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SKIPPING TRANSITION CONDITIONS IN A POSTERIORI ERROR
ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS

OF PARABOLIC EQUATIONS

Stefano Berrone
1

Abstract. In this paper we derive a posteriori error estimates for the heat equation. The time
discretization strategy is based on a θ-method and the mesh used for each time-slab is independent of
the mesh used for the previous time-slab. The novelty of this paper is an upper bound for the error
caused by the coarsening of the mesh used for computing the solution in the previous time-slab. The
technique applied for deriving this upper bound is independent of the problem and can be generalized
to other time dependent problems.
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1. Introduction

A posteriori error estimates and adaptive algorithms are important keys in pursuing efficient and accurate
discretizations of partial differential equations. Since the pioneering work of Babuška and Rheinboldt [1], these
topics have become an important field for scientific computing [2,8,11,15,19,22]. Many works were devoted to
elliptic problems and some important results were obtained in the parabolic case, too [3,10,17,20].

In particular, in [17] a residual based a posteriori error estimator and an adaptive strategy without coarsening
were proposed. In [20] a robust residual based a posteriori error estimator was proposed and, in order to admit
a moderate coarsening, a transition condition was introduced. The assembling of the linear system for each
timestep and the computation of the error estimator are performed therein on a mesh that is a common
refinement of the meshes used for the previous timestep and the current timestep. This introduces great
difficulties in dealing with general adapted meshes. In [5] similar results were extended to the case of the heat
equation with discontinuous, piecewise constant, coefficients.

In this work we present robust a posteriori error estimates for a discretization of the heat equation by
conforming finite elements and a classical A-stable θ-scheme, avoiding the transition condition and the need of
a common refinement of the meshes used for the previous timestep and the current timestep. This can lead
to a great simplification in coding the method and make the implementation of an adaptive approach in an
existing code much easier. In fact, assembling the linear system and computing the error estimators require
information from a single mesh at each adaptive iteration and the transmission of the solution of the previous
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timestep on the mesh used for the current timestep is performed by a suitable projection operator for coarsened
elements and by interpolation for refined elements.

We consider the proposed approach a remarkable simplification for a rigorous coding of a space-time adaptive
algorithm, because we remove the difficulty of dealing with two meshes at every stage of the code.

In our work we explicitly consider the effect of changing the mesh from a timestep to the next one and,
in particular, the effect of the coarsening, taking into account that the new degrees of freedom introduced by
refinement whose values are obtained by interpolation do not introduce any transition error. Then we describe
a bound of the discretization error arising from the coarsening and a bound for the total error in an arbitrary
time interval. We prove an upper bound for the coarsening error by a coarsening error estimator composed by
two terms involving a H1-norm and a H−1-norm, respectively. In Section 4, introducing a suitable projection
of the old solution onto the new mesh, we also provide an upper bound for the H−1-term leading to a fully
computable upper bound for the coarsening error that, in our approach, is considered as a data approximation
error. For this reason we do not need a lower bound for it.

The estimates proposed allow us to perform a control of the space-discretization and of the timestep-length
used in each timestep. Further, they allow us to ensure the error of the full discretization to be bounded from
above and from below in each timestep via global-in-time and global-in-space upper and lower bounds. The
ratio between the upper and the lower bounds for the error is independent of any mesh-size, timestep-length
and diffusivity parameter. No hypothesis on the changes of meshes used for two consecutive timesteps are made.
The bounds involve a data-approximation-error in space and a data-approximation-error in time that can be
used to adapt the mesh and the timestep-length in each timestep.

The main results of this paper are Theorems 3.5 and 3.9 that give an upper and a lower bound for the
discretization error. In these theorems we give an upper bound of the effects in the discretization error caused
by the coarsening applied between two subsequent timesteps.

The a posteriori error estimates proposed can easily be extended to the case of piecewise constant discontin-
uous diffusivity coefficients assuming a quasi monotonicity condition [4,9,16] as in [5].

Let us introduce some notation. The symbol a � b means that there exists a constant c independent of any
mesh-size, timestep-length and problem parameter such that a ≤ c b. The symbol a � b means that a � b and
b � a.

The paper is organized as follows: in Section 2 we define the considered problem and the discretization
method. In Section 3 we define the error estimators and derive lower and upper bounds for the error considering
the error introduced by the coarsening in transmission of the solution from one mesh to the next one. In
Section 4 we describe a suitable projection operator that allows to bound from above the H−1-norm present in
the coarsening error estimator. In Section 5 we present some numerical test comparing the performances of a
simple adaptive algorithm based on the proposed estimates and on the common refinement approach based on
the two meshes. In the Appendix we report an example of construction of the dual basis functions introduced
in Section 4 for the 2D linear finite elements when the mesh modification can introduce hanging nodes.

2. The heat equation

2.1. The continuous problem

Let Ω be a bounded Lipschitz continuous domain in R
d with boundary ∂Ω and let (0, T ) be the time interval

of interest. For any f ∈L2((0, T ); L2(Ω)) and U0∈L2(Ω), we want to find U : Ω × (0, T ) → R such that

∂U

∂t
− κ�U = f, in Ω × (0, T ), (2.1)

U(x, t) = 0, on ∂Ω × (0, T ), (2.2)
U(x, 0) = U0(x), in Ω. (2.3)

Let the domain Ω be a polygonal domain and κ > 0 the diffusivity parameter.
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Setting

W =
{
w∈L2((0, T ); H1

0(Ω)) :
∂w

∂t
∈L2((0, T ); H−1(Ω))

}

the variational continuous formulation of the above problem is:
Find U ∈W such that U(., 0) = U0 and

〈
∂U

∂t
, v

〉
+ (κ∇U,∇v) = (f, v), ∀v ∈ H1

0(Ω), a.e. in (0, T ) . (2.4)

Here 〈 . , . 〉 stands for the duality pairing between H−1(Ω) and H1
0(Ω), and ( . , . ) is the usual inner product

in L2(Ω). If U ∈W , then U ∈C0([0, T ]; L2(Ω)) and the initial condition U(., 0) = U0 is meaningful in L2(Ω).

2.2. The numerical discretization

Let us consider a partition of (0, T ) into subintervals
(
tn−1, tn

)
of length τn = tn− tn−1, with 0 = t0 < t1 <

. . . < tN = T ; set In =
[
tn−1, tn

]
. In each time-slab Ω×In, n ≥ 1, we consider a regular family of partitions T n

h

of Ω into elements K ∈T n
h which satisfy the usual conformity and minimal-angle conditions [6] and we denote

by hnK the diameter of the element K∈T n
h .

Let Vn
h⊂V = H1

0(Ω) be a family of conforming finite element spaces based on the partitions T n
h :

Vn
h =

{
vh∈H1

0(Ω)∩C0(Ω) : v|K ∈Pi(K), ∀K∈T n
h

}
.

We recall that Pi(K) is the space of polynomials of degree i ≥ 1 on the element K ∈ T n
h . In case we allow

different polynomial degrees of the finite element spaces in different timesteps, we assume a global in time upper
bound for that.

Given an approximation un−1
h,τ ∈Vn−1

h of Un−1 = U(., tn−1) we define Pnun−1
h,τ its projection or interpolation

onto Vn
h . For the moment we do not make any assumption on the operator Pn.

We introduce the continuous in space, piecewise affine in time approximation of the solution U(x, t) on the
time-slab Ω × In:

un(x, t) =
t− tn−1

tn− tn−1
unh,τ (x) +

tn−t
tn− tn−1

Pnun−1
h,τ (x), t∈In, x∈Ω, (2.5)

being un ∈ Vn
h × In and unh,τ , P

nun−1
h,τ ∈ Vn

h . Moreover, let us define

u(x, t) =
N∑
n=1

(
t− tn−1

tn− tn−1
unh,τ(x) +

tn−t
tn− tn−1

un−1
h,τ (x)

)
χ

In , x∈Ω. (2.6)

The approximation u is a continuous function in time on the whole time interval (0, T ) and in each time-slab is
a continuous transition from un−1

h,τ ∈ Vn−1
h to unh,τ ∈ Vn

h . We remark that for n = 1, . . . , N and ∀t∈In

u = un− tn−t
tn− tn−1

δun−1
h,τ , (2.7)

where δun−1
h,τ = Pnun−1

h,τ − un−1
h,τ .
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Then, we introduce the discretization based on the classical θ-scheme for the time integration:
Find unh,τ ∈Vn

h such that

(
∂ un

∂t
, vh

)
+θ

(
κ∇unh,τ ,∇vh

)
+(1 − θ)

(
κ∇Pnun−1

h,τ ,∇vh
)

= θ (ΠTh
fn, vh)+(1 − θ)

(
ΠTh

fn−1, vh
)
, ∀vh∈Vn

h , t ∈ In, n = 1, . . . , N. (2.8)

In the last scalar products of the previous equation we assume that f ∈ C0([0, T ]; L2(Ω)) and we set f r =
f(., tr) for r = n or n− 1. Moreover we introduce an arbitrary polynomial approximation ΠTh

f of the data f .

Remark 2.1. All the approximations of the solution U involved in the scheme (2.8) are defined on the mesh
of the current timestep T n

h and not on the two meshes T n
h and T n−1

h as in [20].

3. A residual-based A POSTERIORI error estimator

In this section we derive a residual-based error estimator for the fully discretized model problem following
the work in [5,17,20]. In particular, we shall derive global-in-space, local-in-time upper and lower bounds, as
well as global-in-space, global-in-time upper and lower bounds. In our estimates some terms depend on the
possible coarsening of the mesh from the previous timestep to the next one. Our target is to set up an estimator
bounding the error introduced by the coarsening of the mesh and the transition of the solution from the mesh
used in the (n− 1)th timestep and the mesh used in the nth timestep.

First, we introduce some notation which will be used for the construction of the estimator, more detail can
be found in [5].

3.1. Definitions and general results

For any K ∈ T n
h we denote by E(K) the set of its faces (edges if d = 2); we denote by Enh = ∪K∈T n

h
E(K)

the set of all faces of the partition T n
h . Moreover, we split Enh into the form Enh = Enh,Ω ∪Enh,∂Ω with Enh,Ω =

{E∈Enh : E �⊂∂Ω}, Enh,∂Ω = {E∈Enh : E⊂∂Ω}. For any face E ∈ Enh we define: ωnE =
⋃

{K′: E∈E(K′)}
K ′, and to

any face E ∈ Enh,Ω we associate an orthogonal unit vector nE and denote by [[ . ]]E the jump across E in the
direction nE . Let us denote by K̂ the reference element and by Ê the reference face as shown in Figure 1 on the
left for d = 2. Let λi, i = 0, . . . , d be the barycentric coordinates on the reference element, then the reference
element bubble function is b̂K̂ = (d+1)d+1λ0λ1 . . . λd, and the reference face bubble function is b̂Ê = 4x̂1(1− x̂1)
for d = 2 and b̂Ê = 27x̂1x̂2(1 − x̂1 − x̂2) for d = 3. FK : K̂ → K is the affine mapping from the reference
element to the element K ∈ T n

h [6,19]. Here we indicate with bnK = b̂K̂ ◦ F−1
K the element bubble function, that

does not depend on time on a fixed timestep.
Let us introduce the tools for defining a suitable set of orthogonal face cut of functions for triangles and

tetrahedra. Given any E ∈ Enh,Ω, let K� and K� the two elements of T n
h such that ωnE = K� ∪K�, let us

enumerate the vertices of K� and K� in such a way that the vertices of E are numbered first. Let K be
one of the elements K� and K�, assume that E has vertices a0, . . . , ad−1 and denote by ac be the barycentre
of the element K; let us partition K into the elements K0, K1, . . . ,Kd with Kd having E as a face (for the
2D case see Fig. 1, right). Let FE,K : K̂ → Kd be the invertible affine mapping that maps the reference
element K̂ onto the element Kd. Then we define the face bubble function bnE by patching the two bubble
functions: bnE,K� = b̂Ê ◦ F−1

E,K� , bnE,K� = b̂Ê ◦ F−1
E,K� , each one being not zero only on K�

d and K�
d, respectively.

We need to define the set �
ω
n

E = K�
d ∪K�

d that is the dashed area in Figure 2. For the boundary face E that
belongs to the element K only, we naturally identify bnE with bnE,K = b̂Ê ◦ F−1

E,K . With this definition of face
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Figure 1. The mapping FE,K : K̂ → K2.

Figure 2. The support of the function bnE .

bubble functions we have a set of orthogonal functions. This property is also true for the set of element bubble
functions.

Moreover, for the reference face Ê we define the extension operator P̂Ê : Pi(Ê) → Pi(K̂) which extends a
polynomial of degree i defined on the face Ê to a polynomial of the same degree defined on K̂ with constant
values along lines orthogonal to the face Ê. Then, we define the extension operator PE : Pi(E) → Pi(ωE) which
extends a polynomial of degree i defined on the face E to a continuous piecewise polynomial of the same degree
defined on ωnE by patching the two operators: PE|

K�
= FK� ◦ P̂Ê ◦ F−1

K�|
E

and PE|
K�

= FK� ◦ P̂Ê ◦ F−1
K�|

E
.

Thanks to the regularity hypothesis, there exist constants only depending on the quality of the partition such
that for each n = 1, . . . , N we have hnK � hnE , ∀E ∈ E(K).

Moreover, let us recall the following properties of the quasi-interpolation operator of Clément Ih : V → Vn
h ,

[7] in which the sets ω̃nK and ω̃nE are suitable patches of neighbouring adjacent elements to the considered
element K or an edge/face E.
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Lemma 3.1. Let K∈Th and E∈Eh be arbitrary. Then we have the following interpolation error estimates:

‖ v − Ihv ‖0,K ≤ ClR h
n
K ‖∇v ‖0,ω̃n

K
, ∀v ∈ H1( ω̃nK ), (3.1)

‖ v − Ihv ‖0,E ≤ ClE
√
hnE ‖∇v ‖0,ω̃n

E
, ∀v ∈ H1( ω̃nE ), (3.2)

the constants ClR and ClE depending only on the smallest angle in the partition.

Let us consider the space H1
0(Ω) equipped with the norm

‖ v ‖2
κ,1 =

∥∥√κ∇v ∥∥2

0
= κ ‖∇v ‖2

0

and denote by

‖F ‖κ,−1 = sup
v∈H1

0(Ω)

〈F , v〉
‖ v ‖κ,1

=
‖F ‖−1√

κ

the norm of the dual space H−1(Ω).
Let us define the error of our approximation un in the interval In as

en = un−U

and the error of our continuous in time approximation u as

e = u−U.

We remark the following relation between en and e derived from (2.7):

en = e+
tn−t

tn− tn−1
δun−1

h,τ , ∀t ∈ In . (3.3)

Definition 3.2. Let us define the residuals and inter-element jumps of our approximation un:

RnK(un) =
∂ un

∂t
−θ κ�unh,τ − (1−θ)κ�Pnun−1

h,τ − θΠTh
fn− (1−θ)ΠTh

fn−1

∣∣∣∣
K

,

RnΩ(u
n) =

∑
K∈T n

h

RnK(un), JnE(un) =

[[
θ κ

∂ unh,τ
∂nE

+ (1 − θ)κ
∂ Pnun−1

h,τ

∂nE

]]
E

·

Definition 3.3. Let us define the following local-in-space-and-time estimators:

(
ηnR,K

)2 = τn

⎛
⎝(hnK)2

∥∥∥∥ 1√
κ
RnK(un)

∥∥∥∥
2

0,K

+
1
2

∑
E∈E(K)∩En

h,Ω

hnE

∥∥∥∥ 1√
κ
JnE(un)

∥∥∥∥
2

0,E

⎞
⎠ ,

(
ηnτ,K

)2 = τn
∥∥∥√κ∇(

unh,τ −Pnun−1
h,τ

)∥∥∥2

0,K
.

Then, we define the following global-in-space-and-local-in-time estimators

(ηnR)2 =
∑
K∈T n

h

(
ηnR,K

)2
, (ηnτ )2 =

∑
K∈T n

h

(
ηnτ,K

)2
,

(
ηnf,θ,τn

)2 =
∫ tn

tn−1

∥∥ΠTh
f −θΠTh

fn−(1 − θ)ΠTh
fn−1

∥∥2

κ,−1
dt,

(
ηnf,ΠTh

)2

=
∫ tn

tn−1
‖ f − ΠTh

f ‖2
κ,−1dt,

(
ηnf

)2 =
(
ηnf,θ,τn

)2 +
(
ηnf,ΠTh

)2

.
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Finally, we define the following global-in-space-and-time estimators:

η2
R =

N∑
n=1

(ηnR)2, η2
τ =

N∑
n=1

(ηnτ )2, η2
f =

N∑
n=1

(
ηnf

)2
.

In the sequel we will derive upper and lower bounds for the error e involving the following norms:

||| e |||κ,In =

{∫ tn

tn−1

∥∥∥∥ ∂ e∂t
∥∥∥∥

2

κ,−1

dt+
∫ tn

tn−1
‖ e ‖2

κ,1dt

} 1
2

,

||| e |||κ,(0,T ) =

{
N∑
n=1

(∫ tn

tn−1

∥∥∥∥ ∂ e∂t
∥∥∥∥

2

κ,−1

dt+
∫ tn

tn−1
‖ e ‖2

κ,1dt

)} 1
2

.

Remark 3.4. Following considerations of [17,20], and numerical experiments of [5], we can say that ηnR is a space
error estimator related to the quality of the partition T n

h . When the mesh is suitably adapted, the quantity ηnτ
gives information on the error due to time discretization. Moreover, η[n]

f,ΠTh
gives information essentially on the

space-data-approximation error, and η[n]
f,θ,τn on time-data-approximation error.

Let us define tθ,n = θ tn +(1 − θ) tn−1, in the following we will use often the properties:

un− unh,τ =
t− tn

tn− tn−1

(
unh,τ −Pnun−1

h,τ

)
,

un−Pnun−1
h,τ =

t− tn−1

tn− tn−1

(
unh,τ −Pnun−1

h,τ

)
,

θ
(
un− unh,τ

)
+ (1 − θ)

(
un−Pnun−1

h,τ

)
=

t− tθ,n

tn− tn−1

(
unh,τ −Pnun−1

h,τ

)
. (3.4)

3.2. Global-in-space, global-in-time upper bound

The following theorem gives the final upper bound of the error:

Theorem 3.5. Under the assumptions on the continuous problem (2.4) and on the discrete formulation (2.8),
there exist constants C↑,tn

tn−1 for each n = 1, . . . , N , and C↑,T
0 maxn=1,...,N C

↑,tn
tn−1 independent of any meshsize,

timestep-length, problem-parameter, but depending on the quality of partitions T n
h such that the inequality

9 ‖ e(., tm) ‖2
0 + ||| e |||2κ,[0,tm] ≤ 9

∥∥ e(., t0)∥∥2

0
+C↑,T

0

m∑
n=1

[
(ηnR)2 + (ηnτ )2

+
(
ηnf

)2 +
1
τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,−1
+ τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,1

]
, ∀m = 1, . . . , N (3.5)

holds true.
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The last two terms in (3.5) represent a coarsening error estimator, in Section 4 we shall provide a suitable
upper bound for the H−1 term. To prove this theorem we first start with the following proposition:

Proposition 3.6. Under the assumptions on the continuous problem (2.4) and on the discrete formulation (2.8),
for each n = 1, . . . , N , there exists a constant C̃t

n

tn−1 independent of any meshsize, timestep-length, problem-
parameter and depending only on the quality of the partition T n

h and on the parameter θ, such that

‖ e(., tm) ‖2
0 +

∫ tm

t0

∥∥√κ∇ e
∥∥2

0
dt ≤

∥∥ e(., t0)∥∥2

0

+
m∑
n=1

C̃t
n

tn−1

(
(ηnR)2 + (ηnτ )2 +

(
ηnf

)2 + τn
∥∥∥ δun−1

h,τ

∥∥∥2

κ,1
+

1
τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,−1

)
. (3.6)

Proof. Let us define

E0,m =
∫ tm

t0

[〈
∂ e

∂t
, e

〉
+ (κ∇ e,∇ e)

]
dt =

1
2
‖ e(., tm) ‖2

0 −
1
2

∥∥ e(., t0)∥∥2

0
+

∫ tm

t0

∥∥√κ∇ e
∥∥2

0
dt .

Moreover we write

E0,m =
m∑
n=1

En−1,n,

where

En−1,n =
∫ tn

tn−1

[(
∂ u

∂t
, e

)
+ (κ∇u,∇ e)

]
dt−

∫ tn

tn−1

[〈
∂U

∂t
, e

〉
+ (κ∇u,∇ e)

]
dt

=
∫ tn

tn−1

[(
∂ un

∂t
, e

)
+

(
δun−1

h,τ

τn
, e

)]
dt+

∫ tn

tn−1

[
(κ∇un,∇ e)− tn−t

tn− tn−1

(
κ∇ δun−1

h,τ , e
)
− (f, e)

]
dt

and we subtract to En−1,n the integral over In of the discrete formulation (2.8) with Iheh,τ as test function.
We get

En−1,n =
∫ tn

tn−1

[(
∂ un

∂t
, e− Iheh,τ

)
+

(
θκ∇unh,τ +(1 − θ)κ∇Pnun−1

h,τ ,∇ (e− Iheh,τ )
)

−
(
θΠTh

fn +(1 − θ)ΠTh
fn−1, e− Iheh,τ

) ]
dt

+
∫ tn

tn−1
θ
(
κ∇

(
un− unh,τ

)
,∇ e

)
dt+

∫ tn

tn−1
(1 − θ)

(
κ∇

(
un−Pnun−1

h,τ

)
,∇ e

)
dt

−
∫ tn

tn−1
(f − ΠTh

f, e)dt−
∫ tn

tn−1

(
ΠTh

f −θΠTh
fn−(1 − θ)ΠTh

fn−1, e
)
dt

+
∫ tn

tn−1

(
δun−1

h,τ

τn
, e

)
dt−

∫ tn

tn−1

tn−t
tn− tn−1

(
κ∇ δun−1

h,τ , e
)
dt .

After integration by parts of the term
(
θκ∇unh,τ +(1 − θ)κ∇Pnun−1

h,τ ,∇ (e− Iheh,τ)
)

we apply Cauchy-Schwarz’s
inequality, inequalities of Lemma 3.1 and Young’s inequality with a suitable choice of constants, noting that
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∫ tn
tn−1

(
tn −t

tn − tn−1

)2

dt = τn

3 and
∫ tn
tn−1

(
t−tθ,n

tn − tn−1

)2

dt =
(
θ2 − θ + 1

3

)
τn, summing over the time-slabs n = 1, . . . ,m,

we conclude that there exist constants ˜̃Ct
n

tn−1 such that

‖ e(., tm) ‖2
0 +

∫ tm

t0

∥∥√κ∇ e
∥∥2

0
dt ≤

∥∥ e(., t0) ∥∥2

0

+
m∑
n=1

˜̃Ct
n

tn−1

⎡
⎣τn

⎛
⎝ ∑
K∈T n

h

(hnK)2
∥∥∥∥ 1√

κ
RnK(un)

∥∥∥∥
2

0,K

+
∑

E∈En
h,Ω

hnE

∥∥∥∥ 1√
κ
JnE(un)

∥∥∥∥
2

0,K

+
∑
K∈T n

h

∥∥∥√κ∇(
unh,τ −Pnun−1

h,τ

) ∥∥∥2

0,K
+

∥∥∥ δun−1
h,τ

∥∥∥2

κ,1

⎞
⎠ +

1
τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,−1

+
∫ tn

tn−1

∥∥ΠTh
f −θΠTh

fn−(1 − θ)ΠTh
fn−1

∥∥2

κ,−1
dt+

∫ tn

tn−1
‖ f − ΠTh

f ‖2
κ,−1dt

]

and we get (3.6). �

The result given by Proposition 3.6 is an upper bound of the error measured in the L2(Ω)-norm at time tm

and in the L2((t0, tm); H1
0(Ω) )-norm. We also need an upper bound in the L2((t0, tm); H−1(Ω) )-norm for ∂ e /∂t.

Lemma 3.7. Under the assumptions on the continuous problem (2.4) and on the discrete formulation (2.8) for
each n = 1, . . . , N and for each t ∈

(
tn−1, tn

)
, we have

∥∥∥∥ ∂ e∂t
∥∥∥∥
κ,−1

≤ ClR

⎧⎨
⎩

∑
K∈T n

h

(hnK)2
∥∥∥∥ 1√

κ
RnK(un)

∥∥∥∥
2

0,K

⎫⎬
⎭

1
2

+ ClE

⎧⎨
⎩

∑
E∈En

h,Ω

hnE

∥∥∥∥ 1√
κ
JnE(un)

∥∥∥∥
2

0,E

⎫⎬
⎭

1
2

+ ‖ f − ΠTh
f ‖κ,−1 +

∥∥ΠTh
f −θΠTh

fn−(1 − θ)ΠTh
fn−1

∥∥
κ,−1

+
t− tθ,n

tn− tn−1

∥∥∥√κ∇(
unh,τ −Pnun−1

h,τ

)∥∥∥
0

+
∥∥√κ∇ e

∥∥
0
+

1
τn

∥∥∥ δun−1
h,τ

∥∥∥
κ,−1

+
tn−t

tn− tn−1

∥∥∥ δun−1
h,τ

∥∥∥
κ,1

. (3.7)

Proof. Let us notice that

〈
∂ e

∂t
, v

〉
+ (κ∇ e,∇v) =

(
∂ un

∂t
, v

)
+ (κ∇un,∇v)− (f, v)

+

(
δun−1

h,τ

τn
, v

)
− tn−t
tn− tn−1

(
κ∇ δun−1

h,τ ,∇v
)

=
(
∂ un

∂t
, v

)
+

(
κ∇

(
θ unh,τ +(1 − θ)Pnun−1

h,τ

)
,∇v

)
−

(
θΠTh

fn+(1 − θ)ΠTh
fn−1, v

)

+
t− tθ,n

tn− tn−1

(
κ∇

(
unh,τ −Pnun−1

h,τ

)
,∇v

)
−

(
ΠTh

f −θΠTh
fn−(1 − θ)ΠTh

fn−1, v
)

− (f − ΠTh
f, v) +

(
δun−1

h,τ

τn
, v

)
− tn−t
tn− tn−1

(
κ∇ δun−1

h,τ ,∇v
)
.
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Moreover, using (2.8) with vh = Ihv, v ∈ H1
0(Ω), applying Cauchy-Schwarz’s and Hölder inequalities and

Lemma 3.1 we get

∥∥∥∥ ∂ e∂t
∥∥∥∥
κ,−1

≤ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

ClR

⎧⎨
⎩

∑
K∈T n

h

(hnK)2
∥∥∥∥ 1√

κ
RnK(un)

∥∥∥∥
2

0,K

⎫⎬
⎭

1
2
⎧⎨
⎩

∑
K∈T n

h

∥∥√κ∇v ∥∥2

0,ωn
K

⎫⎬
⎭

1
2

+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

ClE

⎧⎨
⎩

∑
K∈T n

h

hnE

∥∥∥∥ 1√
κ
JnE(un)

∥∥∥∥
2

0,E

⎫⎬
⎭

1
2
⎧⎨
⎩

∑
K∈T n

h

∥∥√κ∇v ∥∥2

0,ωn
E

⎫⎬
⎭

1
2

+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

t− tθ,n

tn− tn−1

(
κ∇

(
unh,τ −Pnun−1

h,τ

)
,∇v

)

+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

(
ΠTh

f −θΠTh
fn−(1 − θ)ΠTh

fn−1, v
)
+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

(f − ΠTh
f, v)

+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

(κ∇ en,∇v)+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

(
δun−1

h,τ

τn
, v

)
+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

tn−t
tn− tn−1

(
κ∇ δun−1

h,τ ,∇v
)

and then we easily get (3.7). �

Proposition 3.8. Under the assumptions on the continuous problem (2.4) and on the discrete formulation (2.8),
for each n = 1, . . . , N , there exists a constant C independent of any meshsize, timestep-length, problem-
parameter such that

∫ tn
tn−1

∥∥ ∂ e
∂t

∥∥2

κ,−1
dt ≤ C

[
(ηnR)2 +

(
ηnf

)2 +
(
θ2 − θ +

1
3

)
(ηnτ )2

+
1
τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,−1
+
τn

3

∥∥∥ δun−1
h,τ

∥∥∥2

κ,1

]
+ 8

∫ tn

tn−1

∥∥√κ∇ en
∥∥2

0
dt . (3.8)

Proof. Applying Young inequality to (3.7) and integrating in time on the n-th time interval we get (3.8). �

Theorem 3.5 is proved by obtaining (3.5) from equations (3.6) and (3.8).

3.3. Lower bound for the error e

We prove that the terms (ηnR)2 and (ηnτ )2 bound from below the error e between the solution of the discretized
problem and the exact solution of the continuous variational formulation.

Theorem 3.9. Under the assumptions on the continuous problem (2.4) and on the discrete formulation (2.8),
there exist constants Ct

n

↓,tn−1 , n = 1, . . . , N , and CT↓,0 = maxn=1,...,N C
tn

↓,tn−1 independent of any meshsize,
timestep-length, problem-parameter, but depending on the parameter θ and on the quality of the partitions T n

h

such that the inequalities

(ηnR)2 + (ηnτ )2 ≤ Ct
n

↓,tn−1

[
||| e |||2κ,In +

(
ηnf

)2 +
1
τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,−1
+ τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,1

]
(3.9)



SKIPPING TRANSITION CONDITIONS 465

and for each m = 1, . . . , N

m∑
n=1

(ηnR)2 +
m∑
n=1

(ηnτ )2 ≤ CT↓,0

[
||| e |||2κ,[0,tm] +

m∑
n=1

(
ηnf

)2 +
m∑
n=1

1
τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,−1
+

m∑
n=1

τn
∥∥∥ δun−1

h,τ

∥∥∥2

κ,1

]
(3.10)

hold true.

To prove this theorem we consider separately the contributions of the equation residual, the inter-element
jumps and the time error estimator. Then, proceeding as in [5,20], we collect them to get Theorem 3.9.

3.3.1. Equation residual

Here we show how the residual of the equation can bound the error from below on the time interval In.
For any element K∈T n

h , let us define the following function in Ω

wnR,K(x) =

⎧⎨
⎩(hnK)2

1√
κ
RnK(un) bnK(x), if x ∈ K,

0, if x �∈ K,

wnR,Ω =
∑
K∈T n

h

wnR,K .

In what follows we will use the property supp wnR,K ⊆ K.

Lemma 3.10. There exist constants CR and C∗
R independent of any meshsize, timestep-length and problem-

parameter such that

(hnK)2
∥∥∥∥ 1√

κ
RnK(un)

∥∥∥∥
2

0,K

≤ CR

(
1√
κ
RnK(un), wnR,K

)
K

, (3.11)

∥∥wnR,K ∥∥
0,K

≤ (hnK)2
∥∥∥∥ 1√

κ
RnK(un)

∥∥∥∥
0,K

, (3.12)

∥∥∇wnR,K
∥∥

0,K
≤ C∗

R

1
hnK

∥∥wnR,K ∥∥
0,K

. (3.13)

Proof. These results are obtained exploiting the properties of bubble functions and the finite dimensionality of
the residual function [19]. The constants CR and C∗

R depend on the maximal polynomial degree of the finite
element spaces. �

Proposition 3.11. Under the assumptions on the continuous problem (2.4) and on the discrete formula-
tion (2.8), on each time interval

(
tn−1, tn

)
, ∀α ≥ 0, we have

{∑
K∈T n

h
(hnK)2

∥∥∥ 1√
κ
RnK(un)

∥∥∥2

0,K
τn

} 1
2

≤ CRC
∗
R

[
2
α+ 1√
2α+ 1

{
||| e |||2κ,In +

(
ηnf

)2
} 1

2

+
∣∣∣∣θ − α+ 1

α+ 2

∣∣∣∣ ηnτ +
√
τn

α+ 2

∥∥∥ δun−1
h,τ

∥∥∥
κ,1

+
1√
τn

∥∥∥ δun−1
h,τ

∥∥∥
κ,−1

]
. (3.14)
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Proof. In the following we introduce an arbitrary function of time bn(t) ≥ 0, ∀t ∈ In. We start by subtracting
to

(
1√
κ
RnΩ(u

n), wnR,Ω
)

the continuous variational formulation (2.4) tested against wnR,Ω /
√
κ and integrating on

the time interval In the result times bn:

∫ tn

tn−1

∑
K∈T n

h

(
1√
κ
RnΩ(u

n), wnR,K

)
K

bndt =
∫ tn

tn−1

〈
1√
κ

∂ en

∂t
, wnR,Ω

〉
bndt

−
∫ tn

tn−1

(
θ
√
κ∇

(
un− unh,τ

)
+ (1 − θ)

√
κ∇

(
un−Pnun−1

h,τ

)
,∇wnR,Ω

)
bndt

+
∫ tn

tn−1

(√
κ∇ en,∇wnR,Ω

)
bndt+

∫ tn

tn−1

(
1√
κ

(f − ΠTh
f) , wnR,Ω

)
bndt

+
∫ tn

tn−1

(
1√
κ

(
ΠTh

f −θΠTh
fn−(1 − θ)ΠTh

fn−1
)
, wnR,Ω

)
bndt .

Now we use equation (3.3) to link the error en to the error e and δun−1
h,τ .

Then, we apply Cauchy-Schwarz’s and Hölder inequality, inequalities (3.11)–(3.13). Then we define the
function bn as in [20]

bn = (α+ 1)
(
t− tn−1

tn− tn−1

)α
α ≥ 0 (3.15)

and we proceed as in [5,20] to get (3.14). �

3.3.2. Inter-element jumps

Now we consider the faces E ∈ Enh,Ω and we show how the jumps JnE(un) can bound the error from below.
Let us define

wnJ,E(x) =

⎧⎨
⎩h

n
E PE

(
1√
κ
JnE(un)

)
bnE(x), if x ∈ �

ω
n

E ,

0, if x �∈ �
ω
n

E ,

wnJ,Ω =
∑

E∈En
h,Ω

wnJ,E .

We remark that wnJ,Ω vanishes on the faces/edges of the elements K ′ ∈ T
hn ,

�
ω

n inside the elements K ∈ T n
h .

In what follows we will use the orthogonality of the face bubble functions.

Lemma 3.12. There exist constants CE and C∗
E independent of any meshsize, timestep-length and problem-

parameter such that

hnE

∥∥∥∥ 1√
κ
JnE(un)

∥∥∥∥
2

0,E

≤ CE

(
1√
κ
JnE(un), wnJ,E

)
E

, (3.16)

∥∥wnJ,E ∥∥
0,

�
ω

n

E

≤
√
hnE h

n
E

∥∥∥∥ 1√
κ
JnE(un)

∥∥∥∥
0,E

, (3.17)

∥∥∇wnJ,E
∥∥

0,
�
ω

n

E

≤ C∗
E

1
hnE

∥∥wnJ,E ∥∥
0,

�
ω

n

E

. (3.18)

Proof. The previous results are derived exploiting the properties of bubble functions and inverse inequalities for
the jump functions. The constants CE and C∗

E depend on the maximal polynomial degree of the finite element
spaces. �
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Proposition 3.13. Under the assumptions on the continuous problem (2.4) and on the discrete formula-
tion (2.8), on each time interval In we have

⎧⎨
⎩

∑
E∈En

h,Ω

hnE

∥∥∥∥ 1√
κ
JnE(un)

∥∥∥∥
2

0,E

τn

⎫⎬
⎭

1
2

≤ CE (C∗
E + CRC

∗
R)

[
2
α+ 1√
2α+ 1

{
||| e |||2κ,In +

(
ηnf

)2
} 1

2

+
∣∣∣∣θ − α+ 1

α+ 2

∣∣∣∣ ηnτ +
√
τn

α+ 2

∥∥∥ δun−1
h,τ

∥∥∥
κ,1

+
1√
τn

∥∥∥ δun−1
h,τ

∥∥∥
κ,−1

]
. (3.19)

Proof. We start by integrating
(
JnE(un) /

√
κ,wnJ,E

)
against the arbitrary bubble function bn(t). We introduce

the continuous variational formulation (2.4) tested against wnJ,E /
√
κ.

∫ tn

tn−1

∑
E∈En

h,Ω

(
1√
κ
JnE(un), wnJ,E

)
E

bndt

=
∫ tn

tn−1

∑
E∈En

h,Ω

∑
K′∈�

ω
n

E

∫
K′

∇ ·
[

1√
κ

(
θκ∇unh,τ +(1 − θ)κ∇Pnun−1

h,τ

)
wnJ,Ω

]
dΩ bndt

=
∫ tn

tn−1

〈
1√
κ

∂ en

∂t
, wnJ,Ω

〉
bndt+

∫ tn

tn−1

(
κ√
κ
∇ en,∇wnJ,Ω

)
bndt+

∫ tn

tn−1

(
1√
κ

(f − ΠTh
f) , wnJ,Ω

)
bndt

+
∫ tn

tn−1

(
1√
κ

(
ΠTh

f −θ fn−(1 − θ) fn−1
)
, wnJ,Ω

)
bndt−

∫ tn

tn−1

∑
E∈En

h,Ω

∑
K′∈�

ω
n

E

(
1√
κ
RnK(un), wnJ,Ω

)
K′
bndt

−
∫ tn

tn−1

t− tθ,n

tn− tn−1

(√
κ∇

(
un,nh,τ − un,n−1

h,τ

)
,∇wnJ,Ω

)
bndt .

We apply Cauchy-Schwarz’s inequality and (3.3). Then we apply Hölder’s inequality, inequalities (3.17), (3.18),
definition (3.15) of bn, inequalities (3.16), (3.14) and regularity hypotheses to get (3.19). �

3.3.3. Time discretization estimator

Now we consider the elements K ∈ T n
h and we show how the norm

∥∥∥√κ∇(
unh,τ −Pnun−1

h,τ

) ∥∥∥
0

can bound
the error from below. Let us define

wnτ,Ω =
t− tθ,n

tn− tn−1

(
unh,τ −Pnun−1

h,τ

)
.

Proposition 3.14. Under the assumptions on the continuous problem (2.4) and on the discrete formula-
tion (2.8), on each time interval In the following inequality

ηnτ ≤ 2
√

3ClE

⎧⎨
⎩τn

∑
E∈En

h,Ω

hnE

∥∥∥∥ 1√
κ
JnE(un)

∥∥∥∥
2

0,E

⎫⎬
⎭

1
2

+ 2
√

3ClR

⎧⎨
⎩τn

∑
K∈T n

h

hnK
2

∥∥∥∥ 1√
κ
RnK(un)

∥∥∥∥
2

0,K

⎫⎬
⎭

1
2

+ 4
√

3
{
||| e |||2κ,In +

(
ηnf

)2
} 1

2
+ 2

√
3
(

1√
τn

∥∥∥ δun−1
h,τ

∥∥∥
κ,−1

+
√
τn√
3

∥∥∥ δun−1
h,τ

∥∥∥
κ,1

)
(3.20)

holds true.
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Proof. In the proof we use the relation (3.4) and

∫ tn

tn−1

〈
∇ · (κ∇u) , wnτ,Ω

〉
dt = −

∫ tn

tn−1

(
κ∇u,∇wnτ,Ω

)
dt .

Then we write

(
θ2 − θ +

1
3

)
τn

∥∥∥√κ∇(
unh,τ −Pnun−1

h,τ

)∥∥∥2

0
=

∫ tn

tn−1

t− tθ,n

tn− tn−1

(
κ∇

(
unh,τ −Pnun−1

h,τ

)
,∇wnτ,Ω

)
dt

= −
∫ tn

tn−1

∑
E∈En

h,Ω

(
JnE(un), γ[n]

E

(
wnτ,Ω

))
E

dt−
∫ tn

tn−1

∑
K∈T n

h

(
RnK(un), wnτ,Ω

)
K

dt−
∫ tn

tn−1

〈
∂ en

∂t
, wnτ,Ω

〉
dt

+
∫ tn

tn−1

(
κ∇ en,∇wnτ,Ω

)
dt−

∫ tn

tn−1

(
f − ΠTh

f, wnτ,Ω
)
dt−

∫ tn

tn−1

(
ΠTh

f −θΠTh
fn−(1 − θ)ΠTh

fn−1, wnτ,Ω
)
dt .

Now we observe that the discrete equation (2.8) can be written as

∑
K∈T n

h

(RnK(un), vh)K +
∑

E∈En
h,Ω

(
JnE(un), γ[n]

E
(vh)

)
E

= 0,

that we use with the test function vh = Ih(wnτ,Ω). Using (3.3), applying Clément quasi-interpolation inequalities
of Lemma 3.1 and Hölder inequality we derive (3.20). �

3.3.4. Final lower bounds

Now we collect the results of Propositions 3.11, 3.13 and 3.14 to get a lower bound for the error in terms
of ηnτ . Then we use this result to derive a lower bound for the same quantity with respect to ηnR.

Proposition 3.15. Under the assumptions on the continuous problem (2.4) and on the discrete formula-
tion (2.8), on each time interval In there exist constants c̃t

n

tn−1 and ˜̃ct
n

tn−1 independent of any meshsize, timestep-
length and problem-parameter, but depending on the quality of the mesh T n

h such that

ηnτ ≤ c̃t
n

tn−1

[{
||| e |||2κ,In +

(
ηnf

)2
} 1

2
+

1√
τn

∥∥∥ δun−1
h,τ

∥∥∥
κ,−1

+
√
τn

∥∥∥√κ∇ δun−1
h,τ

∥∥∥
0

]
, (3.21)

ηnR ≤ ˜̃ct
n

tn−1

[{
||| e |||2κ,In +

(
ηnf

)2
} 1

2
+

1√
τn

∥∥∥ δun−1
h,τ

∥∥∥
κ,−1

+
√
τn

∥∥∥ δun−1
h,τ

∥∥∥
κ,1

]
. (3.22)

Proof. The proof follows from (3.14), (3.19) and (3.20) proceeding as in [5,20]. �

We finally obtain the lower bound stated by Theorem 3.9 by Propositions 3.15.

4. Computable bound for the coarsening error

In Theorems 3.5 and 3.9 we have obtained a global in time upper bound and a global in time lower bound,
respectively. The quantity

m∑
n=1

(
1
τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,−1
+ τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,1

)

is a global upper bound of the error due to the coarsening and its control is necessary to guarantee a reliable
control of global discretization error. In performing the computation in each time-slab we can apply a coarsening



SKIPPING TRANSITION CONDITIONS 469

of the mesh used in the previous time-slab and project the solution at the end of the previous time-slab on the
new mesh for computing the solution at the end of the current time-slab.

To each coarsening applied from one time-slab to the next one is associated an error that we bound by

1
τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,−1
+ τn

∥∥∥ δun−1
h,τ

∥∥∥2

κ,1

and, if it is large, we can perform only a partial coarsening to keep it small, i.e., we do not coarsen some
element marked for coarsening. We will see how to choose those elements for which skipping the coarsening is
recommended. An efficient computation of the two norms

∥∥∥ δun−1
h,τ

∥∥∥
κ,−1

and
∥∥∥ δun−1

h,τ

∥∥∥
κ,1

is a key ingredient for

an efficient adaptive algorithm.
The H1 norm can be easily computed, while the H−1 term is well defined, but, in general, not easily com-

putable. To easily get a reliable bound for this term we need to reduce the generality in the definition of
the approximation Pnun−1

h,τ kept up to here and define the approximation operator Pn as a quasi-interpolation
operator as in [18].

We give details on the computation of
∥∥∥ δun−1

h,τ

∥∥∥2

κ,−1
for the case of P1 finite elements and constant coefficients

following results given in [18,21]. These results can be generalized to d = 3 and to higher order finite elements
having dual spaces with the same properties as the ones used here; examples of constructions of these dual spaces
can be found in [13,14]. To deal with discontinuous coefficients a modification of these operators could be applied
following [16] in the definition of a local projector on a suitable Lipschitz subset of triangles neighboring a vertex.

Let us temporarily drop the superscript denoting the timestep and let Nh be the set of the internal nodes
of the triangulation Th and let {φi}i=1,...,dimNh

be the set of the standard nodal hat basis functions associated
with a given triangulation Th. In [18] local dual basis functions have been used to define a projection operator
satisfying stability and approximation properties. Let us denote by {ψi}i=1,...,dimNh

these dual basis functions
satisfying the following properties:

(1) supp φi = supp ψi, i = 1, . . . ,dimNh;
(2) ψi ∈ L2(Ω);

(3)
dimNh∑
i=1

ψi = 1;

(4)
∫
Ω
ψiφj = δi,j

∫
Ω
φi.

For example, for the P1 finite elements in 2D these dual basis functions can be defined as follows: on the
reference element K̂: ψ̂i = 3φ̂i −

∑3
j=1,j 	=i φ̂j , i = 1, . . . , 3; on the domain Ω as ψi|K = ψ̂i ◦ F−1

K , ∀K ∈ ωi and
ψi = 0 elsewhere, where ωi = {K ∈ Th : xi ∈ K}.

Let us define Vh = span{φi : i = 1, . . . ,dimNh} ⊂ H1
0(Ω) the standard conforming finite element space and

Wh = span{ψi : i = 1, . . . ,dimNh} ⊂ L2(Ω) �⊂ H1(Ω) the dual space. Moreover, ∀u ∈ L2(Ω) let us define the
following projection operators Ph,1 : L2(Ω) → Vh and Qh,1 : L2(Ω) → Wh by

(Ph,1 u,wh) = (u,wh), ∀wh ∈ Wh, (Qh,1 u, vh) = (u, vh), ∀vh ∈ Vh .

These operators are locally defined and satisfy the following properties whose proofs can be found in or
follows from [18,21]:

– Ph,1 vh = vh, ∀vh ∈ Vh and Qh,1wh = wh, ∀wh ∈ Wh;
– (Ph,1 v, w) = (Ph,1 v,Qh,1w) = (v,Qh,1 w), ∀v, w ∈ L2(Ω),

(v − Ph,1 v, w) = (v − Ph,1 v, w −Qh,1 w) = (v, w −Qh,1w), ∀v, w ∈ L2(Ω);
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– L2 stability: let us define ωK =
⋃

{K′∈Th: K′∩K 	=∅}K
′

‖Ph,1 v ‖2
0,T = ‖ v ‖2

0,ωK
, ∀v ∈ L2(ωK ), ‖Qh,1 w ‖2

0,T = ‖w ‖2
0,ωK

, ∀w ∈ L2(ωK );

– Optimal approximation properties:

‖u− Ph,1 u ‖0,K � hK |u |1,ωK
, ‖u−Qh,1 u ‖0,K � hT |u |1,ωK

, ∀u ∈ H1(ωK ) .

Let us define CT n
h

as the union of all the triangles K ∈ T n
h contained in the support of dual basis functions ψn

with a non-empty intersection with regions in which T n−1
h differs from T n

h due to a coarsening.
Let us reintroduce the superscript denoting the timestep, if we define Pn as Pnh,1 and the value in the node i

of the projected solution Pnun−1
h,τ as

(
Pnun−1

h,τ

)
i
=

∑
K∈CT n

h

∫
K

un−1
h,τ ψni dΩ

∑
K∈CT n

h

∫
K

φni dΩ

we have

∥∥∥ δun−1
h,τ

∥∥∥
κ,−1

= sup
v∈H1

0(Ω)

(
Pnh,1 u

n−1
h,τ − un−1

h,τ , v
)

‖ v ‖1,κ

= sup
v∈H1

0(Ω)

(
un−1
h,τ −Pnh,1 u

n−1
h,τ , v −Qnh,1 v

)
‖ v ‖1,κ

≤

∑
K∈CT n

h

∥∥∥un−1
h,τ −Pnh,1 u

n−1
h,τ

∥∥∥
0,K

∥∥∥ v −Qnh,1 v
∥∥∥

0,K

‖ v ‖1,κ

�

∑
T∈CT n

h

(hnK)2
∣∣∣un−1

h,τ

∣∣∣
1,ωK

| v |1,ωK

‖ v ‖1,κ

�

⎧⎨
⎩

∑
K∈CT n

h

(hnK)4

κ

∥∥∥un−1
h,τ

∥∥∥2

K,1

⎫⎬
⎭

1
2

.

In the previous estimate we have exploited the locality property of the projector operator Pnh,1. Exploiting
again this property we can easily check which are the elements of T n−1

h coarsened that cause a large coarsening
error and we can chose to skip the coarsening of these elements if the coarsening error is too large.

5. Numerical tests

In this section we describe a simple adaptive algorithm and some numerical results obtained applying a
coarsening error control and a suitable projection of the solution at the end of the previous timestep on the
mesh used for the current timestep. The obtained results of our strategy will be compared with the results
obtained by a similar code, based on the same marking strategy and similar a posteriori estimates and a common
refinement approach [5,20], so that we do not have any coarsening error thanks to the use of the full solution of
the previous timestep.

Our code is based on the library LibMesh [12] that allows the presence of hanging nodes, for this reason we
need to derive suitable dual basis functions for all the possible constrained primal basis functions. Within the
library [12] refinement is performed by splitting an element in four similar children elements; coarsening, when
possible, consists of removing the children and set as active the parent element. Neighbouring elements can
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differ at most for one level (level one condition). Every element marked for refinement is refined, whereas not
all the elements marked for coarsening are really coarsened.

In the Appendix we give some details on the construction of primal and dual constrained basis functions.

5.1. Adaptive algorithm

Our adaptive approach is based on equidistribution and on the splitting between space and time error
estimators described in Remark 3.4. In our coding of the proposed approach to coarsening, we always use a
single mesh. We use the described projection for the (degrees of freedom) dofs contained in the set CT n

h
, whereas

we simply interpolate all the other dofs. If to perform a timestep we need to change the mesh several times,
we always project/interpolate on the new (current) mesh the old solution obtained on the previous mesh. With
this simplifying choice the norm of the coarsening error is bounded (by triangle inequality) by the projection
error of each iteration.

For all our computations we start from an initial very coarse mesh and we apply an initial uniform refinement
four times. The obtained mesh is the initial mesh for adaptivity of the first timestep that can be refined and
coarsened (initially at most of four levels) by the adaptive algorithm.

5.1.1. Marking strategy

We choose a space tolerance TOLΩ and a time tolerance TOLIn for each timestep.
Then, we initially mark for refining or coarsening each triangle K∈T n

h according to the following rules:

– if

(1 + α)2 TOL2
Ω

NK
|||u |||2κ,In <

(
ηnR,K

)2 +

(
ηnf,ΠTh

)2

NK

mark for refinement;
– else if (

ηnR,K
)2
<

(1 − α)2 TOL2
Ω

NK
|||u |||2κ,In

mark for coarsening.

After this marking stage, we set a variable buff = 0 and we perform a loop over the active elements. For
each element marked for coarsening we check if the parent element was already visited, if not, if all the children
are active and none of the neighbouring elements of the parent is marked for refinement, we count its children
not marked for coarsening. If only one of its children is not marked for coarsening and

(
ηnR,K

)2 for that children

is less than buff, we set buff = buff−
(
ηnR,K

)2 and we mark for coarsening that element. If we can not mark
for coarsening this element or if the children not marked for coarsening are more than one, we unmark for
coarsening all the children marked for coarsening and add their

(
ηnR,K

)2 to buff.
For the code based on the coarsening error control, we choose a tolerance TOLcoarse and after the stage

previously described we check if an upper bound for the estimated coarsening error is less than the coarsening
tolerance. Let us define the estimated coarsening error and its upper bound as

(
ηnδ,K

)2 =
(hnK)4

τn κ

∥∥∥un−1
h,τ

∥∥∥2

K,1
+ τn κ

∥∥∥ δun−1
h,τ

∥∥∥2

K,1
,

(
ηnδ,K

)2 =

(
(hnK)4

τn κ
+ τn κ

)∥∥∥un−1
h,τ

∥∥∥2

K,1
.

Every time we apply a coarsening, i.e., we remove the four children Kc and make active their parent K we

compute the norms
∥∥∥ δun−1

h,τ

∥∥∥2

K,1
and

∑
K′∈Cn

Th,K

∥∥∥un−1
h,τ

∥∥∥2

K′,1
, where CnTh,K

is the set of the neighbouring elements

contained in the support of a dual basis function ψn of the parent K. If the children were not already coarsened
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we set

(
errcnK,1

)2 =
∥∥∥ δun−1

h,τ

∥∥∥2

K,1
,

(
errcnK,−1

)2 =
∑

K′∈Cn
Th,K

∥∥∥un−1
h,τ

∥∥∥2

K′,1
,

else, if the children were obtained by coarsening in a previous adaptive iteration of the current timestep

(
errcnK,1

)2 =
∥∥∥ δun−1

h,τ

∥∥∥2

K,1
+

3∑
c=0

(
errcnKc,1

)2
,

(
errcnK,−1

)2 =
∑

K′∈Cn
Th,K

∥∥∥un−1
h,τ

∥∥∥2

K′,1
+

3∑
c=0

(
errcnKc,1

)2
.

If the four children Kc of a parent K are marked for coarsening and

3∑
c=0

(
τnκ

(
errcnKc,1

)2 +
(hnK)4

τn κ

(
errcnKc,−1

)2

)
+

(
ηnδ,K

)2 ≤ TOL2
coarse

NK
|||u |||2κ,In (5.1)

we leave the markers unchanged else we unmark for coarsening the children. In (5.1), the sum in the left-hand-
side is an upper bound of the coarsening error of the previous coarsening performed in the same timestep. The
last term in the left-hand-side is an estimate of the coarsening error we are going to introduce when coarsening
the children of K. If we really perform this coarsening, this upper bound of the coarsening error will be replaced
by a sharper upper bound included in

(
errcnK,1

)2 and
(
errcnK,−1

)2. If we refine an element previously obtained

by coarsening, we transfer to each of its children the coarsening error
(
errcnK,1

)2
/4 and

(
errcnK,−1

)2
/4.

We mark for enlarging or shortening the timestep-length according to the following rules:
– if

(1 + α)2 TOL2
In |||u |||2κ,In < (ηnτ )2

then τn :=
τn

ρ
;

– else if
(ηnτ )2 < (1 − α)2 TOL2

In |||u |||2κ,In

then τn :=
τn

ρ
,

where

ρ = min

{
(ηnτ )2

TOL2
In |||u |||2κ,In

, 2

}
.

We repeat at most ten times the same timestep performing the mesh changes and the timestep-length corrections
required by the previous marking strategy if any of the following condition occurs:

– (1 + α)2 TOL2
Ω |||u |||2κ,In < (ηnR)2;

– the marked elements for coarsening are more than %C · NK , where %C is a given percentage of the
active elements;

– the marked elements for refinement are more than %R · NK , where %R is a given percentage of the
active elements;

– (ηnR)2 < (1 − α)2 TOL2
Ω |||u |||2κ,In ;

– (1 + α)2 TOL2
In |||u |||2κ,In < (ηnτ )2.
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Figure 3. First test problem, α = 0.25: adapted mesh at t = 0.2.

If none of the previous situations occurs, we keep the same mesh and computed solution and we possibly
enlarge the timestep-length for the next timestep according to the previous marking strategy for enlarging the
timestep-length. In all the simulations we have neglected the data approximation errors.

5.2. First test problem

The problem (2.1)–(2.3) is solved in the domain Ω = (−1, 1) × (0, 1) and in the time interval (0, T ) = (0, 1)
with κ = 1. This test problem was already considered in [5] with discontinuous κ. The initial condition U0(x, y)
and the forcing function f(x, y, t) are defined such that the solution is

u(x, y, t) =

{
u1(x, y, t), if x ≥ 0, y ≥ 0,
u2(x, y, t), if x < 0, y ≥ 0,

with

u1(x, y, t) =500x2(1 − x)2y2 (1 − y)2e−eR3−R1 t
(
(x− 1

2−
1
4 cos(2π(1+sin(2πR1 t))))2

+(y− 1
2−

1
4 sin(2π(1+sin(2πR1 t))))2

)4

× 1 − e−R4

(
(x− 1

2 )
2
+(y− 1

2 )
2
)
x(1−x)y(1−y)

1 + ln (1 + R1 t)
+

((
−R5

R1
− sin (2πt)

)
x2 +

R5x

R1
+ sin (2πt)

)
y (1 − y)

and

u2(x, y, t) =
((

R5

R2
− sin (2πt)

)
x2 +

R5x

R2
+ sin (2πt)

)
y (1 − y) .

The solution and its derivatives on the edge x = 0, 0 ≤ y ≤ 1 are continuous. Moreover, the function u in
x > 0, y > 0 includes a small circular Gaussian peak whose center moves on a circle of radius 0.25 and centre
(0.5, 0.5). The parameters Ri are: R1 = R2 = 1 (R1 represent the coefficient κ in the square x ≥ 0 and R2 is κ
in the square x < 0), R3 = 18, R4 = 100, R5 = 10.

We have chosen TOLΩ = 0.35, TOLIn = 0.20, α = 0.25 and TOLcoarse = 0.5(TOLΩ + TOLIn) with a
maximum τn equal to 0.01, %C = 0.1 and %R = 0.4. In Figure 3 we report the mesh accepted by the adaptive
algorithm with control of coarsening error at the time t = 0.2 and in Figure 4 the corresponding computed
solution.

In Figure 5 we compare the number of active degrees of freedom of the meshes used for the simulation with
the proposed coarsening error approach described in this paper and with the approach that uses the common
refinement of the meshes T n

h and T n−1
h [5,20]. In Figure 6 we compare the timestep-lengths produced by the two
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Figure 4. First test problem, α = 0.25: computed solution at t = 0.2.
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Figure 5. First test problem, α = 0.25: comparison of required dofs.

adaptive algorithms with and without the coarsening error control, and in Figure 7 we compare the true error
||| e |||κ,In produced by the two algorithms. The coarsening control approach requires slightly more dofs up to
t ≈ 0.1, then uses less dofs up to t ≈ 0.7. After this time the two approaches have similar requirements in terms
of dofs. Concerning the timestep-length τn the coarsening control approach is slightly more efficient usually
requiring comparable or larger τn.

In Figures 8–10 we report the same quantities corresponding to the same tolerances, but with α = 0.5. In
this case the coarsening control approach and the common refinement approach work in a slightly different way
on the mesh and the τn, producing comparable values of the true error.
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Figure 6. First test problem, α = 0.25: comparison of required τn.
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Figure 7. First test problem, α = 0.25: comparison of true errors ||| e |||κ,In .

Figures 11 and 12 compare the effectivity indices

e.i. =

√
(ηnR)2 + (ηnτ )2

||| e |||κ,In

of the two approaches and for the two simulations performed. We can see that the effectivity indices are
comparable and bounded between values 3 and 8. This property confirm the validity of the estimators and,
thanks the previous results, of the whole adaptive algorithms.



476 S. BERRONE

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

4

time

ac
tiv

e 
do

fs

 

 

Coarsening control
Common refinement

Figure 8. First test problem, α = 0.5: comparison of required dofs.
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Figure 9. First test problem, α = 0.5: comparison of required τn.

5.3. Second test problem

The problem (2.1)–(2.3) is solved in the domain Ω = (0, 1) × (0, 1) and in the time interval (0, T ) = (0, 1)
with κ = 1. The initial condition U0(x, y) and the forcing function f(x, y, t) are defined such that the solution is

u(x, y, t) = R5 x (1 − x) y (1 − y) + 2000 x2 (1 − x)2 y2 (1 − y)2

× e−e(R3−t)
(
(x− 1

2−
1
4 cos(2πt))2

+(y− 1
2−

1
4 sin(2πt))2

)4 (
1 − e−R4

(
(x− 1

2 )
2
+(y− 1

2 )
2
)
x(1−x)y(1−y)

)

× e−10 000 R2
2(t−0.1)2(t−0.5)2(t−0.9)2 .



SKIPPING TRANSITION CONDITIONS 477

0 0.2 0.4 0.6 0.8 1
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

time

er
ro

r

 

 

Coarsening control
Common refinement

Figure 10. First test problem α = 0.5: comparison of true errors ||| e |||κ,In .
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Figure 11. First test problem, α = 0.25: comparison of effectivity indices.

The solution is the superposition of a global bubble whose maximum value is controlled by R5 and a small
circular Gaussian peak as the one of Section 5.2 running around the centre of the domain. This peak is usually
dumped to zero except small time intervals around times t = 0.1, t = 0.5 and t = 0.9. This test case aims at
investigating the performances of the two algorithms when the solution displays strongly different behaviours
in time evolution.

The parameters Ri are: R1 = 100, R2 = 2 (this parameter controls the size of the time windows in which
the Gaussian peak is not dumped), R3 = 18, R4 = 100, R5 = 2.

First, we have chosen TOLΩ = 0.4, TOLIn = 0.4, α = 0.2 and TOLcoarse = 0.5(TOLΩ + TOLIn) with a
maximal τn equal to 0.01, %C = 0.5 and %R = 0.4.
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Figure 12. First test problem, α = 0.5: comparison of effectivity indices.

Figure 13. Second test problem: adapted meshes at t = 0.1, 0.12, 0.17.

Figure 14. Second test problem: computed solutions at t = 0.1, 0.12, 0.17.
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Figure 15. Second test problem: computed meshes and solutions at t = 0.45, 0.48.
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Figure 16. Second test problem: comparison of required dofs.

Figure 13 displays the meshes produced by the adaptive algorithm during the first abrupt dumping of the
Gaussian peak. Figures 14 displays the solutions produced by the adaptive algorithm corresponding to the pre-
vious mesh. Figure 15 displays the meshes and the solutions produced by the adaptive algorithm during the
second abrupt growing of the Gaussian peak.

Figure 16 displays the number of dofs requested by the two algorithms and Figures 17 and 18 the corre-
sponding τn and true errors. Figure 19 report the two components of the bound of the coarsening error.

Figure 20 displays the dofs requested by the two compared algorithms, the corresponding τn and true errors
when TOLΩ = 0.2, TOLIn = 0.3 and α = 0.2.

6. Conclusions

In this paper we present a posteriori error estimates for the heat equation involving terms for the control of
a coarsening error due to a projection/interpolation of the solution at the end of the previous timestep on the
new adapted mesh produced to perform the current timestep. This approach aims at avoiding the introduction
of a common refinement of these two meshes, that can be very expensive in term of coding and computation to
be constructed and maintained at each adaptive iteration within the same timestep. In Section 5 we propose
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Figure 17. Second test problem: comparison of required τn.
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Figure 18. Second test problem: comparison of true errors ||| e |||κ,In .

a very simple adaptive algorithm based on this coarsening control that skips this common refinement mesh.
Although this approach introduces an error at each adaptive iteration, trough a suitable control of it, the true
error and the resources required by the adaptive algorithm are not larger than the error and the resources
required by an adaptive algorithm that exactly deals with the solution at the end of the previous timestep via
the common refinement mesh. Numerical computations have shown that we have a slight redistribution of the
mesh and timestep-length requirements without any remarkable effect on the true error. Both the adaptive
approaches perform very well on both the test problems considered, with different properties in term of mesh
and timestep-length adaptation.
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Figure 19. Second test problem: coarsening estimated errors.
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Figure 20. Second test problem, TOLΩ = 0.2, TOLIn = 0.3: comparison of active dofs, τn

and true errors ||| e |||κ,In .

A. Appendix

In this section we focus on 2D finite elements and give some details on the construction of primal and dual
constrained basis functions.

A.1. Constrained primal and dual basis functions

We consider linear finite elements, so the possible constrained degrees of freedom (dofs) are related to the
vertices of the triangle that are midpoints for the parent element. It is convenient to write the basis functions of
the constrained active children elements as suitable basis functions defined on the parent element. For example,
let us consider the parent reference element in Figure 21: if the dof in the node n3 is constrained, the solution
on the edge between the nodes n0-n1 has to be linear and the active children K0, K1 and K3 are constrained.
We can simply deal with this constraint defining suitable Lagrange linear basis functions on the parent element
associated to the nodes n0, n1, n2, n4, n5. We remark that, thanks to the level one condition we can always deal
with the constraints writing suitable basis functions on the parent element. If a two or more level mismatch



482 S. BERRONE

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

K1

K2

K3

K0

0

1

2

0

1

2

0

1

2

01

2

n1

n2 n5

n4

n0

n3

Figure 21. Parent reference linear element K̂ with its children.

was allowed, we would need to go from our active constrained element to its ancestor of degree equal to the
level of mismatch.

Let φ̂i be the primal basis function on the parent reference element K̂ associated to the node ni, and let ψ̂i
be the corresponding dual basis function. Furthermore, let ϕ̂j be the unconstrained primal basis functions of
the (active) children elements.

The constrained primal and dual basis functions are described as

φ̂i =
3∑
c=0

2∑
j=0

aφ̂i
(c, j)ϕ̂j ◦ F−1

K̂c,K̂
, ψ̂i =

3∑
c=0

2∑
j=0

aψ̂i
(c, j)ϕ̂j ◦ F−1

K̂c,K̂
, (A.1)

where the coefficients aφ̂i
(c, j) and aψ̂i

(c, j), c = 0, . . . , 3, j = 0, . . . , 2 are given in the sequel and differ according
to the number of constrained dofs.

A.1.1. One constrained dof on the parent element K̂

Let n3 be the constrained dof. The coefficients in (A.1) are given in the following matrices:

aφ̂0
=

⎡
⎢⎢⎣

1 1
2 0

1
2 0 0
0 0 0
1
2 0 0

⎤
⎥⎥⎦ aφ̂1

=

⎡
⎢⎢⎣

0 1
2 0

1
2 1 0
0 0 0
1
2 0 0

⎤
⎥⎥⎦ aφ̂4

=

⎡
⎢⎢⎣

0 0 0
0 0 1
0 0 0
0 1 0

⎤
⎥⎥⎦ aφ̂5

=

⎡
⎢⎢⎣

0 0 1
0 0 0
0 0 0
0 0 1

⎤
⎥⎥⎦

aψ̂0
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

103
26

25
26

−41
26

25
26

−53
26

11
26

0 0 0
25
26

11
26

−41
26

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
aψ̂1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−53
26

25
26

11
26

25
26

103
26

−41
26

0 0 0
25
26

−41
26

11
26

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
aψ̂4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

22
65

−6
13

−34
65

−6
13

−82
65

174
65

0 0 0
−6
13

174
65

−34
65

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
aψ̂5

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−82
65

−6
13

174
65

−6
13

22
65

−34
65

0 0 0
−6
13

−34
65

174
65

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case we choose to define the constrained basis functions on the parent reference element with support
restricted to the children K0∪K1∪K3 and to leave unchanged the basis functions on the element K2. With this
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choice, if the element K2 is refined we can use the same constrained reference basis functions on the element K2

that become the parent for the elements obtained by its refinement.

A.1.2. Two constrained dofs on the parent element K̂

Let n4 and n5 be the constrained dofs. The coefficients in (A.1) are given in the following matrices:

aφ̂0
=

⎡
⎢⎢⎣

1 0 1
2

0 0 0
1
2 0 0
0 0 1

2

⎤
⎥⎥⎦ aφ̂1

=

⎡
⎢⎢⎣

0 0 0
0 1 1

2
0 1

2 0
0 1

2 0

⎤
⎥⎥⎦ aφ̂2

=

⎡
⎢⎢⎣

0 0 1
2

0 0 1
2

1
2

1
2 1

0 1
2

1
2

⎤
⎥⎥⎦ aφ̂3

=

⎡
⎢⎢⎣

0 1 0
1 0 0
0 0 0
1 0 1

⎤
⎥⎥⎦

aψ̂0
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

85
24

−25
24

25
24

−25
24

25
24

−5
24

25
24

−5
24

−35
24

−25
24

−5
24

25
24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

aψ̂1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

25
24

−25
24

−5
24

−25
24

85
24

25
24

−5
24

25
24

−35
24

−25
24

25
24

−5
24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

aψ̂4
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−7
3

1
3

2
3

1
3

−7
3

2
3

2
3

2
3

11
3

1
3

2
3

2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

aψ̂5
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5
4

11
4

−1
2

11
4

−5
4

−1
2

−1
2

−1
2

1
4

11
4

−1
2

−1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case the support of the primal and dual constrained basis functions is the whole element K̂.

A.1.3. Tree constrained dofs on the parent element K̂

The constrained dofs are n3, n4 and n5, the primal and dual basis functions coincide with the unconstrained
basis functions on the parent element and can be defined by the following matrices:

aφ̂0
=

⎡
⎢⎢⎣

1 1
2

1
2

1
2 0 0
1
2 0 0
1
2 0 1

2

⎤
⎥⎥⎦ aφ̂1

=

⎡
⎢⎢⎣

0 1
2 0

1
2 1 1

2
0 1

2 0
1
2

1
2 0

⎤
⎥⎥⎦ aφ̂2

=

⎡
⎢⎢⎣

0 0 1
2

0 0 1
2

1
2

1
2 1

0 1
2

1
2

⎤
⎥⎥⎦

aψ̂0
=

⎡
⎢⎢⎣

3 1 1
1 −1 −1
1 −1 −1
1 −1 1

⎤
⎥⎥⎦ aψ̂1

=

⎡
⎢⎢⎣

−1 1 −1
1 3 1
−1 1 −1
1 1 −1

⎤
⎥⎥⎦ aψ̂2

=

⎡
⎢⎢⎣

−1 −1 1
−1 −1 1
1 1 3
−1 1 1

⎤
⎥⎥⎦ .
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