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SUMMARY. If the attenuation function of strain is expressed as a power law, the formalism of 

fractional calculus may be used to handle Eringen non-local elastic model. Aim of the present 

paper is to provide a mechanical interpretation to this non-local fractional elastic model by 

showing that it is equivalent to a discrete, point-spring model. A one-dimensional geometry is 

considered; static, kinematic and constitutive equations as well as the proper boundary conditions 

are derived and discussed. 

1 INTRODUCTION 

While classical calculus treats integrals and derivatives of integer order, fractional calculus is 

the branch of mathematics dealing with the generalization of integrals and derivatives to any order. 

Note that, although the term fractional is, by tradition, universally accepted to define the subject, 

the order of differentiation may be given by any real value, i.e. not only a rational number. 

The application of fractional calculus to applied sciences seems to be very attractive since, by 

varying the order of derivation, it is possible to describe the transition between completely 

different phenomena. In the last decades, many fractional differential equations have been 

proposed, solved and used to interpret experimental data that cannot be caught by usual 

differential models. They include relaxation equations, wave equations, diffusion equations [1,2]. 

For what concerns solid mechanics, most of the applications refer to rheological models, where 

the fractional derivative is taken with respect to the time variable (e.g. [3]). More recently, two 

research directions have been set that make use of fractional derivative with respect to the space 

variable. The former one [4] explores the connection between fractal sets and fractional calculus 

and applies the (local) fractional calculus formalism to address the problem of deformation and 

damage in solid mechanics. Fractal patterns often arise in heterogeneous materials and developing 

mathematical models able to catch the fractality of such phenomena is a matter of primary concern. 

The strength of such approach are the non-integer physical dimensions provided by the fractal 

geometry and fractional operators. This property has proven to be very effective in the description 

of the size-scale effects in solid mechanics. For a review, see [5]. 

The latter research direction aims to model non-local continua, i.e. solids characterized by non-

local interactions [6,7]. The novelty is that internal forces are described by fractional derivatives 

[8]. One of the most remarkable achievements of this approach is that, by exploiting the Marchaud 

definition of fractional derivative, the fractional operators have a clear mechanical interpretation, 

i.e. springs connecting non-adjacent points of the body. The related stiffness decays along with the 



distance among the material points. However, since only the integral part of the Marchaud 

derivative is retained in the equilibrium equation, the model developed by Di Paola and Zingales 

[8] does not coincide with the corresponding Eringen non-local fractional elastic model, whose 

mechanical interpretation is the subject of the present paper. 

2 FRACTIONAL INTEGRALS AND DERIVATIVES 

There are various definitions of fractional differintegral operators, not necessarily equivalent to 

each other. A complete list of these definitions can be found in the fractional calculus treatises, e.g. 

[9]. These definitions have different origins. The most frequently used definition of fractional 

integral of order β (β∈ℜ+
) is due to Riemann-Liouville and is a straightforward generalization to 

non-integer values of Cauchy formula for repeated integrations: 
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From (1) it seems reasonable to define the fractional derivative of order β as the (integer) 

derivative of order n (n∈N and n−1 < β < n) of the fractional integral of order (n−β). If 0 < β < 1, 

we obtain: 
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Eqn(2) represents the Riemann-Liouville definition of fractional derivative. However, it is also 

possible to define the fractional derivative as the fractional integral of order (1−β) of the first 

derivative. In such a case we obtain the Caputo definition of fractional derivative, cDa+
β
: 
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which is valid for 0 < β < 1. It is worth observing that the Riemann-Liouville derivative of a 

constant is not zero, whereas it is null the corresponding Caputo derivative. Since Caputo 

definition generalizes this well-known property of the derivatives of integer orders, Caputo 

fractional derivative is more useful for practical applications. The two definitions are related by 

the following identity: 
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By applying the formula of integration by parts to eqn(3), it is possible to give an alternative 

form to the Riemann-Liouville fractional derivative [9]: 
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Eqn(5) is the Marchaud definition of fractional derivative (0 < β < 1). Since it coincides with the 

Riemann-Liouville definition (2) for a wide class of functions, we will indicate them with the 

same symbol. 

Eqns(1-5) represent the so-called left (or forward) fractional integrals and derivatives. 

Analogously, it is possible to define the right (or backward) operators as: 
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Summing up the Marchaud definitions (5) and (10) yields: 
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It is evident that the Marchaud definitions (5) and (10) hold only for 0 < β < 1 (otherwise the 

integrals at the right-hand side diverge). However, it is possible to prove that eqn(11) holds true in 

the whole interval 0 < β < 2. This non-trivial result (details will be given elsewhere) is of 

fundamental importance, since it will allow us to provide a mechanical interpretation to the 

Eringen non-local fractional model in the next section. For fractional calculus operators analogous 

to (11), but defined on infinite domains, see, e.g., [10]. 

3 ERINGEN NON-LOCAL FRACTIONAL MODEL 

According to Eringen non-local elasticity, the stress at a given point depends on the strain in a 

neighborhood of that point by means of a convolution integral. This dependence is described by a 

proper attenuation function g, which decays along with the distance. In the case of a one-

dimensional domain (i.e. a bar): 
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where σ is the stress, x the longitudinal coordinate, x = a and x = b the bar extreme coordinates, E 

the Young’s modulus, ε the strain defined as the derivative of the longitudinal displacement u, and 



cα a material constant. The bar length is l (l = b−a). Note that the Eringen model [6] is sometime 

referred to as strong (or integral) non-locality, to distinguish it from the weak (or gradient) non-

local elastic model, where the stress depends on the strain and its derivatives [7]. 

Let us now assume the following form for the attenuation function g: 
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with 0 < α < 1.With the choice of eqn(13), the constitutive relationship becomes: 
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By means of eqns(1) and (6), the formalism of fractional calculus can be introduced: 
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Note that cα has anomalous physical dimensions [L]
α−1

. Before proceeding, it is worth highlighting 

the extreme cases. For α = 1, function g acts as the Dirac function and the non-locality disappears; 

the additive term has the same local nature of the classical one ruled by Young's modulus: 
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For α = 0, the fractional integrals in eqn(15) revert to their classical counterparts. Therefore: 
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that is, the non-local bar acts as a classical elastic bar with a spring of stiffness EAcα connecting 

the bar extremes (A being the bar cross section area). 

Since ε = du/dx, it is easy to recognize in eqn(15) the presence of the Caputo fractional 

derivatives of the displacement. Therefore, by exploiting eqns(3) and (8), the dependence of the 

stress upon the displacement becomes: 
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In order to get the equilibrium equation in terms of the displacement function u(x), we simply need 

to substitute eqn(18) into the static equation dσ/dx + f(x) = 0, where f(x) is the longitudinal force 

per unit volume. By means of eqns(4) and (9) and some more analytical manipulations, we get: 
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Eqn(19) is a fractional differential equation. Note that, while the left fractional derivative 

coincides always with its integer order counterpart when the order of derivation is an integer 

number, the right fractional derivative coincides with the corresponding integer derivative only 

when the order of derivation is even; when the order of derivation is an odd number, it is equal to 

its opposite. Therefore, the term in curly brackets is equal to 2 u''(x) when α = 1, and vanishes 

when α = 0. 

4 EQUIVALENT POINT-SPRING MODEL 

A useful interpretation of the governing equation (19) for the non-local elastic bar is sought. To 

this aim, it is convenient to express the sum of the Riemann-Liouville fractional derivatives in the 

Marchuad-like form (11) [8]. Note that this is possible since we proved that eqn(11) holds true 

also for orders of derivation between one and two, which is exactly the case in eqn(19) (while the 

order of fractional derivation was less than unity in [8]) . Hence, by exploiting the additive 

property of fractional derivatives and by letting β = 1+α in eqn(11), we get: 
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where the gamma function property Γ(1−α) = −α Γ(−α) has been used. In this form it is evident 

that the first term at the left-hand side rules the local interactions, whereas the terms in the square 

brackets rule the non-local interactions by means of linear elastic springs and can be seen as an 

extra-force per unit of volume acting at the point of abscissa x. More in detail, the first two terms 

in the brackets refer to long-range interactions between the inner (a < x < b) and outer (x = a , x = 

b) points, whereas the integral term takes into account the interaction between two inner generic 

points. To make the concept even clearer, it is useful to write eqn(20) in discrete form. To this 

purpose, let us introduce a partition of the interval [a, b] on the x axis made of n−1 (n∈N) intervals 

of length ∆x = l/(n−1). The generic point of the partition has the abscissa xi, with i = 1, …, n and x1 

= a, xn = b. Hence, for the inner points of the domain (i = 2, …, n−1), the discrete form of eqn(20) 

reads: 
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where ui ≡ u(xi) and fi ≡ f(xi). Multiplying both the sides of eqn(21) by EA∆x, eqn(21) may be re-

written as: 
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It is evident how the non-local fractional model is equivalent to a point-spring model where three 

kinds of springs appear: the local springs, ruling the local interactions, whose stiffness is k
l
; the 

springs connecting the inner material points with the bar edges, ruling the volume-surface long-



range interactions, with stiffness k
vs

; the springs connecting the inner material points each other, 

describing the non-local interactions between non-adjacent volumes, whose stiffness is k
vv

. 

Provided that the indexes are never equal one to the other, the following expressions for the spring 

stiffnesses holds: 
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The equivalent point-spring model is drawn in fig.1. Each point is connected to the adjacent 

points by two local springs, to the bar extremes by two volume-surface non-local springs and to all 

the other material points by the volume-volume non-local springs. Turning the attention to the 

whole bar, the number of the local springs is n−1, the number of the volume-surface springs is 

2n−3, the number of the volume-volume springs is n(n−1)/2. 

5 PRINCIPLE OF VIRTUAL WORK AND BOUNDARY CONDITIONS 

As the static and kinematic equations are the classical ones (i.e. only the constitutive equation 

is different), the Principle of Virtual Work reads: 
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where σ and f represent a statically equilibrated system of stresses and distributed forces, while u 

and ε are a kinematically admissible system of displacements and strains. The second term at the 

left-hand side represents the work of external forces at the bar extremes and it rules also the 

boundary conditions. They can be either kinematic or static: 
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Fa and Fb being respectively the forces acting at the left and right bar edges and positive if directed 

along x. To solve the governing eqn(20), the static boundary conditions must be given in terms of 

the displacement function by means of eqn(18). Since the left fractional Caputo derivative (eqn(3)) 

is zero in x = a and the right fractional Caputo derivative (eqn(8)) is zero in x = b, the static 

boundary conditions reads, respectively: 
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 Figure 1: Pont-spring model equivalent to the non-local fractional elastic bar. 
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In other words, the static boundary conditions are expressed by combinations of the first derivative 

plus the right fractional derivative evaluated in the left extreme and of the first derivative plus the 

left fractional derivative evaluated in the right extreme. Of course, they are integral-type boundary 

conditions. This is evident by substituting, for instance, eqns(4) and (5) into eqn(29b), which now 

reads: 
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Eqn(30) was derived analytically. We now wish to provide a physical meaning to this “strange” 

boundary condition. First of all, it should be observed that, while at the inner points of the bar the 

effect of the long-range (both volume-volume and volume-surface) interactions is equivalent to a 

force per unit volume, at the bar extremes the sum of the volume-surface interactions acts as a 

concentrated force. It means that, at x = b, the force Fb is partly carried by the local stress: 
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and partly by the volume-surface interactions, whose sum reads, by recalling eqn(25): 
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Eqns(31) and (32) account for the first and third term in eqn(30). However the second term is still 

unjustified. In order to fill this discrepancy, we have to introduce a fourth set of springs, namely a 

unique spring, connecting the two bar extremes with stiffness: 
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In such a way, a third stress contribution appears in x = b: 
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and the boundary condition (30) is fully recovered physically: the force Fb is equilibrated by the 

sum of the three stress contributions (31,32,34). The same occurs at the left edge of the bar. 

The subscript “ss” for the stiffness (33) is used since the spring connecting the bar edges can 

be seen as modeling the interactions between material points lying on the surface, which, in the 

simple one-dimensional model under examination, reduce to the two points x = a,b. The spring has 

been drawn in fig.1. Note that the presence of such a spring was implicitly embedded in the 

constitutive equation (15). However, since eqn(34) represents a constant contribution throughout 

the bar length, its presence was lost by derivation when inserting the constitutive relationship into 

the differential equilibrium equation, i.e. when passing from eqn(18) to eqn(19). 

To summarize, the constitutive fractional relationship (15) for 0 < α < 1 is equivalent to a 

point-spring model with four sets of springs, one local (eqn(23)) and three non-local (24-26, 33). 

Note that their stiffnesses all decay with the distance, although the decaying velocity differs from 

one kind to the other. In the limit case α = 0, the volume-volume and the volume-surface spring 

interactions ruled by eqns(24-26) vanish, and only the contribution (33) remains (together with the 

local springs): the non-local model corresponds to a classical (local) elastic bar in parallel with a 

spring of stiffness EAcα. The related constitutive equation is correspondingly represented by 

eqn(17), whereas the governing equation (19) coincides with the classical u′′ = −f / E. On the other 

hand, in the limit case α = 1, since Γ(0) = ∞, the surface-surface (eqn(33)) and the volume-surface 

(eqns(24-25)) contributions disappear. For what concerns the interactions between inner material 

points (eqn(26)), only the interactions between adjacent material points are retained (the Gamma 

function tends to infinity, but the integral in eqn(20) diverges). Correspondingly, the additive term 

in eqn(15) has the same form as the classical (local) one, the model representing a bar with a 

stiffened (by a factor of (1+2cα)) Young’s modulus (see eqn(16)), while the governing equation 

(19) becomes u′′ = −f / [E (1+2cα)]. 

6 NUMERICAL ANALYSIS 

The equivalent discrete point-spring model allows one to solve directly the proposed one-

dimensional non-local fractional equation. Let us introduce the following four stiffness matrices: 
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whose non-diagonal terms are provided by eqns(23-26) and (33). The diagonal terms kii of each 

matrix is the opposite of the sum of all the other elements of the same row, i.e.: 
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Note that all the four matrices are symmetrical, with positive elements on the diagonal and 

negative outside. More in detail, the local matrix K
l
 is tridiagonal; the non-local matrix K

vv
 ruling 

the long-range interactions between inner points is fully populated; the non-local matrix related to 

the inner-outer interactions K
vs

 has only border and diagonal elements different from zero; finally, 

the non-local matrix K
ss

 describing the interaction between the bar edges is empty except for the 

four corner elements. By introducing the displacement and the force vectors, u and f, and the 

stiffness matrix of the structure as K = K
l
 + K

vv
 + K

vs
 + K

ss
, the solution is achieved by solving the 

following linear system: 

 fuK =  (37) 

 

A numerical example, referred to a clamped-loaded bar, is reported in fig.2. 

Eventually, it is worth noting that the results here achieved yield also a straightforward 

generalization of the non-local model developed in [8] to fractional derivation orders comprised 

between 1 and 2, while in [8] only values between 0 and 1 were considered in the displacement 

equation. This finding is believed to be an important step, two being the order of derivation for 

which the non-local interactions degenerate in their local (classical) counterparts. From a 

numerical point of view, the solution of the Di Paola and Zingales’ model [8] is obtained by 

retaining only the interaction between inner material points, so that the corresponding stiffness 

matrix becomes K = K
l
 + K

vv
. The solution is reported in fig.2 for the same values of the 

parameters used above. As expected, the model being less stiff (some springs are missing), the 

corresponding strain is approximately 50% higher. 

7 CONCLUSIONS 

In the present paper the possibility to apply fractional calculus to the study of non-local elastic 



solids is investigated. It has been shown that, in the one-dimensional case, the non-local fractional 

bar is equivalent to a point-spring model with four sets of springs. It is argued that this springs 

may describe the long-range interactions between volume and surface elements of the solid, that, 

as well-known, play an important role at the smaller scales. However, further efforts are required 

to include the fractional approach in the field of (standard) non-local elastic solids [11]. 
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Figure 2: Strain for the non-local fractional elastic bar: clamped-loaded geometry. Thick line: 

present model. Thin line: Di Paola and Zingales’ model [8]. Dashed line: local elastic bar. Values 

of the parameters: F/EA = 10
−3

, cα l
1−α

 = 1, α = 0.5. 
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