tenutosi a Cape Town, South Africa nel 2-3 May 2010) [10.1109/MSR.2010.5463283].

Availability:
This version is available at: 11583/2317594 since:

Publisher:
IEE

Published
DOI:10.1109/MSR.2010.5463283

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

09 April 2024

Assessing the Precision of FindBugs by mining
Java Projects developed at a University

Antonio Vetro’, Marco Torchiano, Maurizio Morisio
Politecnico di Torino
Torino, Italy
name.surname@polito.it

Abstract—Software repositories are analyzed to extract usef
information on software characteristics. One of then is
external quality. A technique used to increase soffare quality
is automatic static analysis, by means of bug findg tools.
These tools promise to speed up the verification gburce code;
anyway, there are still many problems, especiallyhe high
number of false positives, that hinder their largeadoption in
software development industry. We studied the capality of a
popular bug-finding tool, FindBugs, for defect predction
purposes, analyzing the issues revealed on a regosy of
university Java projects. Particularly, we focusedon the
percentage of them that indicates actual defects thirespect to
their category and priority, and we ranked them. Wefound
that a very limited set of issues have high precmn and
therefore have a positive impact on code externaluglity.

Keywords. Software Quality, Automatic Static Code Analysis,
Defect prediction, Bug Finding Tools

l. INTRODUCTION

Software quality assurance is a very critical digtivt is
historically estimated that rework effort is abd@®-50% of
the whole software production effort [4] [5]. Seaker
techniques can be used to improve quality, we fomus
automatic static analysis and particularly on buyglihg
tools. Bug finding tools analyze the source codejmylying
a set of rules and produce a list of issues cooratipg to
violations of the rules. The issues are supposeefgcts of
the program that ought to be removed or fixed.

The software engineering literature still lacksharbugh
assessment of bug finding tools, and many probleave
been identified in literature:

¢ high number of false positives [15][11]

« detection of only a reduced subset of possible bug

[15][16]

« the efficiency of the default issues prioritization

decided by tool's author [10][2]

very important to provide the developers with aeater
information that can be used effectively in deveigpand
maintaining the software.

We conducted an empirical validation of the issoka
widely used tool: FindBugs v1.3.8. In particular aralyzed
the issues produced by FindBugs on a large poslmifar
programs. The main contributions of the paper are:

» It provides empirical evidence about the validify o
issues categories as bug predictors;

» As a consequence identifies a first step to makg bu
finding tool usage more effective;

» Using a large pool of developers, it eliminates the
effect of developer style on the results.

1. CONTEXT AND DEFINITIONS

The program pool was developed in the context ef th
Object Oriented Programming (OOP) course at thhoasit
university, where students develop Java programstie
exam. Students develop a first version of the @agin
laboratory (the “lab” version), then a tool, Polé@er[13],
manages the delivery process and runs a suiteaok tidox
acceptance tests (JUnit classes): results of tesistheir
source code are sent back to the students, thabige and
improve the lab version, creating a version of phegram,
called “home” version, that must pass all accepdasts.

The code base used in the experiment consists da&
assignments from the 2009 OOP course: requirensets
the same for all the assignments; and they areigyubl
available at the following URL:
http://softeng.polito.it/vetro/confs/msr2010/Re@umrents.ht
m. Each assignment contains both lab and homeowarsi
syntactically correct, and home version passes 106D%e
§cceptance tests. Acceptance tests are writterpdwhérs of
the course in such a way all functionalities areckled.
Teachers develop also a correct “solution programt they
check test coverage on it. The average size oke@ijis

» the dubious economical benefits brought by theirgg 4 NCSS (Non Commenting Source Statements)afor |

usage [14][16] .

We studied one of these problems: precision ofeissu

revealed by bug findings tools. Our goal is to assthe

versions and 183.81 NCSS for home versions. Theatsd
number of function points for the project is 66.30.

An issue produced by FindBugs is characterized rby a
ID, a textual explanation, and a location in tharse code.

following research questionwhich issues are actual Tpe issues are categorized by FindBugs accordingveo

predictors of bugs, and which are nothis knowledge is

dimensions: category (Bad Practice, Correctnesygle,St
Performance, and Malicious Code are the categuoritbsat
least one issue signaled in our code base) andtpribow,
Medium, High). Both classifications have been dedidby
the tool's authors and are based on their pergopalience.

I1l. EXPERIMENT DEFINITION

To address the research question we consider a main

dependent measureprecision of the issues that can be
defined as the proportion of the signaled issuest th
correspond to actual defects.

Precision is a derived measure that can be compmuted
the basis of the following primitive measureNi, the
number of issues signaled by FindBugs &l the number
of issues corresponding to actual defects. We ticaropute
recall (commonly coupled with precision), becauseauld
require the knowledge of the complete set of defethis
can be computed only by hand: given the large nurobe
projects to be checked this is a long and errong@process.

To determineNA we adopted the concepts of temporal
and spatial coincidence, previously presentedtémdiure in
[6] [1Q] [7]. We have temporal coincidence when are
more issues disappear in the evolution from thettakhe
home version, and in the same time one or morectieézre
fixed: probably those issues were related to tkexffidefects.
In this context defects fixed are revealed wheasa that in
lab version fails instead in home version succeeds.

The possibility that a disappearing issue was elatted
to the disappearing defect is the noise of thisrimehat is
filtered out by adding spatial coincidence: we obsespatial
coincidence when an issue's location correspondlads in
the source code that have been modified in theué&wal
from the lab to the home versions.

In practice, the combination of temporal and spatia

coincidence is interpreted as a change intendezhtove the
issue, that is linked to the defect.

The procedure followed to conduct the study is ver
simple: we ran the FindBugs tool on both versiohgarh
assignment in the repository, then we collected th
information about the change performed to evolve IHb
version into the home version. The changes wenetifol
using the DiffJ tool, which operates on two versiaf a

Java program and is able to compute for each plair o

corresponding Java classes which lines changed.

TABLE 1. PRECISIONOFTHEWHOLE SETOFISSUES
Min | 1Q | Median Mean 39Q Max St dev
0 0 0 0.149 0.25 0.8 0.226

Histogram of precisions
g - —
24

= &7

2

o

L (=)

o

I T T 1
0.0 02 04 06 08

Precision
Figure 1. Hystogram of precisions

The mean of precisions is quite low (0.15) and the
variability is high. We decided to consider theussgroup
(group G in the following) as a defect predictoitibhas a
precision greater than 30%. Such a low value itfied by
the exploratory nature of this work and it compéesdor
the large variability we expect to find in each wpwo
Furthermore this value is far enough from the ayera
precisions of the issues: in 50% of assignmentsigion is
0; in 75% (& quartile) of the assignments precision is at
most 0.25, less than the threshold; finally, thés38recision
threshold is the double of the mean of precisitingt is a

yquite wide ratio.

To identify the issue groups that can be consiia®

Yefect predictors, we define the first null hypatlse

HA,: precision of the issues belonging to group Gss|
than 30%.

Afterwards, we computed precision of issues, first

without considering categories and priorities, ta@alyzing
results observing each issue group (combinatiocaté#gory
and priority) separately.

The next step is to find false positives, the bateds
predictors. We consider as false positives the anmitls
precision <5%, a very low threshold. So we fornelltite

To determine whether an issue group is a good dr baollowing parametric null hypothesis:

defect predictor, we established 2 precision ttokelshand
we performed statistical test against null hypatkes
Thresholds were established after observing theitaision
of issues precision for each assignment (Tabledl Eigure
1), without distinction of categories and priorstie

HBo: precision of the issues belonging to group G is
grater than 5%.

Read together, the two hypotheses mean that a group
issues G is a good predictor (GP) if precisiontaf tssues

that it contains is >30% and is a bad predictor)(BR. a
generator of false positives) if precision of thsues that it
contains is <5%. The goal of the data analysis igject the
above null hypothesis by means of statistical tdats this
purpose we selected the single-tailed proporticst teth

binomial distribution [12]. Given a sample proportiand
sample size, such a test computes the probabildy the
general population (from which the sample is ex&dchas
a proportion greater (or lower) than a referenagpertion.

To reject the null
significance level at 5%, that is the probabilifyrejecting a
null hypothesis when it is true (type | error) wensider
acceptable.

IV. RESULTS

Overall FindBugs revealed a total of 508 issueg (I
the 85 lab versions of the assignments, among 8¥e(NA)

HA: The null hypothesis is rejected only for categsri
Bad Practice and Correctness both at High priattitig: is the
set of true positives for spatial + temporal caiecice. All
the other groups have non significant p-values extuibit
low estimate precisions except for Style at Higlonty
which has a relatively high precision, though righgicant.

HB: Bad Practice and Performance at Low priority, and
Bad Practice Medium priority, are the groups whose
precision is lower then 5%: however, only Bad Rcachtt

hypothesis we adopt the standardledium priority has a significant p-value, and van ¢eject

HBy, for this group.

V. DISCUSSION

The results from the hypothesis testing presenbedex
let us identify the sets of good and bad defedflipter issue
groups.

On the basis of these results, we built a partid¢ng of

were removed in changed lines (temporal and spatiahe issue groups dividing them into three sgtmd bad and

coincidence). Table Il shows NA / NI at issue grdeyel.

Table Il contains precisions and hypothesis testaputed

for each different issue group (p-values are shbwlow

precision). Columns of Table Il and Table Il cdnta
abbreviations of the full names of categories, tivat Bad

Practice, Correctness, Malicious Code, PerformaBiyde.

ambiguous We devised the ordering by putting in the set of
good issues the issues marked as defect predictdie set

of bad issues those issues marked as false pasitivel in
the set of ambiguous issues all the others thagriabeen
classified . The set of good predictor issues is={&ad
Practice High, Correctness Highthe set of bad predictors

The full tables with number of detections (NI) andis BP={Bad Practice Mediufy and the remaining issue

number of issues removed in changed lines (NA)efach
project and each issue group are available atdhewing
URL.: http://softeng.polito.it/vetro/confs/msr2010/

TABLE II. DETECTIONS
Bad Pr. | Corr. Mal.C. Perf. Style
Low 5/70 1/3 0/0 0/7 5/11
Medium 21145 12/45 | 4/15 31/144 6/16
High 13/28 12/19 | 0/0 0/0 3/5
TABLE Il PRECISION:TEMPORAL+ SPATIAL COINCIDENCE
Bad Pr. | Corr. Mal.C. Perf. Style
Low 7% 33% NA 0% 45%
HA 1 0.50 NA 0.91 0.21
HB 0.71 0.82 NA 0.50 1
Medium 1% 27% 27% 22% 38%
HA 1.00 0.63 0.50 0.98 0.35
HB 0.04 1 1 1 1
High 46% 63% NA NA 60%
HA 0.05 <0.01 NA NA 0.16
HB 1 1 NA NA 1

groups are ambiguous. Counting the single issulengiag
to those groups, they are just 8 out of 359 (2283

The rationale of this ranking is a new prioritipati of
warnings based on groups, that takes into accobat t
probability of signaling a defect. An important gtiaal
application of this finding is a filtering strateghat can
avoid to developers the information overload cauatd by a
very large number of issues: in our datasets badigor
issues are the 28.5 % of the total detectionshnvisions.
Fixing issues with a low probability of being redtto a
defect is dangerous since we know from Adam’s I[ajtHat
the probability of introducing a new error duringfault
correction is always different from zero.

VI. THREATS TOVALIDITY

We can identify 2 threats: an external and a coostr
threat.

The external threat is: we have studied small stude
projects, hence the application of findings in istdial
context is debatable.

Construct threats is concerning the identificatioh
defects. In this study, no bug database was alilate
made the assumption that all changes were donéta f
defect: actually, it is possible that some changege not
related to real defects, but to other motivatiarisgner code,
more readable code, and so on). Nevertheless, wé& do
expect that this kind of noise could change resaltsl
ranking, because usually students correct the éabions in
aquick and dirtyway, doing as few changes as possible, for
two reasons: 1) the home version is the last versiothe

project, actually no maintenance has
subsequently; 2) students are discouraged in doiagy
changes, i
decreases with the quantity of changes made (deédsdia
[13]).

VIl. RELATED WORK

As already mentioned in section 3, temporal andiapa
coincidence have been used by Boogerd and Moorjem{b
by Kim and Ernst [10]. Our research confirmed timelihgs
of [6]: a reduced set of rule violations (even darain
percentage, almost identical in absolute value)itasct on
code quality. Difference with their findings is thaur “bad
issues” are less then their “bad violations”. Ferffour good
issues set is composed exclusively by high prexitssues,
and our bad issues set exclusively by medium pyiori
default prioritization of issues seems to be effectin
contrast with what is found in [10] (but not in Warsity
context).

Looking at other studies specifically related tadBugs
([3], [9] and [8]), manual checks of issues broughthigh
percentages of true positives: overall percentagesared
are always higher than 50 %.

On the other side, a study by Wagner et al. [14

demonstrated that FindBugs and PMD (another budjnfin
tool) were able to find only the 16% of defects dne
project, and none in another one. Our study is fifs
differentiating assessment of issues precision &ggory
and priority, and the first that eliminates theeeff of the
developer style since a large pool of developereldped
the same software.

VIIl. CONCLUSIONS ANDFURTHERWORK

The analysis of precisions demonstrated that onbut2

to be doneroduction software. INPASTE '07: Proceedings of the 7th ACM

from history. InNICSE '87: Proceedings of the 9th international @rehce
on Software Engineeringages 296-298, Los Alamitos, CA, USA, 1987.
IEEE Computer Society Press.

[5] Barry Boehm and Victor R. Basili. Software deffeeduction
top 10 list.Computer 34(1):135-137, 2001.

[6] C. Boogerd and L.Moonen. Assessing the valfiecading
standards: An empirical studgoftware Maintenance, 2008. ICSM 2008.
IEEE International Conference ppages 277-286, 28 2008-Oct. 4 2008.

[7] Cathal Boogerd and Leon Moonen. Evaluating teéation
between coding standard violations and faultswithial across software
versionsMining Software Repositories, International Workstan 0:41—
50, 2009.

[8] Brian Cole, Daniel Hakim, David Hovemeyer, Reav_azarus,
William Pugh, and Kristin Stephens. Improving y@aftware using static
analysis to find bugs. IODOPSLA '06: Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programmingstesys,
languages, and applicationpages 673-674, New York, NY, USA, 2006.
ACM.

[9] David Hovemeyer, Jaime Spacco, and Bill Pughal&ating and
tuning a static analysis to find null pointer buddsbon, Portugal,
September 5-6, 2005. ACM.

[10] Sunghun Kim and Michael D. Ernst. Which wagsnshould i

fix first? In ESEC-FSE '07: Proceedings of the the 6th joint mgetf the

European software engineering conference and theM ASIGSOFT
ymposium on The foundations of software enginggpeges 45-54, New
ork, NY, USA, 2007. ACM.

[11] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, aftyuan
Zhou, and Chengxiang Zhai. Have things changed ndw?empirical
study of bug characteristics in modern open sosofsvare. InASID '06:
Proceedings of the 1st workshop on Architectural agstem support for
improving software dependabiljtctober 2006.

[12] Erkki P. Liski. An introduction to categoricdhta analysis, 2nd
edition by alan agrestinternational Statistical Reviewr5(3):414-414,
December 2007.

[13] Maurizio Morisio and Marco Torchiano. A fullputomatic

approach to the assessment of programming assiganieternational

Journal of Engineering Educatiof(0):1-16, 2009.

[14] S. Wagner, F. Deissenboeck, M. Aichner, J.Wen and
M. Schwalb. An evaluation of two bug pattern tofis java. In Software
esting, Verification, and Validation, 2008 1stdmtational Conference

of 15 groups of issues can be considered as reliabgn bages 248-257, 2008.

predictors of actual defects, and one group ofeissuas a
precision that is practically negligible. Thesedfilgs and
the adoption of the technique used may have aipahct
impact in filtering issue notifications for develp to
reduce information overload. Future work will bevdied to:
repeat temporal and spatial analysis with higheellef
detail, specifying the single issues, besides caieg and
priorities, and study the possible correlation kestw groups
of issues.

REFERENCES

[1] Edward N. Adams. Optimizing preventive servioesoftware
productsIBM Journal of Research and Developme&&(1):2—14, 1984.
[2] Nathaniel Ayewah, David Hovemeyer, J. David enthaler,
John Penix, and William Pugh. Using static analysidind bugs.|IEEE
Software 25(5):22—-29, 2008.

[3] Nathaniel Ayewah, William Pugh, J. David Morglealer, John
Penix, and YuQian Zhou. Evaluating static analyg$ect warnings on

[15] Stefan Wagner, Jan Jurjens, Claudia KolleteP&rischberger,
and Technische Universitat Munchen. Comparing hodirfg tools with
reviews and tests. 2008.

[16] J. Zheng, L. Williams, N. Nagappan, W. Snipg<?. Hudepohl,
and M. A. Vouk. On the value of static analysis fault detection in
software. Software Engineering, IEEE Transactions, @2(4):240-253,
2006.

